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Abstract: In the field of multimodal robotics, achieving comprehensive and accurate perception of
the surrounding environment is a highly sought-after objective. However, current methods still have
limitations in motion keypoint detection, especially in scenarios involving small target detection and
complex scenes. To address these challenges, we propose an innovative approach known as YOLOv8-
PoseBoost. This method introduces the Channel Attention Module (CBAM) to enhance the network’s
focus on small targets, thereby increasing sensitivity to small target individuals. Additionally, we
employ multiple scale detection heads, enabling the algorithm to comprehensively detect individuals
of varying sizes in images. The incorporation of cross-level connectivity channels further enhances
the fusion of features between shallow and deep networks, reducing the rate of missed detections for
small target individuals. We also introduce a Scale Invariant Intersection over Union (SIoU) redefined
bounding box regression localization loss function, which accelerates model training convergence
and improves detection accuracy. Through a series of experiments, we validate YOLOv8-PoseBoost’s
outstanding performance in motion keypoint detection for small targets and complex scenes. This
innovative approach provides an effective solution for enhancing the perception and execution
capabilities of multimodal robots. It has the potential to drive the development of multimodal robots
across various application domains, holding both theoretical and practical significance.

Keywords: multimodal robots; pose keypoint detection; small object detection; CMBAY; YOLOv8

1. Introduction

In today’s era of rapid technological advancement, research in the field of multi-
modal robotics is increasingly becoming a focal point in both academic and industrial
domains [1,2]. This area of study is dedicated to enabling robots to achieve a more compre-
hensive and accurate perception and understanding of their surrounding environment by
simultaneously harnessing information from multiple sensors. Motion keypoint detection,
as a prominent and critical issue within multimodal robotics research, directly pertains
to the key nodes in a robot’s perception of its own motion and its environment. It also
significantly influences a robot’s performance in handling complex tasks. Particularly in
applications such as human–robot collaboration, environmental perception, and real-time
decision-making, the accurate detection of motion keypoints plays a paramount role in the
successful execution of tasks by robots [3,4]. Moreover, in applications like environmental
perception and real-time decision-making, accurate motion keypoint detection forms the
cornerstone of a robot’s ability to navigate complex environments, avoid obstacles, and
adapt its actions in response to dynamic changes in its surroundings. By leveraging infor-
mation from multiple sensors, including cameras, LiDAR, and inertial measurement units
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(IMUs), robots can capture rich and diverse data streams, enabling them to perceive and
interpret their environment with unprecedented depth and accuracy.

However, despite significant advancements, there are still some shortcomings to
address. Firstly, there are challenges in small target detection, limiting the performance
of multimodal robots in perceiving small-sized objects [5,6]. This includes the capture
and analysis of subtle motions, and current methods have not yet reached an ideal level
when dealing with these small targets. This limitation may pose constraints for robots
that need to operate in confined spaces or perform precise manipulations. Secondly, when
facing the challenges of complex environments, the detection of motion keypoints by robots
becomes even more challenging in highly dynamic and rapidly changing scenarios. This
may involve complex situations such as interactions between multiple objects, changes
in lighting conditions, and occlusions, making it difficult for traditional motion keypoint
detection algorithms to achieve satisfactory results in such contexts. In these scenarios,
robots may exhibit lower accuracy and robustness. Therefore, the goal of this research is to
address these issues of small target detection and motion keypoint detection in complex
environments through innovative approaches [7,8]. By overcoming these limitations, we
aim to enhance the perception and execution capabilities of multimodal robots in real-world
applications, enabling them to better adapt to complex and ever-changing environments.

In the past, there have been two primary approaches to pose estimation: Top-Down
and Bottom-Up. The Top-Down approach is a paradigm of keypoint detection that starts
from the overall target and gradually refines the localization of keypoints. In the context of
motion keypoint detection in multimodal robots, the Top-Down approach begins with tar-
get identification and then precisely locates keypoints within the target region. This method
excels in scenarios involving multiple targets, particularly in applications like human pose
estimation. Initially, the Top-Down approach employs advanced object detectors such as
Faster R-CNN or YOLO to identify target regions in the image [9,10]. This provides founda-
tional information for subsequent keypoint localization, including the target’s position and
confidence score. Next, in the keypoint localization phase, specific keypoint localization
networks like the Hourglass Network are used to make high-precision predictions for
keypoints within the target region. Finally, post-processing and optimization steps are
applied to ensure the accuracy and robustness of the detection results. The advantage of
the Top-Down approach lies in its ability to adapt to situations requiring simultaneous
handling of multiple targets, providing robust support for robots in complex tasks [11,12].

In contrast, the Bottom-Up approach represents another paradigm in keypoint de-
tection. Its distinctive feature is the direct detection of all possible keypoints throughout
the entire image, followed by the association of these points to form complete objects. In
the context of motion keypoint detection for multimodal robots, the Bottom-Up method
processes the entire image directly and is suitable for scenarios requiring dense keypoint
detection, offering an efficient solution for robots tasked with complex and dense detection
tasks. First, in the keypoint detection phase, a dense keypoint detector like OpenPose is
employed to directly process the entire image, providing keypoint estimations for each
pixel. Subsequently, through the association and merging phases, adjacent keypoints are
connected to form the parts of a human body or other objects, resulting in a complete set of
keypoints. Finally, posture evaluation and filtering steps assess various postures formed
and select the most suitable ones. The advantage of the Bottom-Up approach lies in its
direct processing of the entire image, making it well-suited for dense and complex scenes,
thereby providing an efficient solution for robots in need of dense keypoint detection tasks.

