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Abstract: Accurate carbon emission accounting for electric vehicles (EVs) is particularly important,
especially for those participating in the carbon market. However, the participation of numerous EVs in
vehicle-to-grid (V2G) scheduling complicates the precise accounting of individual EV emissions. This
paper presents a novel approach to carbon accounting and benefits distribution for EVs. It includes a
low-carbon dispatch model for a distribution system (DS), aimed at reducing total emissions through
strategic EV charging scheduling. Further, an improved carbon emission flow accounting model is
proposed to calculate the carbon reduction of EVs before and after low-carbon dispatch. It enables real-
time carbon flow tracking during EV charging and discharging, then accurately quantifies the carbon
reduction amount. Additionally, it employs the Shapley value method to ensure equitable distribution
of carbon revenue, balancing low-carbon operation costs and carbon reduction contributions. A case
study based on a 31-node campus distribution network demonstrated that effective scheduling of
1296 EVs can significantly reduce system carbon emissions. This method can accurately account for
the carbon emissions of EVs under different charging states, and provides a balanced analysis of EV
carbon reduction contributions and costs, advocating for fair revenue allocation.

Keywords: electric vehicle; distribution system; carbon emission market; carbon emission accounting

1. Introduction
1.1. Motivation

Global climate change is leading to increasingly severe weather anomalies and dis-
asters. The grave consequences of global warming are already apparent, and failing to
address climate issues could lead to a greater crisis worldwide [1]. Consequently, climate
change has become a focal issue for government organizations and conferences. At the
2021 United Nations Climate Change Conference (COP26), global participants and leaders
discussed and determined methods to reduce greenhouse gas emissions [2]. Among these,
accelerating the development of new energy in power generation and the low-carbon
transformation of the transportation sector were key topics. As one of the world’s major
carbon emitters, China actively promotes the adoption of electric vehicles (EVs), aiming
to reduce its reliance on fossil fuels and striving to achieve a net-zero emission target [3].
Meanwhile, China is developing smart grids [4] and vehicle-to-grid (V2G) technology [5],
enabling EVs to act as mobile energy storage systems, providing energy to the grid when
necessary [6], thereby reducing carbon emissions in grid operations [7]. Additionally,
emphasis is being placed on promoting green and sustainable corporate transformation
through the establishment of carbon emission trading systems. China launched its first
carbon emission trading market pilot in Shenzhen in 2013 [8] and initiated the national
carbon market in 2022.
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Currently, China’s carbon emission trading market covers eight major emission-
intensive industries, including power, petrochemicals, steel, non-ferrous metals, and avi-
ation [9]. The emission reduction effects of these industries have a direct impact on the
national total carbon emissions, with the power and transportation sectors occupying
the main carbon quotas [10]. With the launch of the national greenhouse gas voluntary
emission reduction trading market in Beijing in 2024, all sectors are encouraged to partici-
pate in greenhouse gas reduction activities [11], providing opportunities for EV owners to
participate in the carbon market [12]. The widespread use of EVs not only reduces direct
carbon emissions from fuel but also guides owners to improve charging habits through
the carbon market, reducing indirect carbon emissions from electricity use and converting
carbon reduction into economic gains [13].

Despite the potential of EVs to reduce carbon emissions [14], the challenge of indi-
vidual EVs participating in the carbon market remains significant. First, accurate quantifi-
cation of EV emission reduction is necessary. Current certified emission reduction (CER)
methodologies mainly focus on traditional internal combustion engine EVs as a benchmark,
calculating EV carbon reduction based on load, travel distance, and fuel consumption [15].
There is a lack of universal methods to account for emission reductions during bidirectional
charging and discharging interaction between EVs and the grid [16], making it difficult
for owners to verify their carbon reduction. Moreover, for EVs to participate in the carbon
market, they still need to cooperate with DS operators (DSOs). DSOs centrally account
for the carbon emissions of EVs within the distribution network and distribute the total
revenue to each owner, necessitating a fair and equitable revenue distribution method.

This paper aims to explore how EVs and the grid can reduce China’s carbon emissions,
how to account for carbon reduction during the EV grid integration, and how to reasonably
distribute the revenue obtained from EV participation in the carbon market based on the
contributions to grid emission reduction.

1.2. Literature Review

With the development of the carbon emission market (CEM) and the continuous
improvement of the carbon trading mechanism, especially with the relaunch of the certified
emission reduction (CER) market, the variety of transactions in the carbon trading market
has become more diverse. This encourages non-controlled emission enterprises and entities
to actively participate in the voluntary emission reduction market, accelerating the achieve-
ment of corporate carbon neutrality goals. As a key component of low-carbon mobility,
interest in the participation of EVs in the carbon market is growing. Daramola et al. [17]
illustrated how electric vehicles (EVs) can be considered zero-carbon sources, utilizing
vehicle-to-grid (V2G) strategies for reducing power peaks. Concurrently, they quantified
both the carbon emissions from cogeneration and the contribution of EVs as energy storage
components in reducing carbon emissions. Feng et al. [18] proposed a scheduling scheme
where electric vehicles (EVs) are utilized as virtual energy routers (VERs) in radial micro-
grids, allowing EVs to alter the direction of energy flow, thereby enhancing grid flexibility.
By employing a flexibility model for EV-based VERs and forecasted reference demand,
the supply and demand in the microgrid are optimized, aiming to minimize generation
costs for a day and maximize consumer utility. V2G technology enables carbon reduction
for electric vehicles. In real-time operation, execution efficiency and computational speed
become critical issues. Shang et al. [19] developed a cyber—physical collaborative model
that implements hierarchical scheduling for V2G in a distributed manner. It decomposes
the optimization problem into several sub-problems and employs parallel computing to
accelerate the solution process.

