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Abstract: The most significant threat that networks established in IoT may encounter is cyber attacks.
The most commonly encountered attacks among these threats are DDoS attacks. After attacks,
the communication traffic of the network can be disrupted, and the energy of sensor nodes can
quickly deplete. Therefore, the detection of occurring attacks is of great importance. Considering
numerous sensor nodes in the established network, analyzing the network traffic data through
traditional methods can become impossible. Analyzing this network traffic in a big data environment
is necessary. This study aims to analyze the obtained network traffic dataset in a big data environment
and detect attacks in the network using a deep learning algorithm. This study is conducted using
PySpark with Apache Spark in the Google Colaboratory (Colab) environment. Keras and Scikit-Learn
libraries are utilized in the study. ‘CICIoT2023’ and ‘TON_IoT’ datasets are used for training and
testing the model. The features in the datasets are reduced using the correlation method, ensuring
the inclusion of significant features in the tests. A hybrid deep learning algorithm is designed using
one-dimensional CNN and LSTM. The developed method was compared with ten machine learning
and deep learning algorithms. The model’s performance was evaluated using accuracy, precision,
recall, and F1 parameters. Following the study, an accuracy rate of 99.995% for binary classification
and 99.96% for multiclassification is achieved in the ‘CICIoT2023’ dataset. In the ‘TON_IoT’ dataset,
a binary classification success rate of 98.75% is reached.

Keywords: DDoS attacks; big data; intrusion detection system; hybrid algorithm; deep learning;
machine learning; multi-class classification; IoT security

1. Introduction

Wireless sensor networks serve as a bridge between the real world and the digital
world. The network created by connecting sensors to each other to detect the real world and
spread these data to the digital world is generally called a wireless sensor network. Wireless
Sensor Networks (WSN) provide real-time data flow in various fields, such as military
surveillance, battlefield monitoring, forest fire tracking, building security monitoring, and
healthcare services. A wireless data network is part of the Internet of Things (IoT), and the
collected data are processed, analyzed, and presented to the user with the help of a base
station. A WSN typically includes at least one gateway node that serves as a link between
the network and the external world [1].

Communication between these sensors and the gateway node should be conducted in
the most energy-efficient way because sensor nodes have limited energy and their batteries
cannot be recharged. Due to the characteristic features of wireless sensor networks, the
communication methods should be simple, efficient, and easily adaptable to different
scenarios. As a result, the resources they can use are limited. Due to factors such as low
power consumption, processor constraints, and the inability to add some devices due to
cost, wireless sensor networks are vulnerable to attacks. Security and privacy are crucial
considerations in these systems. Enhancing them and adding new features will require
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overcoming obstacles, such as energy constraints and processor limitations. Applying
traditional security measures, such as cryptography, to such networks is challenging
because WSNs are highly vulnerable to attacks due to their open and distributed structures
and the limited resources of sensor nodes. Additionally, frequent broadcasting of packets in
WSNs may be necessary, and sensor nodes can be randomly deployed in an environment,
making it easy for a malicious attack to be injected into the WSN [2].

An aggressive sensor can compromise the network, eavesdrop on messages, inject
spoofed messages, alter the integrity of data, and waste network resources. Denial of
Service (DoS) attacks are considered one of the most common and dangerous threats to
WSN security. DoS attacks remain a significant challenge today. There are various forms
of this attack, and its main purpose is to interrupt or suspend the services provided by
WSNs [2]. The destructive impact of DoS attacks is that they consume the power resources
of nodes and significantly shorten their operational lifetimes. Therefore, sensors can die
quickly because of DoS attacks. Nodes that run out of power become useless; hence, the
intended use of the WSN is compromised.

As modern technology is based on data, DoS attacks are a very dangerous and sig-
nificant attack type. Data is known as raw information and becomes meaningful after
processing. With the beginning of the computer age, the amount of data used has signif-
icantly increased. Logs left by network traffic, system events, and system components
can be included in big data. Thanks to big data analytics and related technologies, data
streams can be continuously monitored, and anomalies and changes in the network can be
detected to ensure network security. By working together, big data and artificial intelligence
algorithms can analyze the past and present data of the network, determining whether the
current network traffic is normal or attacked [3].

In networks with limited resources that are vulnerable to attacks, there are systems
capable of detecting these attacks in real time and alerting the relevant sensor node. These
systems are called Intrusion Detection Systems (IDS). An IDS is a proactive attack detection
tool used to detect and classify unauthorized entries, attacks, or violations of security
policies in a timely manner [4]. Due to the limited resources of sensor nodes, these intrusion
detection systems should have high accuracy and should not impose an additional burden
on the network’s resource consumption.

In this study, a new intrusion detection system in a big data environment is developed
with a hybrid deep learning algorithm. The algorithm is implemented in Pyspark, Apache
Spark’s Python support, using the Google Colabs environment. Apache Spark is preferred
because of its fast execution and the data used in the algorithm are part of big data.
This intrusion detection algorithm is trained and tested using CICIoT2023 and TON_IOT
datasets. The system is evaluated for both binary and multiclass classification, using
evaluation parameters such as accuracy, precision, recall and F1-score. The developed
model was compared with ten traditional machine and deep learning algorithms (Random
Forest (RF), Decision Tree (DT), Gradient Boost (GB), AdaBoost (ADA), Naive Bayes (NB),
Logistic Regression (LR), K-Nearest Neighbor (KNN), Convolutional Neural Network
(CNN), Multi-layer Perceptron (MLP) and Long Short-Term Memory (LSTM)).

The contributions of the proposed study to the literature are as follows:

• A new IDS has been developed efficiently in a big data environment using a new
hybrid deep learning algorithm.

• The developed algorithm has been tested for both binary and multiclass classification
and achieved high accuracy in both cases.

• The developed hybrid algorithm has been compared with ten mostly used machine
and deep learning algorithms. The results showed that the proposed hybrid method
has better accuracy than traditional methods.

• Deep learning algorithms, such as CNN and LSTM, were individually tested. It was
observed that the hybrid algorithm created using CNN and LSTM performs better
than using them separately.
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• High accuracy has been achieved in a large dataset such as CICIoT2023, which exhibits
an imbalanced distribution of values without the use of any balancing methods.

• The addition of a second dataset to the study resulted in a high intrusion detection
rate in a different dataset.

The study consists of seven sections. Section 2 describes the studies conducted with
the CICIoT2023 and TON_IOT datasets. Section 3 defines the Distributed Denial of Service
(DDoS) attacks present in the dataset and provides a general description of anomaly
detection systems developed to prevent them. Section 4 describes the preprocessing stages
of the used dataset and introduces the deep learning algorithms employed in the study.
Section 5 explains the developed algorithm. The evaluation results of the model and their
comparison are given in Section 6. Section 7 includes a discussion of the study. Section 8
consists of the conclusion and future work section.

2. Related Works

Anomaly-based intrusion detection systems define an attack as any deviation from
normal behavior. Due to the inherent structure of Wireless Sensor Networks (WSNs), there
are certain limitations. Therefore, the IDSs to be used in WSNs must be designed with these
limitations in mind. In the literature, there are IDS systems developed for WSNs using
classification, clustering, machine learning, and statistical learning algorithms [1]. This
section provides a summary of the IDS studies developed for detecting DDoS in WSNs.