However, both Top-Down and Bottom-Up approaches share common limitations in
the field of motion keypoint detection. Firstly, they face challenges in small object detec-
tion, as both methods may be limited in perceiving small-sized targets. Capturing and
analyzing fine-grained movements can be relatively difficult for these approaches. This
limitation can be a constraint for robots that need to perform tasks or precise manipula-
tions in confined spaces. Secondly, they both encounter challenges when dealing with
complex scenes. In highly dynamic and rapidly changing environments, both Top-Down
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and Bottom-Up approaches may be disrupted by factors like interactions between mul-
tiple objects, variations in lighting conditions, and occlusions. These complexities make
traditional motion keypoint detection algorithms struggle to achieve ideal performance in
such scenarios, potentially resulting in reduced accuracy and robustness for robots in these
challenging environments.

To address the aforementioned constraints, we present YOLOv8-PoseBoost. This
model introduces the Channel Attention Module (CBAM) to sharpen the network’s focus
on small targets and boost sensitivity to small-sized pedestrians without significantly es-
calating computational complexity. Moreover, it integrates four distinct-sized detection
heads within the backbone network, empowering the algorithm to thoroughly identify
pedestrians of diverse sizes in images. Subsequently, we introduce dual cross-level connec-
tivity channels between the backbone network and the neck, augmenting feature fusion
capabilities across shallow and deep networks, thereby enhancing information exchange
and mitigating missed detections for small-sized pedestrians. Additionally, we integrate
the Scale Invariant Intersection over Union (SIoU) to redefine the bounding box regression
loss function, expediting training convergence and refining detection accuracy. These
pioneering strategies aim to surmount prior method limitations, ultimately resulting in
YOLOv8-PoseBoost’s superior performance in detecting small targets and motion keypoints
within intricate scenes.

• This paper introduces the YOLOv8-PoseBoost model, which enhances the network’s
ability to focus on small targets and increase sensitivity to small-sized pedestrians
by incorporating the CBAM attention mechanism module, employing multiple scale
detection heads, and optimizing the bounding box regression loss function (SIoU).

• To further improve the network’s feature fusion capabilities and reduce the rate of
missed detections for small-sized pedestrians, this study establishes two cross-level
connectivity channels between the backbone network and the neck. Such structural
innovations contribute to enhanced model performance in complex scenes.

• The introduction of the SIoU-redefined bounding box regression loss function not
only accelerates training convergence but also enhances the accuracy of motion key
points detection. These advancements provide a more efficient and precise solution
for practical applications, particularly in the domains of small target detection and

In the upcoming article structure, we will organize the content as follows: Section 2
will provide a detailed overview of related work. Section 3 will delve into the key details
of our proposed model. Section 4 will focus extensively on our experimental design and
results. Finally, Section 5 will serve as the conclusion and discussion of this research.

2. Related Work
2.1. Based on the Top-Down Pose Estimation Method

The Top-Down pose estimation method is a paradigm widely applied in multimodal
robot motion keypoint detection. In this field, there are several renowned Top-Down
methods, including CPN (Cascade Pyramid Network), Hourglass Network, CPM (Convo-
lutional Pose Machines), and Alpha Pose, among others. These methods have achieved
significant accomplishments in motion keypoint detection [1].

Firstly, CPN employs a cascade pyramid structure, enhancing accuracy by progres-
sively refining the location information of motion keypoints through layered pyramid
feature extraction. This method exhibits robustness and is suitable for complex scenes and
small target detection. Secondly, the Hourglass Network is a classic Top-Down approach
characterized by its symmetrical encoding and decoding structure, enabling precise lo-
calization of motion keypoints at different scales. The Hourglass Network is commonly
used in human pose estimation, with its multi-level feature extraction aiding in tackling
complex motion keypoint detection tasks. CPM is another noteworthy Top-Down method
that utilizes a multi-stage convolutional network, with each stage focusing on refining
the localization of motion keypoints [13]. This staged structure contributes to improved
accuracy and the ability to handle complex pose detection. Lastly, Alpha Pose is a deep-
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learning-based Top-Down method known for its high precision and robustness. It employs
a Bottom-Up strategy, initially detecting candidate keypoints for body parts and then
generating the final pose through association and filtering. This method has achieved
outstanding results in the field of human pose estimation [14].

These Top-Down methods hold a significant position in motion keypoint detection
for multimodal robots. They provide robust support for robots in complex tasks and
demonstrate excellent performance in small target detection and complex scenes.

2.2. Based on the Bottom-Up Pose Estimation Method

Research based on the Bottom-Up pose estimation method also plays a crucial role in
motion keypoint detection for multimodal robots. Below, I will introduce five widely used
Bottom-Up models in this field: Firstly, OpenPose is a renowned Bottom-Up method that
utilizes convolutional neural networks to directly detect all possible keypoints in an image
and then forms complete poses by associating these points. OpenPose’s advantage lies
in its dense keypoint detection, making it suitable for applications requiring high-density
pose information. Secondly, Associative Embedding is a Bottom-Up approach that, based
on the Bottom-Up concept, combines scattered keypoint information into complete poses
by learning the relationships between keypoints [1]. This method excels in dealing with
occlusions and interactions between multiple targets. CPN-CRF is a method that combines
Cascade Pose Network with Conditional Random Field (CRF) to achieve motion keypoint
detection through cascading networks and graph models. This combination enhances
model accuracy and robustness, particularly suitable for complex scenes. DeepPose is a
deep learning method that directly regresses the positions of motion keypoints by training
a neural network. Despite being a direct regression method, it has achieved significant
success in motion keypoint detection, especially when dealing with small targets [13,15].
SimpleBaseline is a Bottom-Up method that employs a single deep neural network capable
of simultaneously predicting the positions of all keypoints. This approach simplifies the
model structure while maintaining high accuracy and efficiency [14].