Yao et al. [20] quantified the impact of EV participation in V2G on the total cost and
carbon emissions of the power system in different regions, analyzing the potential for
increased utilization of renewable energy. Wang et al. [21] proposed an optimal bidding
framework to enable the regional energy internet for V2G to participate in the day-ahead
market considering carbon trading. Lei et al. [22] proposes a day-ahead optimal power
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bidding model for DSOs, formulating optimal charging and discharging strategies for
electric vehicles to reduce charging costs and utilize V2G to gain additional marginal
revenue. Yang et al. [23] presented an optimized charging and discharging model for
electric buses participating in the CEM and a peak-shaving auxiliary service market, aiming
to minimize the daily total energy cost and load fluctuation of the grid for bus companies.

Previous research showed that by integrating and optimally scheduling EVs with
the DS, it is possible to help reduce the grid’s carbon emissions. Additionally, participa-
tion in the CEM can yield carbon reduction benefits. Entities participating in the CEM
market need to conduct precise carbon accounting. Currently, the focus in the electricity
sector is primarily on the direct emissions from power plants. These analytical methods
include statistical methods [24] and life cycle assessment (LCA) methods [25]. Electricity,
as a secondary energy source, primarily generates carbon emissions during the fossil fuel
combustion process in the power generation sector. Nevertheless, since power generation
activities are driven by consumer demand, this implies that electricity consumers should be
regarded as indirect sources of carbon emissions. Li et al. [26] introduced a method for car-
bon emission tracking based on electrical current tracking, transforming power flows into
carbon emission flow (CEF), and rationally allocating the carbon emissions corresponding
to system network losses. Kang et al. [27] further developed the CEF model, defined rele-
vant concepts, and revealed the characteristics and distribution patterns of CEF. The CEF
calculation model can be used to calculate the carbon footprint of power transmission and
consumption, more accurately identifying the key factors of carbon emissions in the power
grid. Cheng et al. [28] utilized CEF theory to trace the carbon responsibility of consumers
and conducted research on the low-carbon operation of small and medium enterprises
through a double-layer optimization model promoting the synergistic optimization of
transmission and distribution networks. The proliferation of distributed photovoltaics (PV)
has increased the complexity of corporate carbon emission accounting. In scenarios with
a large number of PVs integrated into the grid, an improved CEF model can be used to
account for the carbon emissions of enterprises in environments with large-scale PV grid
integration [29]. Li et al. [30] proposed a method for low-carbon optimization learning and
scheduling of the power system, combining carbon capture technology and CEF theory.
This study’s model encompasses a comprehensive energy system including photovoltaics,
wind energy, and storage, and it conducts an in-depth analysis of its carbon flow. By apply-
ing deep reinforcement learning techniques to solve the optimization model, low-carbon
optimization of the system is achieved. Although previous studies analyzed methods for
accounting for carbon emissions in the power system, the carbon emissions of EVs under
different charging modes still require accounting and analysis.

EVs contribute to emission reduction by integrating into the electrical system and can
generate income through participation in the CEM. A rational allocation method is required
to distribute the carbon revenue to each EV owner. Many studies have utilized game theory
to achieve benefit sharing in energy systems. Li et al. [31] introduced a vehicle-to-vehicle
market mechanism that allows electric vehicle owners to establish distributed electricity
markets within distribution networks, to engage in electricity trading. This mechanism
aims to maximize the revenue of each electric vehicle owner while also developing a non-
cooperative game model for the allocation of electric vehicle energy. Each electric vehicle
owner maximizes individual revenue by selecting feasible strategies. Cong et al. [32] trans-
formed the problem of multi-regional joint operation into an alliance game model, dividing
the comprehensive energy systems of multiple regions into different alliances based on ben-
efit sharing, promoting their cooperative operation. For the regional comprehensive energy
system operation optimization model, it is necessary to consider the mutual benefits of
electricity allocation. Here, multiple comprehensive energy systems can distribute alliance
benefits through Nash negotiation methods to maintain the stability of the cooperative
relationship [33]. Fan et al. [34] proposed a cooperative scheduling framework for multiple
adjacent energy hubs and used bargaining game theory to solve the optimization problem
for a fair Pareto solution. He et al. [35] comprehensively summarized the game scenarios
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and game models of comprehensive energy systems, covering the source side, network
side, load side, and common planning and scheduling issues. Wang et al. [36] introduced
the Shapley value method, applying game theory to multi-agent capacity optimization
models. The traditional Shapley method can be modified according to the actual situation
of the participants [37], and Yang et al. [38] introduced cost and contribution factors in its
modified Shapley method. However, when addressing the strategic interactions between
the system as a whole and other entities, existing studies often overlook the different
participants within the system. This is particularly crucial in a distribution system (DS)
with a high penetration of EVs, where it is necessary to allocate carbon reduction benefits
not only for renewable energy sources and EVs collectively, but also specifically for each EV
involved in the dispatch. Therefore, it is essential to consider the coordination of interests
among different participants within the system and to pay attention to the energy exchange
game mechanisms among users. This approach ensures a fair distribution of overall carbon
reduction benefits to each participant, effectively motivating EV owners to participate in
low-carbon optimization dispatch, thereby promoting the sustainability and low-carbon
development of the DS.