Cil et al. [4] developed a DDoS detection system using a classical deep learning
algorithm. This algorithm is designed with 69 units in the input layer and three hidden
layers with 50 units each between the input and output layers. Two different datasets were
obtained using the CICDDoS2019 dataset. The first one includes data labeled as attack or
normal for traffic, while the second one contains data with attack types. An accuracy rate
of 99.97% in attack detection and 94.57% in attack type detection was achieved.

Almaraz-Rivera et al. [5] used the Bot-IoT dataset released in 2019, which addresses
the class imbalance problem, to create a new ıntrusion detection system based on machine
learning and deep learning models. Using this dataset, three different subsets were formed
by selecting different feature sets. The first subset differs from the other two in timestamps
(stime, ltime) and Argus sequence number (seq). In the second subset, timestamps were
removed under the assumption that the model would memorize these features. Similarly,
the sequence number was also removed. In the last subset, stime and ltime features were
removed to evaluate the effect of timestamps. These created datasets were tested separately
for binary and multiclass classification by RF, DT, LSTM, MLP, Gated Recurrent Unit (GRU),
Recurrent Neural Network (RNN), and Support Vector Machine (SVM) machine learning
algorithms. The evaluation resulted in an average accuracy of over 99%. Decision tree and
MLP models were observed to be the best-performing methods.

Jia and their team [6] designed the FlowGuard algorithm, which consists of two com-
ponents: flow filter and flow handler. The flow filter is responsible for filtering malicious
flows based on filtering rules created by the flow handler and detecting malicious flows
that cannot be identified based on traffic changes. The flow handler takes on the respon-
sibility of identifying and classifying malicious flows according to two machine learning
models developed, LSTM and CNN. The performance of the FlowGuard algorithm was
evaluated using the CICDDoS2019 dataset, achieving a detection accuracy of 99.9% for
attack detection and 98.9% for attack type detection.

Alghazzawi et al. [7] developed a hybrid deep learning algorithm using a feature selec-
tion approach. The model, created using CNN and BiLSTM deep learning algorithms, was
tested in 10 different combinations of variables, such as filter count, filter size, and BiLSTM
units. The algorithm achieved an accuracy rate of up to 94.52% using the CICDDoS2019
dataset during training, testing, and validation.

Ferrag et al. [8] proposed a deep learning-based DDoS attack detection system based on
three different models: CNN, RNN, and Deep Neural Network (DNN). Each model’s perfor-
mance was trained and tested on CICDDoS2019 and TON_IoT datasets for binary and multi-
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class classification. The datasets were divided into three different datasets (Dataset_2_class,
Dataset_7_class, and Dataset_13_class) to analyze the efficiency of binary classification and
multiclass classification. The CNN algorithm achieved accuracy rates of 99.95%, 95.90%,
and 95.12% for binary, seven-class, and thirteen-class classifications, respectively.

Mamoudan et al. [9] designed an algorithm to predict buy–sell signals using technical
analysis indicators, a popular tool in financial markets. To obtain the data, Moving Average
Convergence Divergence (MACD), Ichimoku, and Moving Average (MA) indicator data of
the global gold market were recorded for ten months. The moth-flame optimization (MFO)
algorithm was used to determine important features in the created dataset. A hybrid neural
network consisting of CNN and BiGRU was developed to make the prediction. As a result
of the tests, it was seen that the developed algorithm could determine buy–sell signals with
94% accuracy.

Wei et al. [10] proposed a hybrid approach called AE-MLP for DDoS attack detection
and classification. With the Auto Encoder (AE) part, it automatically finds the most
necessary features in the network traffic and determines the features to be used. The MLP
part enables attack detection by using the reduced feature sets determined by AE as input.
Thanks to the AE-MLP algorithm, appropriate features are selected, reducing training costs
and allowing more accurate detection. With the MLP algorithm, not only attack detection
but also attack types are classified. Tests were carried out by creating 6 different subdatasets
from the dataset used. It is intended to classify network traffic of LDAP, MSSQL, NetBIOS,
SYN, UDP, and BENIGN types. As a result of the tests, it was seen that the proposed
algorithm reached an accuracy rate of 98.34%.

Kumar et al. [11] developed an artificial neural network algorithm with decision trees,
random forest, KNN, and naive Bayes algorithms with the Bot-IOT dataset. Later, this
algorithm was tested using trafic data from a testbed consisting of 20 IoT devices that had
been established. The created dataset includes 3 M DoS, 2.5 M DDoS UDP, 2.5 M DDoS
TCP, and 2 M normal traffic data. In the tests performed with this dataset, the best results
were achieved with KNN (acc. 99.466%) and hybrid (99.611%) algorithms. The artificial
neural network algorithm was tested separately with different activation functions. The
best result was obtained using the Rectified Linear Unit (ReLU) function with an accuracy
rate of 99.529%. As a result of these comparisons, it is emphasized that machine learning
can provide better results in systems with fewer resources and deep learning algorithms
can provide better results in systems where more data and resources can be used.

Alzahrani R.J and Alzahrani A. [12] presented an evaluation of six different machine
learning algorithms, namely KNN, SVM, NB, DT, RF, and LR, using the CICDDoS2019
dataset through the WEKA tool. In the feature selection process within the dataset, the
Random Forest Regressor (RFR) feature selection method was identified as contributing to
the accuracy of ML methods in detecting attack traffic. In the assessment, the DT and RF
algorithms achieved the highest accuracy rates of 99%. It was also observed that the DT
algorithm had a faster computation time compared to RF. The study additionally provided
a review encompassing the strengths, weaknesses, and detection methods of both ML- and
DL-based IDS systems.

Batchu and Seetha [2] have developed an anomaly detection system based on a feature
selection algorithm. The parameters of the algorithms were adjusted to give the best results.
In this method, machine learning algorithms, including LR, DT, GB, KNN, and SVM, were
evaluated. The evaluation was conducted on the CICDDoS2019 dataset with four different
scenarios and various situations. The most successful result was achieved using the GB
algorithm on a dataset prepared with hybrid feature selection and hyperparameter tuning
algorithms, reaching an accuracy rate of 99.97%.

Patil et al. [13] proposed a Spark Streaming and Kafka-based classification system
called SSK-DDoS to classify DDoS attack types in real time. The system was trained and
tested to classify six attack types (DDoS-DNS, DDoS-LDAP, DDoS-MSSQL, DDoS-NetBIOS,
DDoS-UDP, and DDoS-SYN) and normal traffic found in the CICDDoS2019 dataset. The
developed algorithm stores the formulated features with their evaluated classes in HDFS
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and can be reused during retraining. As a result of the experiments, it was shown that the
proposed detection system divided the network traffic into seven classes, with an accuracy
rate of 89.05%.

Al and Dener [3] presented the STL-HDL method, a classification-based anomaly
detection system for network traffic in the big data environment. The developed algorithm
is a hybrid model combining CNN and LSTM. To address imbalanced distribution in the
datasets, SMOTE and Tomek links techniques were applied. The model was evaluated for
binary classification using the UNS-NB15 dataset and for multiclass classification using the
CIDDS-001 dataset. The proposed approach compared nine different machine and deep
learning algorithms. The system’s success rate was 99.17% for binary classification and
99.83% for multiclass classification.

Haq et al. [14] presented the PCCNN method against attacks on IoT devices by
combining the Principal Component Analysis (PCA) technique, to reduce feature size, and
the 13-layer CNN algorithm, used for attack classification. This method was evaluated
using the NSL-KDD dataset. The accuracy rate of the method was measured as 99.34% and
99.13% for binary and multiclass classification, respectively.