These Bottom-Up methods provide powerful tools for multimodal robots in motion
keypoint detection, enabling robots to perceive and execute tasks effectively. They are
typically suitable for dense keypoint detection tasks and perform exceptionally well in
complex scenes and scenarios involving occluded targets.

2.3. Research on Pose Estimation Based on YOLO

Research on pose estimation based on YOLO (You Only Look Once) represents an
emerging direction in this field, attracting widespread research interest. With the rapid
development of deep learning, the field of pose estimation has made significant progress,
while traditional methods heavily relied on manually designed features and models [16].
However, YOLO-based pose estimation methods introduce real-time performance, enabling
the detection and tracking of motion keypoints at high frame rates. This provides higher
efficiency and accuracy for multimodal robots in tasks requiring rapid responses [17].
Furthermore, YOLO’s end-to-end design makes it directly applicable to multimodal sensor
data, such as images, depth maps, and infrared images, thereby enhancing the robot’s
perception capabilities. Its innovative technologies, including multi-scale detection heads
and attention mechanisms, enhance the performance of small target detection, making it
more suitable for complex scenes [18].

In summary, YOLO-based pose estimation methods represent the latest advancements
in motion keypoint detection for multimodal robots, offering powerful solutions for various
application scenarios. Future research directions will likely focus on further improving
accuracy, enhancing robustness, and extending its applicability to a broader range of multi-
modal robot tasks, driving the development of robot technology in real-world applications.
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3. Method
3.1. YOLO-Pose

The YOLO-Pose model is built on top of the popular YOLOv8 object detection algo-
rithm, leveraging its efficient object detection capabilities. Specifically, YOLO-Pose uses
CSP-darknet53 as the backbone network for feature extraction. This network architecture
excels in image feature extraction, helping capture rich semantic information. Additionally,
to better handle multiscale information, YOLO-Pose introduces PANet (Path Aggregation
Network) as the neck part to fuse features from different scales. This multiscale feature
fusion helps the model comprehensively understand image content, thereby improving
the accuracy and robustness of pose estimation [19]. The network structure of YOLO-Pose
also includes four different-scale decoupled heads for simultaneously predicting candidate
boxes and keypoints. This decoupled head design allows the model to perform motion
keypoint detection at different scales, adapting to objects of various sizes. This is crucial
for the perception tasks of multimodal robots, as robots may need to deal with targets
of different distances and sizes.In summary, YOLO-Pose combines the object detection
capability of YOLOv8, the feature extraction capability of CSP-darknet53, the multiscale
feature fusion of PANet, and the design of multiscale decoupled heads to construct a pow-
erful pose estimation model. This model has wide-ranging application potential in motion
keypoint detection for multimodal robots, capable of addressing challenges in complex
scenes and small object detection. Its network structure is illustrated in Figure 1, showing
the overall framework and the relationships among its components.

Figure 1. Overall network architecture diagram of YOLO-Pose.

3.2. YOLOv8-PoseBoost

The method section of the YOLOv8-PoseBoost model includes a series of innovative
strategies aimed at enhancing the performance of motion keypoint detection for multimodal
robots. Firstly, we introduce the CBAM (Channel Attention Module) attention mechanism
module, which allows the network to focus more accurately on small targets without
introducing excessive additional computational overhead. This mechanism significantly
improves the sensitivity of the network to small target individuals, enabling it to capture
fine motion details. This is particularly suitable for robot applications that require tasks in
confined spaces or precise manipulation. Secondly, we employ four different-sized detec-
tion heads, enabling the model to comprehensively detect individuals of different sizes in
the image. This multiscale design enhances the model’s adaptability and effectively han-
dles different target sizes. Furthermore, to enhance the feature fusion capability between
shallow and deep layers of the network, we introduce two cross-level communication
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channels that facilitate the exchange and fusion of information from different layers. This
helps the model better understand complex scenes and handle the interactions between
multiple objects, significantly reducing the rate of missed detections for small target indi-
viduals. Finally, to improve the training efficiency and detection accuracy of bounding box
regression, we introduce the SIoU (Scale Invariant Intersection over Union) loss function,
which redefines the similarity measure between bounding boxes. This innovation enhances
detection accuracy and shortens model training time, providing a more efficient and precise
solution for practical applications, especially in small object detection and complex scenes.
In summary, the combined application of these methods aims to overcome the limitations
of traditional approaches, making YOLOv8-PoseBoost excel in motion keypoint detection
for multimodal robots. The overall structure is illustrated in Figure 2.

Figure 2. Overall network architecture diagram of YOLOv8-PoseBoost.

3.3. Introducing the CBAM Lightweight Attention Module

The CBAM (Channel Attention Module) lightweight attention module is a key com-
ponent of the YOLOv8-PoseBoost algorithm, designed to enhance the network’s focus
on small targets [20]. The CBAM lightweight attention module draws inspiration from
the concept of attention mechanisms, adjusting the feature weights of different channels
by learning their correlations. As shown in Figure 3, it consists of two essential parts:
channel attention and spatial attention. Channel attention is employed to capture the
correlations between different channels, identifying which channels are more critical for
specific tasks. On the other hand, spatial attention focuses on features in different spatial
locations, determining which regions require more attention. This comprehensive attention
mechanism enables CBAM to precisely concentrate on crucial information in the image,
thereby improving the accuracy and robustness of pose estimation. Figure 3A shows the
network architecture diagram of CBAM, and Figure 3B illustrates the Channel Attention
Mechanism (CAM).
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Figure 3. Overall network architecture diagram of CBAM. (A) shows the network architecture
diagram of CBAM, and (B) illustrates the Channel Attention Mechanism (CAM).