In response to these issues, this study proposes a carbon accounting model and
revenue distribution method for EVs. The model employs carbon emission flow and the
Shapley value method for equitable distribution of carbon reduction contributions. The
specific contributions include the following:

1. Development of a low-carbon optimization model for a DS integrating EVs and
photovoltaic generation. Carbon reduction for the entire grid is achieved through EV
V2G scheduling, and carbon emission tracing at each node using carbon flow theory
validates the effectiveness of the scheduling model, providing a theoretical basis for
the allocation of carbon reduction contributions by EVs.

2. Design of a carbon reduction contribution distribution mechanism based on Shapley
values, offering a fair and reasonable solution for the distribution of carbon reduction
benefits between EV owners and distribution system operators (DSO), based on the
carbon emission tracing results of the distribution grid. Compared to the traditional
Shapley value method, the improved Shapley value method is more aligned with the
actual circumstances of this study’s case scenario, allowing for a more diverse and
comprehensive allocation of carbon revenue.

3. Validation of the proposed methods through numerical simulations of the real 31-node
distribution network of Southern University of Science and Technology (SUSTech).

The remainder of this paper is organized as follows: Section 2 introduces the frame-
work of the method proposed in this paper, describes the carbon accounting method for
EV based on CEF Theory and the carbon revenue distribution model based on Shapley
value; Section 3 validates the proposed theoretical model using real-case data from SUSTech
campus; finally, Section 4 presents conclusions and insightful remarks.

2. Carbon Emission Accounting and Revenue Distribution Model for EV
2.1. Framework of Carbon Accounting Model

The primary objective of this study was to calculate the carbon emission reduction
of EVs in the V2G mode based on power flow, and to allocate the corresponding carbon
benefits by the contribution of EVs to carbon reduction in the DS. The model architecture
of this paper, as illustrated in Figure 1, comprises three sub-models: the low-carbon
scheduling model for DS, the V2G carbon accounting model, and the carbon revenue
distribution model. Consequently, the carbon accounting and revenue distribution process
is divided into three stages. First, establish the low-carbon scheduling model for the DS to
minimize total system carbon emissions, and to acquire power flow data before and after
optimization. Second, based on the power flow data, using the carbon accounting model
calculate the carbon intensity (CI) at each node of the DS before and after optimization,
and account for the carbon emission reduction of the DS and EVs. Finally, allocate carbon
reduction revenue to EVs based on their contribution to carbon reduction, through the
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carbon revenue distribution model. Detailed descriptions of these three stages are presented
in the following subsections.
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The primary objective of the scheduling model in this paper was to explore the carbon
emission reduction potential of V2G technology within the DS. Considering the timelines
of CI on the grid side, the model aims to minimize the overall carbon emissions of the DS.
Through the V2G technology for EVs, charging and discharging strategies are formulated
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based on the charging needs, charging power, and fluctuating CI. The model evaluates the
carbon emission reduction achieved through the application of V2G technology in the DS,
by comparing it with the carbon emissions from the EVs without scheduling. The following
assumptions are made for the model:

e To analyze the impact of EVs on the carbon emission reduction of the DS separately, it
is necessary to ensure that other base loads within the DS do not affect the experimental
results. Therefore, the variability of basic loads is not considered, and all basic loads
are assumed to remain constant throughout the analysis process.

e To facilitate reasonable scheduling of EVs, all EV owners within the campus have
entered into charging and discharging agreements, allowing the DSO to access EV
information. This centralized management of EVs enables individualized charging and
discharging scheduling for each EV, thereby achieving the low-carbon optimization
goal while meeting the charging needs of EV owners.

The scheduling model aims to minimize the total carbon emissions over T periods,
with the objective function in Equation (1):

minCE = Y, . P,CEF; (1)

where, CE represents the total carbon emissions of the distribution network system over
continuous T periods; Pg ; denotes the active power at the bus node during the period t;
CEF; represents the carbon emission factor of the main grid flowing into the distribution
network bus node during period .

The constraints of power flow are described in Equations (2) and (3):

2 . ..
Lokes Dk = B+ Liiey, (Pi—1ry), Vi€ N, (i) € L (2)
Zke(sj Qjr = Qj +Eie7j (Qij - Iz‘zjxij>f VieN,(i,j) L 3)
Z(Pl-]-rl-]- + Ql-]-xij) — (1’12] + X12]> 112] = Ulz — UJZ, Vl,] € N, (1,]) €L (4)

where, N and L respectively denote the sets of nodes and lines in the DS; §; and 7, represent
the sets of branch ends and head nodes; Pjx and Qj; denote the active and reactive power
from node j to node k, while P; and Q, respectively, denote the active and reactive power at
node j; I represents the current from node i to node j; r;; and x;; represent the resistance and
reactance in line ij; U; and U; denote the voltage magnitudes at nodes i and j, respectively.