Iwendi et al. [15] proposed a deep learning-based anomaly detection system to detect
DDoS attacks on IoT devices. This system was implemented using LSTM. As a result
of these experiments using the CICDDOS2019 dataset, an accuracy rate of 99.97% was
achieved in SNMP attack detection.

Gamal et al. [16] presented a new IDS method called CNN-IDS in their study. The
proposed system consists of two stages: the first stage is the feature selection in the dataset
called the ınformation gain method, and the second stage is the classification of network
traffic with the one-dimensional CNN algorithm. The proposed model was trained and
validated using UNSW-NB15 and Bot-IoT datasets. A detection rate of 99.9% was achieved
in the Bot-IoT dataset.

Gad et al. [17] presented an IDS based on the TON_IOT dataset. Issues such as missing
values and class imbalance in the TON_IOT dataset were addressed. They tried to prevent
the class imbalance and overlearning problem of the dataset by using the SMOTE technique
for class balancing. The Chi2 technique was used for feature selection. By reducing the
number of features to 20, faster training time was achieved, and the complexity of the
model was reduced. The preprocessed dataset was tested with LR, NB, DT, RF, AdaBoost,
KNN, SVM, and XGBoost algorithms. The best result was achieved with the XGBoost
algorithm, with an accuracy rate of 99.3% in binary and 98.6% in multiclass classification.

Disha and Waheed [18] developed an anomaly detection system based on a feature
selection algorithm. An algorithm called Gini Impurity-Based Weighted Random Forest
(GIWRF) was developed as a feature selection algorithm. In this context, two different
datasets were used in the experiments. These are the UNSW-NB 15 and TON_IoT datasets.
In total, 15 features were selected in the UNSW-NB 15 dataset, and 10 features were selected
in the TON_IoT dataset, and the performance was compared compared to the situation
where no selection was made. The experiments were conducted using DT, AdaBoost, GBT,
MLP, LSTM, and GRU algorithms. When using feature selection, the AdaBoost and GBT
algorithms achieved the highest accuracy rate in the TON_IoT dataset, with a rate of 99.98%.
Compared to no feature selection, 0.4 higher success was achieved in the DT algorithm,
and 0.1 higher success was achieved in the AdaBoost algorithm. There was a decrease in
accuracy in the MLP, LSTM, and GRU algorithms.

Kaur et al. [19] developed a two-stage anomaly detection system called P2ADF to
detect Man-İn-The-Middle (MİTM) and DoS/DDoS attacks. There is a feature reduction
mechanism to remove the dominant features in the datasets used in the first stage. In the
second stage, three basic learners (AdaBoost, LR, and KNN) and a meta classifier (XGBoost)
were used for model training. IoTID20, TON_IoT, N-BaIoT, UNSW-NB15, and CICDoS19
datasets were used for the experiments. For DDoS detection, 99.98% accuracy values were
achieved with CICIDS2019DDoS LDAP and 99.95% accuracy values for TON_IoT DDoS.
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Verma and Chandra [20] developed an algorithm called RepuTE for the IoT, which
enables the detection of DoS/DDoS and Sybil attacks. In the presented RepuTe algorithm,
live traffic coming from the IoT layer is transferred to the fog layer and the traffic data is
first pre-processed in this layer. The model, consisting of extra tree, KNN, and quadratic
discriminant analysis algorithms, evaluates this incoming live traffic data. In order for
the model to reach the highest accuracy rate, a method called soft-voting was applied
among these algorithms. This study was evaluated on NSL-KDD, CICDDOS2019, IoTID20,
NBaIoT2018, TON_IoT, and UNSW_NB15 datasets. In attack detection, an accuracy value
of 99.9988% was achieved with CICDDoS2019_NTP and 99.9851% with TON_IoT_DDoS.

Neto et al. [21] proposed a comprehensive IoT attack dataset to improve the security
of IoT operations in their study. To achieve this, a topology consisting of 105 IoT devices
was established. With this mechanism, 33 different attack types of traffic were recorded in
seven categories. These attack categories are DDoS, DoS, Recon, Web-based, brute force,
spoofing, and Mirai. The created dataset is called CICIoT2023. Using the developed dataset,
the accuracy values of various machine learning algorithms were tested.

Wang et al. [22] designed the DL-BiLSTM algorithm as a lightweight IoT attack detec-
tion model. This algorithm was developed by combining deep learning algorithms DNN
and BiLSTM algorithms. CICIDS2017, N-BaIoT, and CICIoT2023 datasets were used in
the study. The Incremental Principal Component Analysis (IPCA) algorithm was applied
to reduce the features in the datasets. Additionally, dynamic quantization is applied to
reduce the computational burden of the model. The developed algorithm was compared
with different deep learning algorithms. In the CICIoT2023 dataset, the attack type was
detected with an accuracy rate of 93.13%, reaching the highest accuracy rate among the
tested algorithms.

Studies on IDS studies conducted in WSN are presented in Table 1. This table includes
year, author, algorithm used, dataset used, and accuracy information. Several different
algorithms using machine learning and deep learning models have been developed in the
literature. With developing technology, the structure of DDoS attacks has changed, and the
datasets used have become obsolete. Therefore, the current CICIoT2023 dataset was used
in this study. To test the reliability of the algorithm, the TON_IOT dataset was also used.

Table 1. Comparison of other works on DDoS Detection.

Years Author Model Dataset Accuracy

2021 Cil et al. [4] DNN CICDDoS2019 99.97% (b),
94.57% (m)

2022 Almaraz-Rivera et al. [5]
DT, MLP, RNN, RF, GRU,
LSTM, and
SVM

Bot-IoT 99.972% (b),
99.945% (m)

2022 Jia et al. [6] DNN, LSTM CICDDoS2019 99.9% (b),
98.9% (m)

2021 Alghazzawi et al. [7] CNN, BiLSTM CICDDoS2019 94.52% (b)

2021 Ferrag et al. [8] CNN, RNN, and DNN

CICDDoS2019,

TON_IoT

99.95% (b),
95.12% (m)

99.92% (m)

2021 Wei et al. [10] MLP CICDDOS2019 99.96% (b),
98.34% (m)

2022 Kumar et al. [11] DT, RF, KNN, NB, and ANN Bot-IOT 99.611% (m)

2021 Al and Dener [3] CNN, LSTM
UNS-NB15
and
CIDDS-001

99.17% (b),

99.83% (m)



Electronics 2024, 13, 1053 7 of 28

Table 1. Cont.