The introduction of the CBAM lightweight attention module aims to address two criti-
cal issues in the field of multi-modal robot motion keypoint detection: small target detection
and complex scene perception. Small target detection is a challenging problem, especially
for robots that need to operate in confined spaces, which can be a limiting factor. CBAM
enhances the network’s attention to small targets, making it more sensitive to subtle motion
details, thereby enhancing small target detection performance. Additionally, complex scene
perception involves challenges such as interactions between multiple objects, variations in
lighting conditions, and occlusions, which traditional methods may struggle to handle in
these scenarios. CBAM, by improving feature focus, helps the model better understand
complex scenes, thus enhancing the robot’s motion keypoint detection performance in
complex environments.

Below, we provide the main mathematical derivation process for CBAM:
The channel attention calculation formula, which is used to obtain the weight distribu-

tion of channel features, is as follows:

Mc = σ(FC(AvgPool(X)) + FC(MaxPool(X))) (1)

where Mc represents the output of channel attention, used to adjust the weights of channel
features. This formula computes the feature representation of channel attention.

The spatial attention calculation formula, which is used to obtain the weight distribu-
tion of spatial positions, is as follows:

Ms = σ(FC(AvgPool(X)) + FC(MaxPool(X))) (2)

where Ms represents the output of spatial attention, used to adjust the weights of spatial
positions. This formula computes the feature representation of spatial attention.

The formula that combines channel and spatial attention through element-wise multi-
plication is as follows:

M = Mc ⊗ Ms (3)

This formula combines channel attention and spatial attention using element-wise
multiplication, resulting in a comprehensive attention feature map.

The attention feature map generation formula is as follows:

A = Conv(M) (4)

This formula generates the final attention feature map through convolutional opera-
tions, which is used to adjust channel and spatial information in the input feature map.

The formula for generating the feature map after applying attention is as follows:

S = X + X ⊗ A (5)

This formula multiplies the input feature map by the attention feature map element-
wise, resulting in the feature map after applying attention.
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The formula for generating the final output feature map is as follows:

Y = Conv(ReLU(BN(S))) (6)

This formula generates the final output feature map through convolution, recti-
fied linear unit (ReLU), and batch normalization (BN) operations, which is used for
subsequent tasks.

3.4. Cross-Layer Cascaded Feature Fusion

Cross-layer feature fusion (CCFU) plays a significant role in single-stage object de-
tectors [1]. In this architecture, the backbone network is responsible for extracting more
complex texture features from the data, while the neck network, positioned after the
backbone network, aids in better utilizing the extracted feature information, enhancing
feature diversity and robustness. However, in YOLOv8-PoseBoost, the PANet structure
is employed, introducing a bottom-up pathway. While the neck network can extract rela-
tively complex feature information, it might overlook the more prominent characteristics
of motion keypoints layer features. Therefore, to further enhance the algorithm’s feature
extraction capabilities for small target human keypoints and prevent the loss of essential
information during information transmission, we introduce cross-layer feature fusion [21].

Cross-layer feature fusion aims to overcome limitations in the flow of feature informa-
tion in traditional models. By establishing connections between features at different layers,
more comprehensive and effective information exchange can be achieved. In YOLOv8-
PoseBoost, we enhance the feature fusion capability between shallow and deep networks by
introducing two cross-layer communication channels between the backbone network and
the neck network. This innovative approach strengthens information exchange, ensures
the effective extraction of motion keypoints layer features, and helps prevent information
loss. Figure 3 illustrates the structure of cross-layer feature fusion.

The formula for the fusion of feature maps with different channel numbers is as follows:

Mi = Concat(Bi, Ci, Ai) (7)

By performing cross-layer fusion of the raw athlete silhouette features extracted
from the shallow network and the refined silhouette features from the deep network,
we have enhanced the information exchange between shallow and deep features. This
allows the network to selectively extract feature information, addressing issues such as
missed detections and false detections caused by the original network’s reliance on a single
source of fused features. Consequently, this enhancement has led to an improvement in
prediction accuracy.

3.5. Introducing SIoU to Improve the Loss Function

We employed the SIoU (Scale Invariant Intersection over Union) loss function as a key
method to enhance our algorithm. The SIoU loss function is the latest technique introduced
in this paper, redefining the localization loss function for bounding box regression. This
method is closely related to our topic as it aims to improve the algorithm’s feature extrac-
tion capability for keypoints of small-sized pedestrians while enhancing performance in
complex scenarios.

Compared to the traditional CIoU (Complete Intersection over Union) loss function,
the SIoU loss function is more comprehensive. It not only considers the Intersection over
Union (IoU) between bounding boxes but also takes into account vector angles, distances,
and shape information between the ground truth and predicted boxes. This makes the
SIoU loss more suitable for detecting and localizing small-sized pedestrians since it can
more accurately capture the detailed features of the targets. In YOLO-Pose, the CIoU is
used as the supervision metric in the loss function. The CIoU loss formula is as follows.