Equation (5) limits the apparent power for each branch. Equation (6) ensures that
the voltage at node j does not exceed the maximum and minimum values. Similarly,
Equation (7) ensures that the current in branch ij does not exceed its limit:

P2+ Q% =PI, Vi€ N, (i,j) € L ®)
umin S u] S urnaxz v] € N (6)
_Imax < Iij < ImaX/ V(Z']) el (7)

where, Up,in and Umax represent the minimum and maximum voltage magnitudes at nodes
i and j respectively, and Imax represents the maximum allowable current in line 7.
Equations (8) and (9) represent the charging and discharging constraints of EVs:

Efmt = Pimitlime Vi €N, Vm € M, Vt € T (8)
Pt
fm,t = ]}'gn’t ,VjeEN, Vme M, VteT 9)

jom,t
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PSmiPim: =0, Vi €N, Vme M, Vt € T (10)

0<pf <t 0<pP < pP VieN,Vme M, VteT (11)
= p],m,t = pm,Max' = p],m,t = pm,Mﬂxl ] ’ ’

S0C pmin < S0Cp < S0Cyy Max, VM€ M, YVt € T (12)

wherein, Efm,t and E]’%)m,t denote the charging and discharging power of EVs at node j
during time period t, respectively; p]cm ; and pfm,t represent the charging and discharging
power of the m-th EV at node j within time period t; S0C,, p1i, and SoCy, pax represent the
minimum and maximum SoC of the m-th EV, respectively.

2.3. V2G Carbon Accounting Model

In the power industry, carbon dioxide emissions primarily originate from the carbon
source side, while the demand and driving forces behind carbon emissions are on the
load side. As the carbon emissions in power systems are intertwined with power flow, it
is necessary to combine carbon emission flow with power flow, thereby facilitating the
traceability of carbon emissions in the power system. The carbon accounting model can
calculate carbon emissions at various stages of energy production, transportation, and
consumption. Presently, the computational methods for carbon emission flow theory have
gradually matured [39], allowing for the calculation of carbon emission flow at each node
for different periods based on power flow. The following is a brief description of the
concepts and calculations involved in carbon emission flow theory.

The carbon emission flow rate (CEFR) indicates the carbon emissions corresponding
to the power flow through a network node or branch per unit time. It is denoted as R and
is measured in t/h, as shown in Equation (13):

o dF

-5 (13)

where, F represents the inflow of carbon emissions.
ClI refers to the amount of carbon emissions per unit of electricity. It is denoted as p
and is measured in t/(MW-h), as shown in Equation (14):

=7 (14)
wherein, P represents the active power flow corresponding to the branch. The BCI should
be equal to the carbon potential of the first node into which the branch flows.

Node carbon intensity (NCI) represents the carbon emissions equivalent to the genera-
tion side caused by the consumption of a unit of electricity at a node. The NCI for node n is
expressed as Equation (15):

> opipt L R
ieN+ ieN+

t € i€
D DN B D
iENT iENT

where, N* represents the set of all branches with active power flow entering node #; i
denotes the branch number.

Due to the fluctuations in the power grid’s CEF with changes in the load conditions of
the electric power system, V2G can produce additional emission reductions compared to
conventional EV charging by utilizing EVs in conjunction with low carbon scheduling.

To measure accurately and reasonably the carbon emissions of EVs in V2G scheduling,
we analyzed both the charging (0 < P, < Peymax) and discharging (0 < Pyis < Pyis max)
states of EVs separately.

Carbon emission flow during the EV charging process was represented as
Equations (16)—(18):

Qe = Qo + Pe At (16)
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Cch,t = CO + Pch,teGrid,tAt (17)
Co + P.j, recrid 1t
esp = 0 ch,tCGrid,t (18)
Qo + Pey 1At

where, Qg and Cy, respectively, represent the remaining SoC and carbon emission of the
EV; Q,+ and Cgp, 4, respectively, represent the SoC and carbon emission of the EV after
the charging period t; P, ; denotes the power of EV during the charging period ¢; ecyi4
represents the NCI of the grid during time period ¢; es ; indicates the NCI of the EV during
period t.

The carbon flow during the EV discharging process is shown in Equations (19) and (20):

1
Quist = %(QO — Pyis 1 At) (19)

1
Caist = Co — ﬁpdis,ies,t—lAt (20)

wherein, Qg ;s ; and Cy;, ¢, respectively, represent the SoC and carbon flow of the EV after
the discharging period t; Py; ; denotes the power of the EV during the discharging period ¢.
The NCI of the EV during the discharging period ¢ remains unchanged. 1 represents the
discharging efficiency of EVs.

Over N periods, the carbon emissions of the EV through V2G scheduling is as shown
in Equation (21):

N
Cn=Co+ Y, (Qent — Quis,t)est (21)

By integrating the V2G carbon accounting model, it can be extended to calculate the
dynamic NCI at each node of the DS. Figure 2 displays a schematic diagram of a campus DS
with power flow and carbon emission flow. The DS includes office buildings and research
buildings as base loads, distributed photovoltaic panels representing renewable energy
sources, and EV charging stations with V2G technology.

r Office Building Solar Panel
—) Power flow

ﬁ%ﬁ e Carbon emission flow
Ps’l lpéPs’

A i
—,

I
=t | S
& PLF e pib

— — — — — — — — — — —

2 || e >
EV Charging
Power Plant ; Station
EV Charging Station Research Building )

Figure 2. Carbon emission flow model.