Years Author Model Dataset Accuracy

2021 Alzahrani and Alzahrani [12] SVM, KNN, DT, NB, RF, and
LR. CICDDOS2019 99% (m)

2021 Batchu and Seetha [2] LR, DT, GB, KNN, and SVM CICDDOS2019 99.97% (b)

2022 Patil et al. [13] DT, MLP, NB, and RF CICDDOS2019 89.05% (m)

2021 Haq et al. [14] CNN NSL-KDD 99.34% (b),
99.13% (m)

2021 Iwendi et al. [15] LSTM CICDDOS2019 99.97% (b)

2021 Gamal et al. [16] CNN
UNSW-NB15
and
Bot-IoT

99.9% (b)

2021 Gad et al. [17] LR, NB, DT, RF, AdaBoost,
KNN, SVM, and XGBoost TON_IoT 99.3% (b),

98.6% (m)

2022 Disha and Waheed [18] DT, AdaBoost, GBT, MLP,
LSTM, and GRU

TON_IoT,

UNSW-NB 15

99.98% (b)

2023 Kaur et al. [19] AdaBoost, LR, and KNN

CICDDOS2019,

TON_IoT,

IoTID20,
N-BaIoT,
UNSW-NB15

99.98 (b) (LDAP),

99.95% (b) (DDoS)

2023 Verme and Chandra [20]
Extra Tree, KNN and
Quadratic Discriminant
Analysis

CICDDOS2019,

TON_IoT,

NSL-KDD, IoTID20,
NBaIoT2018,
UNSW_NB15

99.9988% (b) (NTP),

99.9851% (b) (DDoS)

2023 Neto et al. [21] RF, DNN, MLP, LR, AdaBoost CICIoT2023
99.68% (b),
99.43% (m)
(8 classes)

2023 Wang et al. [22] DL-BiLSTM CICIoT2023 93.13% (m)

Note: b—binary classification; m—multiclass classification.

It has been observed that IDSs that can analyze network traffic and detect DDoS
attacks using machine and deep learning models have reached a high success rate. The
proposed hybrid algorithm developed by combining CNN and LSTM was evaluated by
accuracy, precision, recall, and F1 parameters and compered with mostly used machine
learning and deep learning algorithms. All these studies were developed in a big data
environment. The classification performance of the developed hybrid algorithm as both
binary and multiclass was measured.

3. DDoS Attacks and Intrusion Detection System for IoTs

This section provides information about DDoS attacks in IoT and the Intrusion Detec-
tion Systems (IDS) used to detect them.
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3.1. Intrusion Detection Systems

As communication technologies continue to evolve, the security of the devices used
and the network they create have become very crucial. Cyber attacks are defined as all
attempts that can threaten the confidentiality, integrity, and accessibility of information [23].
The integrity and confidentiality of the data stored must be protected from these attacks.
Intrusion detection systems are used for this purpose. These systems distinguish any attack
from normal traffic and can warn the user in case of an attack. An IDS, whose general
working mechanism is given in Figure 1, records all activities that differ from normal traffic
as anomalies. These systems are also prone to false alarms. Therefore, it is very important
that the IDSs that are developed have a high accuracy value. In this study, not only attack
detection but also determination of the attack type were made with a high accuracy rate.
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3.2. DDoS

A DDoS attack is a malicious attempt to disrupt the normal traffic of the target system.
DDoS attacks aim to disrupt service by sending packets that exceed the capacity of targeted
source machines to respond to requests. Attackers use zombie computers created with
malware inserted into victims’ computers to send large amounts of packets. DDoS attacks
cause high network traffic with packets sent over the network, causing the system not to
respond to the requests of normal users who want to receive service [4]. A DDoS attack is
one of the biggest threats to internet-based applications and their resources. The aim of
this attack is to incapacitate internet-based services by transmitting a substantial volume of
attack traffic [13]. Since the attack types are given in the main category in the TON_IOT
dataset, the details of these attacks are not known. For example, it is not given which types
are included under the main category of DDoS. In the CICIoT2023 dataset, subcategories of
attack types are also given. This dataset includes different attack types under the headings
of flood and fragmentation. These attacks are described below.

In a SYN flood attack, the attacker consumes the resources of IoT devices by repeat-
edly sending half-open synchronization packets for the TCP connection request. These
connections are left open for further communication [4]. The victim machine, using all
available ports, may respond slowly or not at all to legitimate traffic. A UDP flood attack is
an attack in which large packets are sent by attackers without any permission using User
Datagram Protocol (UDP), a fast data-sharing protocol [4]. The ICMP (Internet Control
Message Protocol) is the network protocol used for IP control/error reporting. In the ICMP
flood attack, the attacker aims to take the network offline by sending too many ICMP
requests [24]. There are RSTFIN flood attacks made with FIN and RST packets in the TCP
protocol. The FIN packet is sent to securely terminate the TCP connection between the
current client and server. The RST packet is sent by the server in abnormal situations and
is used to forcibly close the connection. In the RSTFIN flood attack, the attacker causes
congestion of the system by sending FIN and RST packets that do not belong to the target
network [24]. The main focus of the HTTP flood attack is on generating attack traffic that
simulates a close resemblance to normal network traffic. Thus, it becomes difficult for the
victim to distinguish between legitimate traffic and attack traffic. In the HTTP flood attack,
the aim is to exhaust the server’s resources by ensuring that session connection request
rates are higher than those generated by legitimate users [25]. In the Slowloris attack,
HTTP sends the request in pieces and slowly, and the created request is not completed.
As a result, the server keeps the relevant connection in a waiting phase to complete the
connection and receive the necessary data. In this way, over time, open connection requests
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increase and cause the congestion of the system. [25]. The PSH packet used in the PSHACK
flood attack is used to ensure that the client receiving this command sends all data to a
specified application and that the data are processed. Packets with combinations of PSH
and ACK are often seen in normal incoming traffic [26]. The attacker can create a PSHACK
flood attack by intensively directing these packet combinations to the target server. A
synonymous IP flood attack is a type of DDoS attack that aims to consume the resources of
DNS servers by sending a high volume of requests for a nonexistent domain. This attack,
which uses the TCP protocol, uses high-speed packets [27].

In fragmentation attacks, the aim is to send packets larger than the MTU (Maximum
Transfer Unit) limit that can be transferred at the network entrance, thus ensuring that they
are fragmented and sent. This size is 1500 bytes in Ethernet network. Fragmentation attacks
are performed by sending frames higher than this value. An ACK fragmentation attack
is a version of the ACK and PUSH-ACK flood attack. Fragmented packets pass through
switches, firewalls, IDS, and IPS because the router does not reassemble fragmented frames.
These packages may contain random and irrelevant information. With this attack, the aim
is for the victim to consume resources [28]. In the ICMP fragmentation attack, fragmented
ICMP packets are used.

The victim is exposed to ICMP packets that cannot be reassembled. Since these packets
contain random and irrelevant information, the victim’s resources are consumed by trying
to combine them [28]. A UDP fragmentation attack is an adaptation of a UDP flood attack.
Since the fragmented UDP packets are deceptive and unrelated to each other, the target
server wastes its resources by trying to reassemble them. This type of attack causes the
victim’s CPUs to overheat and consume their resources unnecessarily [28].

4. Materials and Methods

In this section, information about the CICIoT2023 and TON_IOT datasets used in the
study is provided. Afterwards, the preprocessing steps of the dataset are explained. Then,
the deep learning algorithms used in the study are defined.

4.1. Dataset

Information about the CICIoT2023 and TON_IOT datasets used in the study is in-
cluded in Section 4.

4.1.1. CICIoT2023

This dataset was produced by Neto et al. [21] and published in the University of New
Brunswick (UNB)—Canadian Institute for Cybersecurity (CIC) database. An IoT topology
consisting of 105 IoT devices was established. A total of 67 IoT devices were directly
involved in the attacks, and another 38 Zigbee and Z-Wave devices were connected to five
hubs. This topology is designed to mimic a real physical IoT smart home environment. The
testbed consists of smart home devices, cameras, sensors, and microcontrollers that are
connected and configured to allow the execution of various attacks. The test environment is
also equipped with various tools and software that allow it to perform various attacks and
capture both benign and malicious attack traffic. The testbed produced 33 different attack
types. These attacks are classified into seven categories: DDoS, DoS, Recon, Web-based,
brute force, spoofing, and Mirai. The dataset contains 47 features. Details of these features
are given in Table 2.