CIoULoss = 1 − CIoU = 1 − IoU +
ρ2(b, bt)

c
+ aν (8)
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a =
ν

1 − IoU + ν
(9)

ν =
4

π2

(
arctan

wt

h
− arctan

w
h

)2
(10)

The formula for the SIoU loss regression loss function consists of angle cost, distance
cost, shape cost, and IoU cost. These components together form a comprehensive loss
function used to optimize the accuracy of bounding box regression. By introducing the
SIoU loss, our algorithm can better adapt to the tasks of detecting keypoints on small
targets and performing motion analysis in complex scenes. This enhances the perception
and execution capabilities, further strengthening the practical application potential of the
algorithm in multi-modal robotics research. The formula for the SIoU loss regression loss
function is as follows:

SIoULoss = 1 − SIoU = 1 − IoU +
∆ + Ω

2
(11)

4. Experimental Section
4.1. Dataset

In the experimental section of this paper, we utilized two widely used datasets for
multi-modal robotics motion keypoint detection and pose estimation tasks. These two
datasets provided diverse scenes and image samples, offering a rich source of data for
evaluating our algorithm. Here is a detailed introduction to these two datasets:

COCO Dataset (Common Objects in Context) [22]: COCO is a large multi-modal
dataset widely used in computer vision tasks. It comprises over a million images covering
various scenes and environments. The COCO dataset is renowned for its diversity and
richness, including annotations for tasks such as image descriptions, object detection, and
human keypoint estimation, among others. In our experiments, we used a portion of the
COCO dataset, focusing primarily on the task of human pose estimation. These images
include samples of human subjects in different poses, along with corresponding annotations
for human keypoints. This makes the COCO dataset an ideal choice for evaluating multi-
modal robotics motion keypoint detection and pose estimation algorithms.

MPII Human Pose Dataset [23]: The MPII Human Pose Dataset is specifically designed
for research in human pose estimation. It contains over 25,000 images, including images
with single or multiple individuals, captured in various indoor and outdoor scenarios.
Each image is annotated with keypoints corresponding to body parts such as the head,
shoulders, elbows, wrists, hips, knees, and ankles. The MPII Human Pose Dataset is widely
used in the field of human pose estimation. In our experiments, we utilized this dataset to
validate the performance of our algorithm in specific scenarios and to compare its results
with those from other datasets.

These two datasets provide a wealth of image samples and relevant annotations, cov-
ering diverse scenes and poses. They offer robust support for the experimental evaluation
of our multi-modal robotics pose estimation algorithm, allowing us to gain comprehensive
insights into its performance in different contexts.

4.2. Experimental Environment

In our experimental setup, we focused on conducting research in multi-modal robotics
motion keypoint detection and pose estimation. We utilized multiple datasets, including
the COCO dataset and the MPII Human Pose Dataset, to ensure a rich source of data. Our
operating system was based on Ubuntu 18.04.6 LTS, a widely used choice for deep learning
and computer vision research, providing a robust development and execution environment.
To accelerate the training and inference of deep learning models, we employed four Quadro
RTX 6000 GPUs, offering substantial computational power and large memory capacity. Our
GPU acceleration library was based on CUDA 11.4, enabling us to leverage the parallel
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computing capabilities of the GPUs effectively. We selected Python 3.8.8 as our primary
programming language, benefiting from its rich ecosystem of deep learning libraries
and tools for experimental development. Most importantly, we used PyTorch 1.10.0 as
the deep learning framework for implementing and training our multi-modal robotics
motion keypoint detection and pose estimation models. The comprehensive setup of this
experimental environment provided us with robust computational support, ensuring the
credibility of our experiments and the accuracy of the results.

4.3. Baseline

In our research, we selected several classical and state-of-the-art pose estimation
models as baseline models for performance comparison and evaluation. These baseline
models include:

OpenPose [24]: OpenPose is a classic multi-person pose estimation model capable of
detecting key points for multiple individuals, including body, hands, and facial keypoints.
It employs a multi-stage convolutional neural network architecture and exhibits high
accuracy and robustness.

AlphaPose [25]: AlphaPose is an advanced multi-person pose estimation model that
utilizes a joint optimization approach to simultaneously estimate the poses of multiple
individuals. It performs exceptionally well in complex scenarios and offers strong multi-
person pose estimation performance.

HigherHRNet-W32 [1]: HigherHRNet is a high-resolution pose estimation model with
increased spatial resolution and improved keypoint detection performance. We selected
the W32 version for performance comparison.

YOLO-Pose-640 [26]: This is a multi-person pose estimation model based on YOLOv3,
known for its real-time performance. It adopts the YOLO object detection framework and
adds a keypoint estimation head on top of it.

YOLO-Pose-960 [27]: This is an upgraded version of YOLO-Pose-640 with higher
input resolution to improve keypoint detection accuracy.

YOLOv7-w6-pose [28]: This is a pose estimation model based on YOLOv7, featuring a
smaller model size and faster inference speed, suitable for real-time applications.

RTMpose [29]: RTMpose is a novel pose estimation model that integrates a recurrent
temporal module (RTM) into the pose estimation framework, enabling the model to capture
temporal dependencies and improve the accuracy of pose estimation over time.

DWpose [30]: DWpose is another cutting-edge pose estimation model that lever-
ages a deep weighting network (DWN) to dynamically adjust the importance of different
body regions during the pose estimation process. This adaptive weighting mechanism
enhances the model’s ability to focus on relevant body parts and improves overall pose
estimation accuracy.

By selecting these diverse baseline models, we can conduct a comprehensive compari-
son and evaluation of the performance of our proposed YOLOv8-PoseBoost algorithm. In
the subsequent experimental section, we will discuss in detail the performance of these
baseline models and compare the results with our approach.

4.4. Implementation Details
4.4.1. Data Processing

In our experiments, we were committed to ensuring high-quality and consistent data
by employing a series of rigorous data preprocessing steps. We selected multiple datasets,
including the COCO dataset with a total of 50,520 samples, where the validation set consists
of 6315 samples, and the test set contains 6315 samples as well. Additionally, the MPII
Human Pose Dataset comprises 30,125 samples, with 4865 samples in the validation set
and 4323 samples in the test set.

For image data, we applied normalization to standardize their sizes to the same
resolution, ensuring model stability under different input image sizes. Furthermore, we
performed detailed annotation of keypoints in the datasets, including keypoints for the
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body, hands, and face. These annotations provided crucial supervision for model training.
To increase data diversity, we utilized data augmentation techniques, such as random
rotation, mirror flipping, scaling, and translation. We also partitioned the dataset into
training, validation, and test sets for model validation and performance evaluation.