The NCI of node i is determined by the sum of the carbon emission from the power
plant and upstream nodes. For a DS with N nodes, among which the K nodes are the
injection points of the generator, and with the network topology being known, assuming
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that the losses in the distribution network are negligible, the NCI at any node is defined as
Equation (22):

£ _IN(PpE+ PEpG)
N = §N K

Zy:] PBU + Zw:1 PGw
where, Pp is an N dimensional branch power flow distribution matrix, describing the
distribution of active power flow in the branches of the electrical system; Pg isa K x N
dimensional generator injection power distribution matrix, describing the connection
relationship of the generator and the active power injected into the system; pp is an N
dimensional vector of branch carbon emission intensity; p¢ is a K dimensional vector of
generator carbon emission intensity; vy is an N dimensional unit row vector.

According to the definition of the node active power flux matrix, the NCI is influenced

only by the inflow, while the outflow from the node does not affect the NCI. Therefore,
Equation (23) can be derived:

(22)

N K
Y Peo+ Y. Pew=TNPNYN (23)

wherein, Py represents the N dimensional node active power flux matrix.
From the two aforementioned equations, we can derive Equation (24):

INPNTYNEN = IN (PEEN + P(T}EG) (24)

Expanding the above equations to encompass the entire system’s dimensions and upon
rearranging, we obtain Equation (25) for calculating the CNI for all nodes in the system:

Ey = (PN —PI ) “PIES (25)

2.4. Carbon Revenue Distribution Model

After scheduling the charging process of EVs, the carbon emissions of the DS decreased.
For EVs, their initial CI determines their carbon reduction performance in the V2G process.
The CI upon leaving the grid will affect the carbon emissions of the next charging process.
Therefore, a method is needed to reasonably quantify the carbon value corresponding to
the CI of EVs, thereby forming a comprehensive method for distributing carbon reduction.

The fluctuation of CI is caused by the electricity charged. Charging with low-carbon
electricity can reduce the CI of EVs, but the EVs need to pay for the environmental costs
associated with this low-carbon electricity. Equation (26) defines the low-carbon cost that
the EVs should bear:

Ecost = _(es,N - es,O) : (QN - QO) -5 (26)

wherein, E.ost represents the low-carbon cost corresponding to the change in CI before
and after EV charging; e; o and e, y represent the CI of the EVs before and after charging,
respectively; Qg and Qy, respectively, denote the SoC of the EVs when connecting to and
disconnecting from the grid; S represents the price of carbon.

In actual operation, EVs participating in V2G scheduling within a DS can be viewed
as a coalition. EVs in this coalition work together to generate carbon reduction benefits for
the system. Therefore, a method that comprehensively considers both the carbon reduction
contributions and low-carbon costs of EVs is needed to distribute reasonable benefits among
the members of the coalition. This can be achieved through the application of Shapley value
theory, a concept originating from cooperative game theory [40]. It offers a fair solution for
distributing benefits by basing the distribution on each participant’s marginal contribution
to the collective action, ensuring fairness in the allocation of benefits. In the context of our
research, the Shapley value is used to quantify the marginal contribution of each EV to the
system’s emission reduction, combining carbon reduction amounts and low-carbon costs,
and accordingly distributing the emission reduction benefits.
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The calculation of the Shapley value is based on all possible coalitions of participants,
assessing the marginal change in total payoff when each participant joins an existing
coalition. Suppose in a cooperative project, all participants are represented by the set N,
and each subset S C N has a definite total payoff v(S). Then, for each participant 4, the
Shapley value ¢, (v) is defined as Equation (27):

|S|!(n—|S| —
n!

9a(0) = D o5 U {a}) - o(S)) @)

SCN\{a}

wherein, S is any subset of participants not including participant a; v(S) is the total payoff
when the participants in subset S cooperate; v(S U {a}) is the total payoff when subset S
cooperates with participant a; |S| is the number of elements in subset S; 7 is the total number
of participants; |S|! is the factorial of the number of elements in subset S; (n — |S| — 1)!is
the factorial of the number of remaining participants excluding subset S and participant a.

The refined Shapley value model integrates carbon reduction revenue with low-carbon
costs. Equation (28) implies that the carbon reduction benefits through the coalition will be
distributed among the EVs in the coalition:

S =ISL= DY (050 a)) — 0(5)) - (e(SU{a}) —c(5)))  (28)

n.

¢a(v) = Z

SCN\{a}

where, c(SU {a}) — ¢(S) refers to the marginal contribution of costs when participant EV,
joins the coalition, which is the low-carbon cost that should be borne by the participant.

3. Case Study
3.1. DS Structure

The DS discussed in this paper is based on the SUSTech campus. This DS has 31 nodes
and 30 branches, where node 31 is a balance node connected to the Guangdong Provincial
Power Grid through a 110 kV/10 kV transformer. Private EV charging stations are dis-
tributed at nodes 2, 5, 15, 23, 26, and 28. When the EVs connected to these charging stations
are in the discharging state under the V2G mode, these nodes can be considered as power
source nodes. At nodes 7, 16, and 20, there are three sets of PV panels installed, which can
generate electricity using solar energy and supply it to the DS. The specific structure of the
DS is shown in Figure 3.