Table 2. List of features of CICIoT2023.

Feature Description

ts Timestamp

flow_duration Duration of the packet’s flow

Header_Length Header length
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Table 2. Cont.

Feature Description

ProtocolType IP, UDP, TCP, IGMP, ICMP, Unknown (integers)

Duration Time-to-live (ttl)

Rate Rate of packet transmission in a flow

Srate Rate of outbound packets’ transmission in a flow

Drate Rate of inbound packets’ transmission in a flow

fin_flag_number FIN flag value

syn_flag_number SYN flag value

rst_flag_number RST flag value

psh_flag_number PSH flag value

ack_flag_number ACK flag value

ece_flag_number ECE flag value

cwr_flag_number CWR flag value

ack_count Number of packets with ACK flag set in the same flow

syn_count Number of packets with SYN flag set in the same flow

fin_count Number of packets with FIN flag set in the same flow

urg_count Number of packets with URG flag set in the same flow

rst_count Number of packets with RST flag set in the same flow

HTTP Indicates if the application layer protocol is HTTP

HTTPS Indicates if the application layer protocol is HTTPS

DNS Indicates if the application layer protocol is DNS

Telnet Indicates if the application layer protocol is Telnet

SMTP Indicates if the application layer protocol is SMTP

SSH Indicates if the application layer protocol is SSH

IRC Indicates if the application layer protocol is IRC

TCP Indicates if the application layer protocol is TCP

UDP Indicates if the application layer protocol is UDP

DHCP Indicates if the application layer protocol is DHCP

ARP Indicates if the application layer protocol is ARP

ICMP Indicates if the application layer protocol is ICMP

IPv Indicates if the application layer protocol is IPv

LLC Indicates if the application layer protocol is LLC

Totsum Summation of packets’ lengths in flow

Min Minimum packet length in the flow

Max Maximum packet length in the flow

AVG Average packet length in the flow

Std Standard deviation of packet length in the flow

Totsize Packet’s length

IAT The time difference with previous packet

Number The number of packets in the flow

Magnitue (Average of the lengths of incoming packets in the flow + average of the
lengths of outgoing packets in the flow) × 0.5
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Table 2. Cont.

Feature Description

Radius (Variance of the lengths of incoming packets in the flow + variance of the
lengths of outgoing packets in the flow) × 0.5

Covariance Covariance of the lengths of incoming and outgoing packets

Variance Variance of the lengths of incoming packets in the flow/variance of the
lengths of outgoing packets in the flow

Weight (Number of incoming packets) × (Number of outgoing packets)

Table 3 shows the number of attacks in the dataset and the attack classes they belong
to. Figure 2 shows the distribution graph of attacks according to attack class. As can be seen
in the figure, the DDoS is the most common class in the dataset, with 73%. This is followed
by the DoS class, with 17%. Web-based and brute force attack classes are below 1%.

Table 3. Count of attack type of CICIoT2023.

Label Class Count

DDoS-ICMP_Flood DDoS 7,200,047

DDoS-UDP_Flood DDoS 5,411,768

DDoS-TCP_Flood DDoS 4,497,763

DDoS-PSHACK_Flood DDoS 4,094,563

DDoS-SYN_Flood DDoS 4,059,403

DDoS-RSTFINFlood DDoS 4,045,410

DDoS-SynonymousIP_Flood DDoS 3,598,454

DoS-UDP_Flood DoS 3,318,467

DoS-TCP_Flood DoS 2,671,471

DoS-SYN_Flood DoS 2,028,995

BenignTraffic Normal 1,098,282

Mirai-greeth_flood Mirai 991,846

Mirai-udpplain Mirai 890,708

Mirai-greip_flood Mirai 751,891

DDoS-ICMP_Fragmentation DDoS 452,557

MITM-ArpSpoofing Spoofing 307,598

DDoS-UDP_Fragmentation DDoS 286,968

DDoS-ACK_Fragmentation DDoS 285,089

DNS_Spoofing Spoofing 178,902

Recon-HostDiscovery Recon 134,375

Recon-OSScan Recon 98,269

Recon-PortScan Recon 82,267

DoS-HTTP_Flood DoS 71,844

VulnerabilityScan Recon 37,379

DDoS-HTTP_Flood DDoS 28,795

DDoS-SlowLoris DDoS 23,414

DictionaryBruteForce Brute Force 13,048

BrowserHijacking Web-Based 5858
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Table 3. Cont.

Label Class Count

CommandInjection Web-Based 5419

SqlInjection Web-Based 5253

XSS Web-Based 3852

Backdoor_Malware Web-Based 3221

Recon-PingSweep Recon 2262

Uploading_Attack Web-Based 1253

Total 46,686,691
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4.1.2. TON_IOT

The TON_IoT [29] dataset was collected in a realistic, large-scale test environment at
the UNSW Canberra Cyber Institute’s IoT Lab in 2019. The dataset includes a number of
modern IoT attacks, such as scanning, DoS, DDoS, ransomware, backdoor, injection, cross-
site scripting (XSS), password cracking, and Man-In-The-Middle (MITM) attacks. Figure 3
shows a data structure of the TON_IoT dataset. In this study, the Processed Windows 10
dataset, which is a subset of the TON_IoT, was used.
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The test environment where the dataset would be recorded was designed with three
layers consisting of edge, fog, and cloud to emulate a realistic physical IoT network.
The edge layer includes the physical devices and operating systems required for the
infrastructure required for configuration and virtualization technologies to be used in the
fog and cloud layers. This layer includes multiple IoT/IIoT devices, such as Modbus, light
bulb sensors, smartphones, smart TVs; host systems, such as workstations and servers
used to intercept IoT/IIoT devices; hypervisors; and physical network relays [30]. The
fog layer encompasses the virtualization technology responsible for managing virtual
machines (VMs) and their associated services. This layer enables the creation of a dynamic
experimental IoT/IIoT network within the ToN IoT framework, allowing communication
between the edge, fog, and cloud layers [30]. The cloud layer contains online-configured
cloud services within the testbed. The fog and edge services connect cloud virtualization
and cloud data analytics services. Additionally, the public vulnerable website is used to
create injection hacking events against websites. The other cloud services are set up to
transmit sensor data to the cloud and visualize the corresponding patterns [30].

The created dataset was made more suitable for artificial intelligence training and
testing by using the performance monitoring tool and extracting information such as disk,
process, processor, and memory in CSV format. The Windows 10 dataset contains 125 fea-
tures and 2 class labels. Descriptions of the features in TON_IoT dataset are available on
UNSW Canberra Cyber Institute database [31]. As given in Table 4, there are 35,974 records
collected for the Windows 10 dataset.

Table 4. Count of attack type Processed Windows 10 of TON_IOT.

Label Windows 10

Normal 24,871

DDoS 4608

Injection 612

XSS 1268

Password 3628

Scanning 447

DoS 525

MITM 15

Total 35,974

4.2. Preprocessing

It is not appropriate to use datasets in deep learning algorithms without preprocessing.
Data collected from real-world environments often contain many errors and irregularities
and need to be cleaned. For example, if there are string values in the dataset, they cannot
be used in deep learning training without numerical conversion. Preprocessing aims to
provide the algorithm with smoother data, thereby enhancing the efficiency of the model.
Figure 4 presents a flow diagram of the data processing stages of proposed algorithm.