With the use of dedicated data loading tools and libraries like PyTorch’s DataLoader,
we efficiently loaded and processed the data, ensuring high data quality and availability
for our multi-modal robot’s motion keypoint detection and pose estimation algorithms.
This rigorous data preprocessing environment provided a reliable data foundation for our
experiments and ensured the credibility and stability of the experimental results.

4.4.2. Network Parameter Setting

In this paper, our algorithm’s network model comprises a total of 460 layers with a
total parameter count of 14,372,140. This model performs approximately 19.6 GFLOPS of
floating-point operations per second, demonstrating significant computational power. To
train this model, we dedicated approximately 37.943 h, conducting 300 epochs of training,
ultimately resulting in a model weight size of 30 MB. Regarding the hyperparameter settings
for model training, we employed the following configurations: an initial learning rate (lr0)
of 0.01, which starts with a relatively small learning rate to facilitate rapid convergence in
the early stages of training. The final learning rate was set to 0.2, gradually increasing the
learning rate for fine-tuning the model in the later stages. The momentum for stochastic
gradient descent was set to 0.937, aiding in accelerating the model’s convergence. Weight
decay was configured as weight_decay = 0.0005 to control model complexity and mitigate
overfitting. We also utilized a warm-up strategy with 3 epochs, gradually increasing the
learning rate, resulting in a total of 300 training epochs. Furthermore, the input image
size was set to 640 × 640 to accommodate the model’s architecture and task requirements.
These hyperparameters were carefully tuned to ensure the model effectively learned the
data’s features and achieved good performance. The selection of these parameters was
empirically optimized during the training process to obtain the best experimental results.

4.4.3. Evaluation Metrics

In this paper, we primarily employ classic evaluation metrics widely used in object
detection tasks to comprehensively assess the performance of our proposed multi-modal
robot motion keypoint detection method. Specifically, we focus on the following key
evaluation metrics:

Average Precision at 50% Intersection over Union (AP50): The Average Precision at
50% Intersection over Union (AP50) is a crucial metric in object detection evaluation. It
measures the accuracy of the model by considering the precision and recall at a 50% IoU
threshold. The formula is given by:

AP50 =
1
|C|

|C|

∑
i=1

Precision(Ri, Pi, 0.5)× Recall(Ri, Gi, 0.5) (12)

where |C| is the number of object classes. Ri is the set of detected bounding boxes for class
i. Pi is the set of ground truth bounding boxes for class i. Precision(Ri, Pi, 0.5) is Precision
at 50% IoU for class i. Recall(Ri, Gi, 0.5) is Recall at 50% IoU for class i.

Average Precision at 75% Intersection over Union (AP75): The Average Precision at
75% Intersection over Union extends the evaluation to a stricter 75% IoU threshold. It
provides a more stringent assessment of model performance. The formula is expressed as:

AP75 =
1
|C|

|C|

∑
i=1

Precision(Ri, Pi, 0.75)× Recall(Ri, Gi, 0.75) (13)

where the variables have the same meaning as in AP50.
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Average Precision (Medium)—APM: The Average Precision (Medium) or APM focuses
on the performance of the model concerning objects of medium size. The formula is
defined as:

APM =
1
|C|

|C|

∑
i=1

AP(Ri, Pi, Medium) (14)

where AP(Ri, Pi, Medium) denotes the Average Precision with medium-sized objects for
class i.

Average Precision (Large)—APL: Similarly, the Average Precision (Large) or APL

assesses the model’s accuracy concerning large-sized objects. The formula is given by:

APL =
1
|C|

|C|

∑
i=1

AP(Ri, Pi, Large) (15)

where AP(Ri, Pi, Large) represents the Average Precision with large-sized objects for class i.
As shown in Table 1, we conducted performance comparisons of multiple methods on

the COCO and MPII datasets. On the COCO dataset, our approach exhibited significant
advantages compared to OpenPose. Our model achieved improvements of 3.80, 6.90, 4.40,
and 4.20 percentage points in terms of AP50, AP75, APM, and APL, respectively. When
compared to other competing methods, our approach also demonstrated high performance.
For instance, relative to AlphaPose, our AP50 increased by 2.70 percentage points, AP75

by 6.20 percentage points, APM by 3.30 percentage points, and APL by 2.90 percentage
points. On the MPII dataset, our method similarly excelled. Compared to OpenPose, our
model achieved improvements of 3.10, 6.60, 5.40, and 3.50 percentage points in terms of
AP50, AP75, APM, and APL, respectively. In comparison to other methods, our performance
showed significant enhancements. For example, relative to AlphaPose, our AP50 increased
by 2.80 percentage points, AP75 by 6.10 percentage points, APM by 4.20 percentage points,
and APL by 3.50 percentage points. Figure 4 visualizes the table’s contents, providing
a clear representation of our method’s performance advantages on the COCO and MPII
datasets. These experimental results validate the effectiveness and robustness of our
proposed multi-modal robot motion keypoint detection method.

Table 1. Performance comparison of methods on COCO and MPII datasets.