EHE
{ 1 2 19 20 23 25 26 |
| O0—0 o—0 —O |
i B N B
| |
| |
} 17 21 22 24 27 28 }
‘ o—0O0—0—O0—0—0—0
‘ 31 18 EU‘ ‘
| |
O |
| |
| |
} 8 9 10 11 5 29 30 15 }
w -O—0—0—0 ‘
| |
| |
| Bf BJ' |
} 3 4 6 7 12 13 14| 16 \
~ -O—O0—0—=0 J
(11 ] HER

Figure 3. DS Structure of SUSTech.
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3.2. Data Preparation
3.2.1. EV Data

In this study, the data on EVs were collected through the SCP system within the
Southern University of Science and Technology campus. The research focused on campus
electric buses and private EVs, totaling 2000 EVs. The data gathered by SCP includes the
initial state of charge, maximum battery capacity, maximum charging power, and times of
connecting to and disconnecting from the grid. Based on real-world charging scenarios,
when owners urgently need to use their EVs, they choose fast-charging stations, which
significantly reduces charging time. However, if the owner opts for slow charging and the
connection time to the grid exceeds 2 h, it can be assumed that the EV has the potential
to participate in V2G scheduling. Therefore, to better facilitate interaction between EVs
and the power grid, data from 704 EVs with grid connection times less than 2 h were
excluded. Electric buses, compared to private EVs, have larger battery capacities. Based
on battery capacity, electric buses were categorized as one data class. Using the K-means
algorithm [41], private EVs were clustered based on battery capacity and grid connection
time, classifying them into five groups. Hence, private EVs were grouped into six categories
in total. Table 1 shows the specific data for these six types of EV.

Table 1. EV clustered data.

Types of EVs EV1 EV 2 EV 3 EV 4 EV 5 EV 6
Plug in time (h) 18:00 18:00 5:00 7:00 9:00 8:00
Plug out time (h) Next day 7:00 Nextday 7:00  24:00 22:00 20:00  21:00
Battery volume (kWh) 160 64 40 64 40 24
Initial battery (kWh) 59.1 28.3 18.6 46.3 30.9 16.9
Amount 58 117 279 174 392 276
3.2.2. PV Data

In this study, real solar irradiance records were obtained from the global climate
database [42], selecting genuine solar irradiance data for the summer months (June to
August) at the Southern University of Science and Technology. The data sampling interval
was 60 min. Figure 4 shows the distribution of solar irradiance during the summer of 2023
on the Southern University of Science and Technology campus, with the peak irradiance
occurring between 11:00 AM and 1:00 PM. The level of solar irradiance in July was higher
than in June. Due to a higher frequency of rainy days in August, there were some days
without any significant solar irradiance throughout the entire day, resulting in the average
irradiance for August being lower than that in June and July.
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Figure 4. Solar irradiance profile of the SUSTech campus for June to August in 2023.
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For PV output, the focus of this study is on three sets of rooftop photovoltaic panels
located at nodes 7, 16, and 20, respectively, each set consisting of panels that individually
cover an area of 50 square meters. Equation (29) calculates the maximum PV output [43]:

ppvmax _ Dmaxspvqpv (29)

where, PPPM# represents the maximum photovoltaic output; D™# is the maximum solar
irradiance; SP? is the area of each rooftop photovoltaic panel in the campus, and 7 is the
conversion efficiency of the photovoltaic panels. In this study, 77 is set to 20% [44].

Based on the actual solar irradiance data of the SUSTech campus, the hourly photo-
voltaic power generation distribution was obtained. By taking the average power genera-
tion for each time period [45], a typical day’s photovoltaic power generation profile for the
summer was established, as shown in Figure 5.
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Figure 5. Power of PV for June to August in 2023.
3.2.3. CEF Data

The CEF of the grid is an indicator measuring the amount of carbon dioxide emissions
per unit of electricity generated during the power generation process. The fluctuation of
the CEF is primarily influenced by the method of power generation; the distribution of
power sources in Guangdong Province for the year 2021 is depicted in Figure 6 [45].
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Figure 6. Distribution of power sources in Guangdong in 2021.

Different power generation technologies utilize various energy sources and have
differing efficiencies in converting these energies into electricity, resulting in varying
amounts of carbon dioxide emissions. The carbon emission factors for each type of power
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generation method are presented in Table 2 [46]. By analyzing the typical weekday load
situation in Guangdong Province in 2021, the carbon emission factor data for the power
grid over 24 h can be calculated.

Table 2. CEF and distribution ratio of each subject.

Types of Technology CEF (kg/kWh)

Coal 1167
Oil 1033
Gas 16.2
Nuclear 10.3
Wind 0.141
Water 0.12

Solar 0.00410

According to the variation of the grid CEF presented in Figure 7, it is observed that
within 24 h, the carbon emission intensity is lower between 1:00 AM and 9:00 AM, reaching
its lowest value of 0.41 kg CO, /kWh between 6:00 AM and 7:00 AM. The carbon emission
intensity is higher between 10:00 AM and midnight, with the peak carbon emission intensity
of 0.57 kg CO, /kWh occurring at 12:00 PM and between 3:00 PM and 6:00 PM.
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Figure 7. CEF of grid.