The first operation performed on the dataset is to delete cells that do not contain any
data and remove blank values. Rows containing empty data were removed to prevent any
negative effects on the model.
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It is not always beneficial to include all features in large datasets in training. Features in
the dataset may be correlated with each other and may not benefit the result. Additionally,
having too many values also increases the cost of education. In order to see unnecessary
attributes, the correlation matrix of the features in the dataset is extracted, and the features
with high correlation values are removed from the dataset. In this study, feature selection
was made using the Pearson correlation coefficient method. The PCC Formula (1) is given
below. Here, µ is the mean of variable, and σ is the standard deviation.

PCC(X, Y) =
Σ[(Xi−µx)(Yi−µy)]

σx.σy
(1)

Correlation resulted between −1 and 1. This means that when the PCC approaches
positive 1, it signifies a positive correlation between the two variables. This implies that
when one variable decreases or increases, the other positively correlated variable also
moves in the same direction. Similarly, two variables that are negatively correlated behave
in the reverse direction [32]. Features with correlation values above a certain value are
removed. The correlation matrix of the CICIoT2023 dataset is given in Figure 5. This value
was determined as 0.99 for the dataset given the correlation matrix. As a result, 40 features
were selected in the CICIoT2023 dataset and 85 features were selected in the Processed
Windows 10 of TON_IOT dataset.

The next process applied to the dataset is label encoding, which involves converting
non-numeric features into numerical values. Label encoding has been applied to categorical
features within the dataset. There is no need to apply this process to numeric features in
the dataset. Following the numerical conversion of string values, normalization (2) has
been performed on the dataset.

x′ = (x − µ)/σ (2)

x is the original value, x′ is normalized value, and µ and σ are the mean and standard
deviation values, respectively. Thanks to the normalization process, numerically large
features are prevented from negatively affecting the result and performance of the deep
learning model [3]. Concerning the label attribute of the dataset, if binary evaluation is
performed, normal values are labeled as 0 and attack values are labeled as 1. This step is
not performed if multiclass classification is conducted. The next process is to add a new
dimension to the data shape and make it compatible for the CNN layer. The last stage of
data processing is to divide the dataset into two: training and testing. This ratio was chosen
as 0.8.
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After the steps shown in Figure 4 were completed in order, the attack classes in the
dataset were selected. There are 12 different attack types under the category of DDoS in
the CICIoT2023 dataset. By removing the least common DDoS attacks, which are UDP
fragmentation, ACK fragmentation, HTTP_Flood and SlowLoris, 8 DDoS attack types were
selected. Since there is no subtype of DDoS attack in the TON_IoT dataset, only binary
evaluation was made here by taking only DDoS classes.

4.3. Deep Learning Algorithms

The fundamental logic in machine learning and deep learning algorithms involves cre-
ating a model by learning features extracted from the dataset during training. Subsequently,
this model is used to make predictions for unknown data. Artificial intelligence-based
anomaly detection systems utilize this structure to enable the developed model to detect
abnormal situations in the network. This section explains the deep learning algorithms
used in the study.

4.3.1. Convolutional Neural Network (CNN)

The CNN algorithm is one of the deep learning algorithms based on an artificial neural
network. The basic algorithm of CNN is given in Figure 6. It consists of convolution,
pooling, flattening, and fully connected layers. The convolution layer is the cornerstone
of CNN. The convolutional layer is responsible for processing data from a receiving cell.
Equation (3) for the size of the output volume (Wo) is described as follows, where P is the
stride, Wi is the size of the input volume, S is the kernel size of the convolutional layer
neurons, and M is the amount of zero padding [8].

Wo =
Wi − S + 2M

P
+ 1 (3)
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After, convolution is performed with a filter that extracts the characteristics of the
input value. The feature map is created with this layer. In order to reduce the number
of parameters to be calculated and to make training easier, the size of the input data is
reduced by pooling. The pooling layer can be selected in two different ways: the largest of
the values within the area of the selected size (max pooling) or the average of the values
(average pooling). There may be more than one convolution/pooling layer in the created
algorithm. This stage is known as feature extraction. The feature extracted data become
available for calculation. The CNN algorithm can be one-dimensional, two-dimensional, or
three-dimensional. One-dimensional CNN was used in the model. The differences between
1D, 2D, and 3D CNN are as follows:

• In 1D CNN, the filter moves in one dimension. Input and output data must be
two-dimensional. It can be used in time series-type data.

• In 2D CNN, the filter moves in two dimensions. Input and output data must be
three-dimensional. It can be used in algorithms that use images as input.

• In 3D CNN, the filter moves in three dimensions. Input and output data must be
four-dimensional. It can be used in algorithms that use video as input.

The classification region consists of layers known as flattened and fully connected. Af-
ter the convolutional stage, the data need to be flattened to be usable in the fully connected
stage. This step is carried out in the flatten layer. The fully connected layer uses the classical
artificial neural network model. Classification results are determined by calculating the
weight values in this layer. In order to apply CNN to nonimage data, the dimensions of
input must be transformed. Thus, CNN can be used with one-dimensional convolutional
layers [33].

4.3.2. Long Short-Term Memory (LSTM)

The LSTM algorithm is a type of RNN that can learn long-term dependencies and
retain sequential data in memory. It solves the vanishing gradient problem caused by
gradual decay in gradient inversion operations during calculation. LSTM is an algorithm
suitable for use in matters related to time series [34]. Thanks to these features, it can be used
in algorithms such as language processing, video processing, and speech recognition. The
LSTM algorithm consists of memory blocks called cells, and these are the main components
of the algorithm. The LSTM algorithm is shown in Figure 7. The LSTM algorithm consists
of three parts: forget gate (ft), input gate (it), and output gate (ot). Input and output gates
represent the input and output of data at time t. The forget gate decides whether the data
will be forgotten or not by comparing instantaneous data inputs with the previous data
state [3].
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The mathematical equation describing the relationship between the gates in an LSTM
cell is as follows [3]:

it = σ(wi · [ht−1, Xt]) (4)

ft = σ(wf · [ht−1, Xt]) (5)

ot = σ(wo · [ht−1, Xt]) (6)

Ct
~ = tanh(wt · [ht−1, xt]) (7)

Ct = ft × Ct−1 + it × Ct
~ (8)

ht = ot × tanh(Ct) (9)

5. Definition of Model

A hybrid deep learning model was developed using one-dimensional (1D) CNN and
LSTM algorithms to detect DDoS attacks. The model has a sequential algorithm consisting
of layers. Figure 8 shows the flow diagram of the proposed model.
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The developed sequential model starts with the input layer. This layer describes the
dataset size used. As seen in Figure 8, 2 CNN algorithms were applied. The parameter
settings of the CNNs used were adjusted to provide the best results. These parameters are
presented in tabular form in Table 5. After the convulation process, the pooling layer was
applied. The main task of the pooling layer is to reduce the dimensionality of the extracted
feature matrix. While the computational load is reduced in the pooling layer, important
information is preserved [35]. Max pooling was applied between the first and second CNN,
and average pooling was applied after the second CNN. After CNN, the LSTM algorithm
was used sequentially. The parameters of the LSTM algorithm used are set to units = 140,
dropout = 0.2, and recurrent_dropout = 0.4. After the LSTM algorithm, the dimensions in
the flatten layer were made suitable for the dense layer. The flatten layer is followed by
dense layers known as fully connected. The dropout function was implemented at a ratio of
30%. The reason for using the dropout layer is to prevent the algorithm from overlearning.
The function of this layer is to ignore some nodes randomly. This partly refers to a situation
in which neurons can change the way they correct the errors of other neurons [36].