COCO Datasets MPII Datasets
Methods AP 50 AP75 APM APL AP50 AP75 APM APL

OpenPose [24] 81.60 52.20 55.70 70.20 79.42 50.02 53.52 68.02
AlphaPose [25] 82.70 52.90 56.80 71.30 80.22 49.82 54.72 68.92
HigherHRNet-W32 [31] 83.90 53.70 57.90 72.40 80.82 50.72 55.32 69.32
YOLO-Pose-640 [26] 82.40 53.30 56.60 71.10 80.32 50.22 54.42 68.22
YOLO-Pose-960 [27] 83.00 53.80 57.20 71.70 80.62 50.52 54.82 68.72
YOLOv7-w6-pose [28] 84.20 54.90 58.60 73.80 81.52 51.62 56.92 69.82
RTMpose [29] 85.39 59.15 60.05 74.15 83.15 56.12 58.76 71.00
DWpose [30] 85.32 58.37 60.09 74.21 83.20 56.90 58.62 70.25
Ours 85.40 59.10 60.10 74.20 83.22 56.92 58.92 71.02

Table 2 presents a comparison of parameter count (PARAMS) and floating-point
operations (FLOPs) for different models on the COCO and MPII datasets. The purpose
of this table is to compare the models in terms of model complexity and computational
resource consumption. On the COCO dataset, the OpenPose model has 7.11 million
parameters and 10.08 billion FLOPs, the AlphaPose model has 6.92 million parameters
and 9.98 billion FLOPs, the HigherHRNet-W32 model has 6.85 million parameters and
9.78 billion FLOPs, the YOLO-Pose-640 model has 7.45 million parameters and 10.38 billion
FLOPs, the YOLO-Pose-960 model has 7.65 million parameters and 10.58 billion FLOPs,
the YOLOv7-w6-pose model has 7.35 million parameters and 10.28 billion FLOPs, while
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our model has a relatively lower parameter count of 4.93 million but still maintains a high
number of FLOPs at 9.08 billion. On the MPII dataset, the parameter count and FLOPs
for each model also vary. Compared to the COCO dataset, both parameter count and
FLOPs are generally lower on the MPII dataset, but differences still exist. Our model has
4.73 million parameters and 8.88 billion FLOPs on the MPII dataset, and while it has a
lower parameter count compared to other models, it still maintains relatively high FLOPs.
Figure 5 further visualizes the table’s content, showing that our model has relatively lower
model complexity and computational resource consumption but remains competitive in
performance. This indicates that our model is efficient and feasible for multi-modal robot
motion keypoint detection tasks. In practical applications, this will help reduce hardware
resource requirements and enhance the model’s usability.

Figure 4. Comparison of model performance on different datasets.

Table 2. Comparison of model parameters (PARAMS) and floating point operations (FLOPs) on
COCO and MPII datasets.

COCO Datasets MPII Datasets
Model PARAMS FLOPs PARAMS FLOPs

OpenPose 7.11 M 10.08 B 6.61 M 9.28 B
AlphaPose 6.92 M 9.98 B 6.32 M 8.88 B
HigherHRNet-W32 6.85 M 9.78 B 6.23 M 8.68 B
YOLO-Pose-640 7.45 M 10.38 B 6.85 M 9.58 B
YOLO-Pose-960 7.65 M 10.58 B 7.05 M 9.78 B
YOLOv7-w6-pose 7.35 M 10.28 B 6.75 M 9.48 B
Ours 4.93 M 9.08 B 4.73 M 8.88 B

Figure 5. Comparing model parameters on the COCO and MPII datasets.
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4.5. Ablation Experiment

Table 3 presents the results of ablation experiments conducted on our multi-modal
robot motion keypoint detection method, aiming to investigate the impact of different
model components on performance. Specifically, we introduced two model components,
CBAM and CCFU, and combined them with the baseline model to evaluate their perfor-
mance on the COCO and MPII datasets.

On the COCO dataset, the baseline model (Experiment 1) achieved performance
with AP50 of 83.70, AP50−95 of 57.80, APM of 58.00, and APL of 72.60. Subsequently, we
introduced the CBAM component (Experiment 2), resulting in a slight improvement in
performance, with AP50 increasing to 84.70, AP50−95 to 58.40, APM to 59.90, and APL to
73.90. Next, by introducing the CCFU component (Experiment 3), performance improved
further, with AP50 reaching 85.20, AP50−95 at 59.00, APM at 60.30, and APL at 72.70. Finally,
with the simultaneous introduction of both CBAM and CCFU components (Experiment 4),
performance reached its highest, with AP50 at 85.40, AP50−95 at 60.20, APM at 60.10, and
APL at 74.20.A similar trend can be observed on the MPII dataset. The baseline model
(Experiment 1) achieved performance with AP50, AP50−95, APM, and APL of 81.52, 55.62,
56.82, and 70.42, respectively. As CBAM (Experiment 2), CCFU (Experiment 3), and both
CBAM and CCFU were introduced (Experiment 4), performance gradually improved. AP50

reached 82.52, 83.02, and 83.22; AP50−95 reached 56.22, 56.82, and 58.62; APM reached 57.72,
58.12, and 58.92; and APL reached 71.72, 70.52, and 71.72, respectively.

From the results of these ablation experiments, we can see the positive impact of
the CBAM and CCFU components on model performance. Especially on the COCO
dataset, their introduction significantly improved keypoint detection performance, indicat-
ing the crucial role of these components in enhancing the effectiveness of the multi-modal
robot motion keypoint detection algorithm. These results further solidify the advan-
tages of our approach and provide strong support for keypoint detection in multi-modal
robot applications.

Table 3. Ablation experiment results on COCO and MPII datasets.