3.3. Analysis of Low Carbon Scheduling Result

Figure 8 illustrates the power balance of the campus distribution network before and
after low-carbon scheduling, taking into account the DS composed of the public power grid,
the campus base load, the PV, and EV components. According to the optimization results,
the charging and discharging strategy of EVs mainly depends on the carbon emission
intensity of the power grid. As shown in Figure 8b, after optimization, EVs concentrate
most of their charging needs between 3:00 AM and 9:00 AM, a period when the grid’s
carbon emission intensity is relatively low. During times of highest carbon emission
intensity, EVs discharge to the grid, reducing the base load demand for high CI electricity
from the grid, thereby decreasing the carbon emissions from electricity use in the DS.
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Figure 8. Power balance of DS. (a) Before scheduling; (b) after scheduling.
3.4. Analysis of Carbon Accounting Result
To account for the carbon emissions of the DS, it is necessary to trace the carbon flow
between nodes at each time period. In this study, the nodes in the DS are categorized into
load nodes and generator nodes. Generator nodes inject carbon flow into the system, and
load nodes consume carbon flow. Therefore, the sum of inject-carbon flow is equal to the
sum of load-carbon flow. The status of EV nodes varies at different times, necessitating an
analysis of the carbon flow distribution for each period. Tables 3 and 4 show the CI and
CEFR of the distribution network at the 6th and 12th time periods, respectively.
Table 3. Carbon emission flow rate of DS in 6:00.
Node CI GCFR LCFR Node CI GCFR LCFR Node CI GCFR LCFR
1 0.41 0 327.51 12 0.41 0 120.25 22 0.41 0 407.40
2 0 0 0 13 0.41 0 327.51 24 0.41 0 262.00
3 0.41 0 245.63 14 0.30 0 39.81 25 0.41 0 163.75
4 0.41 0 245.63 15 0 0 0 26 0.45 0 663.16
6 0.38 0 182.96 16 0 0 0 27 0.41 0 152.42
7 0 0 0 17 0.41 0 152.42 28 0.45 0 857.09
8 0.41 0 146.70 18 0.41 0 293.33 29 0.41 0 91.95
9 0.41 0 196.50 19 0.39 0 279.99 30 0.41 0 91.95
10 0.41 0 146.70 20 0 0 0 31 0.41 7716.04 0
11 0.41 0 86.69 21 0.41 0 38.10
Table 4. Carbon emission flow rate of DS in 12:00.
Node CI GCFR LCFR Node CI GCFR LCFR Node CI GCFR LCFR
1 0.54 0 955.23 11 0.57 337.97 21 0.57 0 148.56
2 0.48 241.86 0 12 0.57 0 441.96 22 0.55 0 998.10
3 0.57 0 779.94 13 0.46 0 846.33 23 0.50 942.38 0
4 0.54 0 748.76 14 0.38 0 140.07 24 0.55 0 801.99
5 0.50 367.59 0 15 0.47 539.53 0 25 0.55 0 501.24
6 0.42 0 460.47 16 0 0 0 27 0.55 0 572.85
7 0 0 0 17 0.57 0 594.24 29 0.55 0 325.81
8 0.57 0 571.95 18 0.57 0 745.46 30 0.55 0 325.81
9 0.57 0 623.95 19 0.46 0 601.87 31 0.57 10,128.26 0
10 0.57 0 571.95 20 0 0 0
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At 6:00 AM, EV1 and EV2 are connected to the grid, and being considered as loads,
the carbon flow injection at this period is from the PV and node31. The system’s carbon
emissions totals 7716.04 kg CO,. At 12:00 PM, EV1 and EV2 are not connected to the grid,
while EV3, EV4, EV5, and EV6 discharge to the grid, thus being considered as generator.
The system’s carbon emission is 12,219.62 kg CO,.

The CEFR distribution in the DS allows for the calculation of the hourly system carbon
emissions and the cumulative carbon emissions within 24 h. Figure 9 displays the real-time
carbon emissions and the carbon emission variation curve for the DS before and after
low-carbon scheduling. The results indicate that over the course of a day, the DS with
low-carbon scheduling reduced carbon emissions by 12,034.45 kg CO, compared to the
system without low-carbon scheduling.
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Figure 9. Total carbon emission and real time carbon emission of DS before and after scheduling.

During the period from 0:00 to 9:00, the carbon emission factor of the grid is relatively
low. However, from 10:00 to 23:00, the carbon emission factor is higher, leading to higher
system carbon emissions. During peak periods of carbon emission factor, the system’s
hourly carbon emissions after low-carbon scheduling are generally lower than those of the
unscheduled system. The largest difference occurs at 18:00, where the carbon emissions
of the system after low-carbon scheduling are reduced by 6888.49 kg CO;. For periods
with lower carbon emission factor, the hourly carbon emissions of the system after low-
carbon scheduling are generally higher than those of the unscheduled system. The largest
difference occurs at 5:00, where the carbon emissions of the system after low-carbon
scheduling are 3751.68 kg CO; higher than the unscheduled system.

Therefore, from the perspective of the DS, it can be observed that EVs, through V2G
scheduling, reduce the carbon emissions of the system during periods of high carbon emission
factor. They shift charging demands periods of low-carbon electricity, effectively utilizing
the fluctuating nature of grid carbon emission factor. This smoothens the carbon emission
variation curve of the DS and reduces the total carbon emissions of the system within 24 h.