Table 5. Used CNN parameters.

Filter Number Kernel Size Activation Function

Conv1D_1 128 4 Relu

Conv1D_2 128 2 Relu

The ReLu function (10) was used as the activation function in both CNN algorithms.
The ReLU function was used because it provides computational simplicity and eliminates
negative values.

f(x) = max(0,x) (10)

The output layer of the model ends with a softmax activation function. This function
returns the probability of the maximum value for the sample evaluated in a multiclass
probability problem to have the most accurate label in terms of probability [37]. With the
softmax function, the result is produced as a probability distribution.

6. Experiments and Results

In this section, evaluation parameters and test results are given. In the study, PySpark,
which provides the opportunity to write in Python programming language on Apache
Spark, was used through the Google Colab platform. Scikit-learn and Keras libraries were
used to create deep learning algorithms.

Training and testing of the model was conducted on a computer with the following
configuration:

- MacOS v12.6 operating system;
- M1 Apple Silicon (2020);
- 13.3′′ screen;
- 8-core CPU;
- 8-core GPU;
- 8 GB RAM;
- 256 GB SSD.

The CICIoT2023 dataset consists of more than one data file, and by combining these
files, considerable data to be processed emerged. Among the studies examined, there
are studies conducted by taking samples from the dataset [10,13]. This both reduces the
training cost and does not have a serious impact on the outcome. At the same time, using
the entire dataset consumes computer resources and makes processing inoperable. In this
way, it eliminates the need to use high-capacity computers and servers, which are expensive
and difficult to access. Instead of the entire dataset, a subspace set of the dataset was used,
reduced to 20%. The attack class ratio of the subspace cluster is the same as the original
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version. Thus, training and testing costs and time were saved. In addition to the proposed
algorithm tests, the dataset was also tested with ten machine learning and deep learning
algorithms.

The parameter values of the artificial intelligence and machine algorithms used are
given below:

• Random forest: max_depth = 4, n_estimators = 100;
• Decision tree: max_depth = 5, random_state = 0;
• Gradient boost: n_estimators = 10, max_depth = 3, learning_rate = 0.1;
• AdaBoost: n_estimators = 10, learning_rate = 0.1, random_state = 0;
• Naive Bayes: default;
• Logistic regression: default;
• K-nearest neighbour: n_neighbors = 3, leaf_size = 50;
• MLP: hidden_layer_sizes = (5,10,5), max_iter = 5;
• CNN: filters = 64, kernel_size = 2, activation = ‘relu’;
• LSTM: units = 100, dropout = 0.2, and recurrent_dropout = 0.2.

The results obtained in the study were evaluated from different perspectives. Firstly,
multiclass and binary evaluations of DDoS attack classes in the CICIoT2023 dataset were
made. Secondly, binary evaluation was made for the TON_IOT-Windows10 dataset. The
developed algorithm was compared with ten machine and deep learning algorithms in
both datasets. Details of the hybrid algorithm used are explained in the “Five Definitions
of Model” section. The evaluations were made with the parameters accuracy, precision,
recall, and F1 Score. Additionally, ROC curves and confusion matrix graphics were also
created and included in the study.

6.1. CICIoT2023 Dataset Results

The CICIoT2023 dataset, whose preprocessing was completed, was first tested as
binary with the proposed hybrid algorithm. The developed algorithm has been compared
with machine learning and deep learning algorithms, including random forest, decision
tree, gradient boost, AdaBoost, naive Bayes, logistic regression, K-nearest neighbour, CNN,
MLP, and LSTM. Table 6 shows the binary evaluation results of the algorithms for the
CICIoT2023 dataset. Figure 9 shows the results graphed.

Table 6. CICIoT2023 dataset binary classification results (%).

Accuracy Precision Recall F1 Score

DT 99.91 99.91 99.91 99.91

RF 99.85 99.86 99.85 99.86

LR 99.86 99.86 99.86 99.86

GB 99.98 99.98 99.98 99.98

ADA 99.75 99.75 99.75 99.75

KNN 99.97 99.97 99.97 99.97

MLP 99.98 99.98 99.98 99.98

NB 99.28 99.41 99.28 99.32

CNN 99.98 99.98 99.98 99.98

LSTM 98.73 99.74 99.74 99.74

Proposed 99.995 99.995 99.995 99.995
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As can be seen in Table 6 and Figure 9, the proposed algorithm reached the highest
binary classification accuracy value. This was followed by the GB, MLP and CNN algo-
rithms. It can be seen that the lowest result is the NB algorithm. The confusion matrix for
testing the developed hybrid algorithm in binary is given in Figure 10. The diagram of the
created ROC curve is presented in Figure 11.

According to the confusion matrix in Figure 10, it can be seen that the false positive
rate (FPR) is almost negligible; only about a hundred records were misclassified. True
positive (TPR) records were quite high. According to the ROC chart in Figure 11, the
AUC-ROC value was above 0.99.

The algorithms were also evaluated as multiclass classification. The developed algo-
rithm and ten machine learning and deep learning algorithms were tested. Table 7 shows
the multiclass evaluation results of the algorithms for the CICIoT2023 dataset. In Figure 12,
the results are presented graphically.
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Table 7. CICIoT2023 dataset multiclass classification results.

Accuracy Precision Recall F1 Score

DT 86.34 82.39 86.34 82.69

RF 96.58 96.98 96.58 96.51

LR 99.43 99.44 99.43 99.43

GB 99.88 99.88 99.88 99.88

ADA 86.14 79.44 86.14 81.91

KNN 99.86 99.86 99.86 99.86

MLP 99.91 99.91 99.91 99.91

NB 99.09 99.13 99.09 99.10

CNN 99.90 99.93 99.90 99.91

LSTM 98.66 98.71 98.63 98.67

Proposed 99.96 99.96 99.96 99.96
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As can be seen in Table 7 and Figure 12, the proposed algorithm reached the highest
multiclass classification accuracy value. This was followed by the MLP, CNN, and GB
algorithms. The lowest results belong to the ADA and DT algorithms. The confusion matrix
for testing the developed hybrid algorithm in multiclass is given in Figure 13. The diagram
of the created ROC curve is presented in Figure 14.
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According to the confusion matrix in Figure 13, the false positive rate (FPR) remained at
very low levels, reaching a maximum value of 41 records in all combinations. True positive
(TPR) records showed that the performance in one-to-one matching of classes reached high
values. According to the ROC chart of the multiclass classification in Figure 14, the AUC-
ROC value is close to 0.99 in all attack classifications. Table 8 compares the performance of
our work with other state-of-the-art methods that are tested under the CICIoT2023 dataset.
The comparison is conducted with respect to model, dataset, and accuracy value.
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Table 8. Comparison of other works using CICIoT2023 dataset.