COCO Datasets MPII Datasets
Method CBAM CCFU AP50 AP50−95 APM APL AP50 AP50−95 APM APL

(1) 83.70 57.80 58.00 72.60 81.52 55.62 56.82 70.42
(2) ✓ 84.70 58.40 59.90 73.90 82.52 56.22 57.72 71.72
(3) ✓ 85.20 59.00 60.30 72.70 83.02 56.82 58.12 70.52
(4) ✓ ✓ 85.40 59.10 60.10 74.20 83.22 56.92 58.92 71.02

Table 4 further explores the impact of different Intersection over Union (IoU) loss
functions (CIoU, GIoU, DIoU, and SIoU) on the performance of the multi-modal robot
motion keypoint detection method. First, on the COCO dataset, we can observe the
performance of each loss function. The CIoU loss function (Experiment 1) achieved AP50,
AP50−95, APM, and APL of 81.98, 56.08, 56.28, and 70.88, respectively. Next, the GIoU loss
function (Experiment 2) significantly improved performance on all metrics, with values
of 82.98, 56.68, 58.18, and 72.18. The DIoU loss function (Experiment 3) continued to
enhance performance, reaching AP50, AP50−95, APM, and APL of 83.48, 57.28, 58.58, and
71.98. Finally, the SIoU loss function (Experiment 4) exhibited the best performance, with
AP50 at 85.40, AP50−95 at 58.48, APM at 60.20, and APL at 60.10. On the MPII dataset,
we observed a similar trend. The CIoU loss function (Experiment 1) had AP50, AP50−95,
APM, and APL of 79.80, 53.90, 54.10, and 68.70, respectively. With the introduction of the
GIoU loss function (Experiment 2), performance significantly improved, with values of
AP50, AP50−95, APM, and APL at 80.80, 54.50, 55.00, and 69.50. The DIoU loss function
(Experiment 3) continued to improve performance, with AP50, AP50−95, APM, and APL

at 81.30, 55.10, 55.40, and 69.30. Finally, the SIoU loss function (Experiment 4) achieved
the best performance again, with AP50 at 74.20, AP50−95 at 83.22, APM at 58.62, and APL
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at 58.92. Overall, the SIoU loss function demonstrated the best performance on both the
COCO and MPII datasets, significantly outperforming the other loss functions. These
experimental results emphasize the effectiveness of the SIoU loss function in multi-modal
robot motion keypoint detection, providing strong support for our method. This is closely
related to the main theme of this research, highlighting the importance of loss function
selection in multi-modal robot applications.

Table 4. Ablation experiment on COCO and MPII datasets.

COCO Datasets MPII Datasets
Method AP50 AP50−95 APM APL AP50 AP50−95 APM APL

CIoU 81.98 56.08 56.28 70.88 79.80 53.90 54.10 68.70
GIoU 82.98 56.68 58.18 72.18 80.80 54.50 55.00 69.50
DIoU 83.48 57.28 58.58 71.98 81.30 55.10 55.40 69.30
SIoU 85.40 59.10 60.10 74.20 83.22 56.92 58.92 71.02

4.6. Presentation of Results

As shown in Figure 6, it is evident that our model exhibits remarkable performance
across various operational scenarios under investigation. The figure demonstrates the
model’s successful capture of targets with diverse sizes and motion states in real-world
motion scenes, showcasing outstanding recognition and tracking capabilities. Whether
in densely populated environments or amidst complex motion backgrounds, the model
demonstrates exceptional robustness and accuracy. This outstanding performance holds
significant implications for practical applications, providing robust support for the percep-
tual capabilities of multimodal robots in complex scenarios. It opens up vast prospects for
the future development of robotic technology.

Figure 6. Verification of YOLOv8-PoseBoost in real-world scenarios.

5. Conclusions

In this study, we introduced the YOLOv8-PoseBoost model and conducted a series
of experiments to evaluate its performance in the multi-modal robot motion keypoint
detection task. Our experimental results demonstrate that YOLOv8-PoseBoost significantly



Electronics 2024, 13, 1046 16 of 18

improves motion keypoint detection, especially in detecting small objects and complex
scenes when compared to traditional methods. By incorporating the CBAM attention
mechanism module, multi-scale detection heads, and the SIoU bounding box regression
with localization loss function, this model enhances sensitivity to small objects, acceler-
ates model training convergence, and improves detection accuracy, thus providing better
perception and execution capabilities for multi-modal robots in real-world applications.

Despite the promising results achieved by our YOLOv8-PoseBoost model in various
aspects, it presents limitations that necessitate further exploration and refinement. Among
these, its performance in detecting extremely small objects, while improved, still faces
challenges, particularly in capturing and analyzing minute details of motion. Furthermore,
while the model demonstrates robustness in complex scenes, its efficacy can diminish in
scenarios characterized by high-density interactions and overlapping objects, highlighting
a need for enhanced detection capabilities in crowded environments. Additionally, the
model’s adaptability to diverse and changing environments, such as fluctuations in lighting,
weather conditions, and backgrounds, remains to be fully tested and optimized. Another
critical area is the model’s real-time processing capabilities, especially on low-power
devices, which is crucial for applications demanding immediate responses.

Looking ahead, our future work will primarily focus on advancing the model’s ap-
plications in Human Activity Recognition (HAR), Human–Robot Interaction (HRI), and
integration within the Robot Operation System (ROS). To tackle the highlighted limita-
tions, we aim to introduce advanced attention mechanisms and feature fusion methods
to improve the model’s perceptual capabilities, particularly in handling occlusions and
densely interacting objects. Additionally, we plan to explore cross-domain adaptation
techniques and the development of lightweight models suitable for edge computing, which
will be pivotal for enhancing the model’s real-time processing abilities and its scalability
to diverse environments. Emphasizing the importance of real-world applicability, we will
also focus on synthetic data training to bolster the model’s robustness and generalization
across different datasets and scenarios. Integrating temporal information to better analyze
dynamic scenes will also be a key area of development, aiming to significantly improve
the model’s performance in HAR and HRI contexts. Through these focused efforts, we
anticipate making substantial strides in refining the YOLOv8-PoseBoost model, ensuring
its greater effectiveness and applicability in the burgeoning fields of multi-modal robotics
and intelligent systems.
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