Article Model Dataset Accuracy

Neto et al. (2023) [21] RF, DNN, MLP, LR, AdaBoost CICIoT2023
99.68% (b),
99.43% (m)
(8 classes)

Wang et al. (2023) [22] DL-BiLSTM CICIoT2023 93.13% (m)

Proposed Hybrid Deep Learning CICIoT2023
99.995% (b),
99.96% (m)
(9 classes)

According to the evaluation results above, there is a significant difference between
binary classification and multiclass classification. As the attack classes in the dataset
increase, the accuracy value of the algorithm decreases. In binary classification on the
CICIoT2023 dataset, the machine learning and deep learning algorithms tested resulted
in approximately similar outcomes. In multiclass classification, there was a significant
decrease in the DT and AdaBoost algorithms. There is no serious decrease in the developed
hybrid algorithm. In studies conducted using the CICIoT2023 dataset, the best results were
achieved with the proposed hybrid algorithm, with rates of 99.995% in attack detection and
99.96% in attack type detection. The proposed algorithm reaches the highest value in terms
of accuracy compared to other studies and other tested algorithms.

6.2. TON_IOT Dataset Result

The presented hybrid algorithm was also evaluated using the TON_IOT dataset.
The attack detection accuracy rate of the ProcessedWindowsDataset-Windows10 dataset
included in the dataset is given in Table 9. Figure 15 shows the results graphed.

As can be seen in Table 9 and Figure 15, the proposed algorithm reached the highest
accuracy value in binary classification in the TON_IOT dataset. This was followed by the
MLP, KNN, and CNN algorithms. The lowest result belongs to the NB algorithm. The
confusion matrix of testing the developed hybrid algorithm as binary on the TON_IOT
dataset is given in Figure 16. The diagram of the created ROC curve is presented in
Figure 17.

Table 9. TON_IOT-Processed-Windows10 dataset binary classification results (%).

Accuracy Precision Recall F1 Score

DT 97.67 97.67 97.67 97.67

RF 98.23 98.23 98.23 98.23

LR 96.69 96.69 96.69 96.69

GB 97.50 97.49 97.50 97.44

ADA 92.96 93.01 92.96 92.22

KNN 98.50 98.58 98.50 98.52

MLP 98.54 98.57 98.54 98.55

CNN 98.32 98.32 98.32 98.32

LSTM 90.94 90.94 90.94 90.94

NB 76.98 88.07 76.98 77.83

Proposed 98.75 98.75 98.75 98.75
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According to the confusion matrix in Figure 16, the false positive rate (FPR) remained
quite low with a total of 87 records. According to the ROC curves of binary classification
in Figure 17, the AUC-ROC value is close to 0.99. Table 10 lists previous studies using the
TON_IOT dataset.

Table 10. Comparison of other works using TON-IoT dataset.

Article Dataset Accuracy

Kumar et al. (2020) [38] TON_IoT 96.35%

Rehab et al. (2022) [39] TON_IoT 98.39%

Hairab et al. (2023) [40] TON_IoT 97.94%

Dobrojevic et al. (2023) [41] TON_IoT 96.65%

Proposed TON_IoT 98.75%

The developed algorithm was also tested on a different dataset, the TON_IOT dataset,
so the reliability of the algorithm was demonstrated. Compared to state-of-the-art studies,
the highest attack detection accuracy value rate of 98.75% was achieved in the TON_IOT
dataset. As can be seen in Tables 8 and 10, the proposed algorithm has achieved better
accuracy value than the studies performed on two datasets.

7. Discussion

The reason for using LSTM in the algorithm is that LSTMs, which are deep learning
algorithms, are effective in capturing flow dynamics and maintaining information through-
out the cycle. The LSTM algorithm is able to learn long-term dependencies and keep
sequential data in memory. The forget gate in the LSTM algorithm decides whether the
previous data will be forgotten or not. It has been regarded appropriate to use this structure
in intense attacks, such as DDoS, thanks to the calculations made using sequential data.
Another algorithm used in the classification stage is CNN. The CNN algorithm provides
successful results in image classification, audio classification, and video classification and
has strong capabilities to deal with classification problems by changing the depth and
width of the network. Thanks to the convolution process, CNN can detect time-sensitive
attack situations with fewer connections and parameters compared to standard feedfor-
ward neural networks with a similar number of layers. Since many features are extracted
from the incoming data, it is effective in detecting attack types with unique features, such
as DDoS [6]. The hybrid utilization of LSTM and CNN, leveraging their complementary
features, has been observed to yield better results in conducted tests compared to their
individual use.

Moreover, the analysis of the dataset in preprocessing steps and the removal of missing
data have enabled making the data usable. By selecting the most relevant features from the
dataset, the computational load of the algorithm is reduced, resulting in decreased training
and testing costs. The preprocessing steps employed in our algorithm ensure that both
training and test data are processed with noncomplex information.

Consequently, the developed algorithm has achieved a higher accuracy rate than all
tested algorithms and state-of-the-art studies. The scope of the study has been expanded
by evaluating the developed algorithm in multiclass classification and by assessing its
performance on a different dataset.

Classification accuracy may give different results in different datasets even though the
algorithms used are the same. This situation could be observed from the evaluation results
of the TON_IOT dataset, which was used as the second dataset in the study. Compared
to CICIoT2023, the accuracy values of the ADA and DT algorithms have increased in the
TON_IOT dataset. Although the NB algorithm gave high results in multiclass evaluation, it
remained at the lowest accuracy result in both binary evaluations. The NB algorithm does
not consider interdependencies between features, which affects its accuracy [42]. The low
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results of the NB algorithm in binary can be thought of as there are intense dependencies
in binary class evaluation, and this affects the accuracy value.

8. Conclusions and Future Works

In our modern world, needs such as internet use and communication of devices with
each other are inevitable. In addition to the benefits these technologies provide us, there are
also cases of their abuse. One of the types of malicious use of network and communication
channels is cyber attacks. The most commonly used method for this is DDoS attacks,
which aim to restrict or completely make the use of target systems inaccessible. Detecting
DDoS attacks is very crucial to be able to counter them. In this study, a new hybrid deep
learning algorithm using CNN and LSTM deep learning models was developed to detect
DDoS attacks. CICIoT2023 and TON_IOT datasets, which are current datasets, were used
in training and testing this algorithm. Firstly, preprocessing and feature selection steps
were applied to datasets. After, the proposed algorithm was tested as binary, and then it
was tested as multiclass in the CICIoT2023 dataset. Algorithm evaluation was made by
calculating accuracy, precision, recall, F1-score, and ROC data. As a result of these trainings
and tests, a 99.995% attack detection rate and a 99.96% attack type detection rate were
achieved. By achieving this high accuracy rate, a reference point has been created for future
studies, contributing to the literature. In the evaluation made also using the TON_IOT
dataset, an attack detection rate of 98.75% was reached. The proposed hybrid deep learning
algorithm developed in this study is aimed to reach the highest accuracy value.

The accuracy of the developed hybrid algorithm may be increased by optimizing the
deep learning algorithm parameters. One of these optimization methods is the metaheuris-
tic approach. In future studies, it can be combined with modern and effective metaheuristic
techniques to improve the optimization of errors in the algorithm to be developed [43].

To achieve high accuracy, a large volume of data must be used. The high volume
of data used also increases training and testing times. In the physical world, it is crucial
to detect attack traffic, such as DDoS, that requires rapid intervention by using system
resources as efficiently as possible. As a future study, optimizing these training times and
developing intrusion detection systems that have both high accuracy rates and low cost
will be a great contribution to the literature.
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