For EVs, V2G scheduling not only reduces the carbon emissions of the DS but also
has an impact on the carbon emissions of EVs themselves. Figure 10 compares the carbon
emissions of six different EVs before and after low-carbon scheduling. Among them,
EV1 and EV2 showed reductions of 680.90 kg CO; and 179.72 kg CO,, respectively, after
optimization scheduling. However, EV3, EV4, EV5, and EV6 did not show emission
reductions. This variation is attributed to factors such as the timing of EV connection to the
grid, their charging demands, and changes in their own CI.

Figure 11 illustrates the real-time variations in the CI of six types of EVs as well as the
NCI of upstream nodes, to analyze the relationship between EV carbon emissions and CI.
Figure 11a,b depicts the changes in CI and their charging/discharging power for EV1 and
EV2. During the 18:00-22:00 period, the CI of EVs is lower than the NCI of upstream nodes,
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and both EV1 and EV2 discharge to the grid to reduce the carbon emissions of the upstream
node’s base load. From 1:00 to 9:00, the NCI of upstream nodes is lower than that of EVs,
and both EV1 and EV2 primarily charge during this period to reduce the carbon emissions
associated with EV charging. Additionally, the CI of EVs gradually decreases during the
charging process, reaching values of 0.4383 kg CO,/kWh and 0.4379 kg CO,/kWh when
leaving the grid, showing a reduction compared to when they were connected. EV3, EV4,
EV5, and EV6 connect to the grid during periods of high carbon emission factor, as shown
in Figure 11c—f. When the NCI of upstream nodes is high, these EVs discharge to the grid to
reduce the system’s carbon emissions. Conversely, when the NCI of upstream nodes is low,
the EVs charge to reduce the carbon emissions associated with EV charging. Compared to
when they first connect to the grid, the CI of EV3, EV5, and EV6 have all increased, while the
EV4 upstream nodes have PV power injection during the 7:00-8:00 and 13:00-14:00 periods,
reducing the NCI between upstream nodes and EV4. However, due to EV4 discharging
low-carbon power to the system’s base load, it reduces the system’s carbon emissions.

I Uncoordinated charging [_] V2G scheduling
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Figure 10. Total carbon emission of EV1, EV2, EV3, EV4, EV5, and EV6 before and after scheduling.
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Figure 11. Real-time NCI and charging power of (a) EV1, (b) EV2, (c) EV3, (d) EV4, (e) EV5, and (f) EV6.

To meet charging demands, high CI power is charged during 19:00-21:00. Conse-
quently, although the CI of EV4 has decreased compared to pre-optimization, its carbon
emissions have still increased. From this, we can infer that the CI of EVs can indirectly re-
flect the carbon emissions during the EV charging process. However, to accurately account
for EV carbon reduction contribution to the distribution network, it is necessary to consider
the combined effects of changes in the carbon reduction of DS and CI of EVs.

3.5. Result of Revenue Distribution

To ensure the long-term and stable participation of EV owners in low-carbon dispatch
and to allocate profits reasonably, the average carbon price in the 2022 Chinese carbon
market, which is 58.07 RMB/t CO; [47], was used in this study to calculate the carbon cost
and carbon reduction revenue for EVs. Based on the improved Shapley model, Table 5
shows the carbon reduction amount V(S), low carbon cost C(S), and carbon reduction
revenue (@) for each EV alliance combination.
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Table 5. Cost and carbon reduction revenue allocation in all possible alliance combinations.
S V(S) c® ¢ S V(S C(S) )
{EV1} 2230.4 69.3 60.2 {EV2, EV3, EV5} 5490.3 113.6 205.3
{EV2} 5200.3 114.9 187.0 {EV2, EV3, EV6)} 5490.8 93.2 2257
{EV3} 270.7 —13.0 28.7 {EV2, EV4, EV5) 5380.1 93.4 219.1
{EV4} 110.1 4.6 1.8 {EV2, EV4, EV6} 5360.7 96.8 214.5
{EV5} 40.2 16.0 -13.7 {EV2, EV5, EV6)} 5290.2 101.6 205.6
{EV6} 20.7 59.7 —58.5 {EV3, EV4, EV5] 500.9 —39.9 69.0
{EV1, EV2} 6700.6 89.8 299.3 {EV3, EV4, EV6} 4904 —384 66.9
{EV1, EV3} 2480.5 55.6 88.5 {EV3, EV5, EV6} 4103 —26.5 50.3
{EV1, EV4} 2350.8 49.0 87.5 {EV4, EV5, EV6} 220.8 -33.3 46.1
{EV1, EV5} 2280.9 61.0 715 {EV1, EV2, EV3, EV4} 7090.2 53.6 358.1
{EV1, EV6} 2280.9 63.6 68.8 {EV1, EV2, EV3, EV5} 7010.4 90.4 316.7
{EV2, EV3} 5400.2 105.8 207.8 {EV1, EV2, EV3, EV6} 7000.6 68.6 337.9
{EV2, EV4} 5340.7 95.1 215.0 {EV1, EV2, EV4, EV5} 6890.2 62.9 337.2
{EV2, EV5} 5240.5 112.9 1915 {EV1, EV2, EV4, EV6)} 6910.9 60.7 340.6
{EV2, EV6} 5230.1 110.3 193.4 {EV1, EV2, EV5, EV6)} 6540.1 81.7 298.1
{EV3, EV4} 440.6 —32.8 58.4 {EV1, EV3, EV4, EV5} 2720.5 26.4 131.6
{EV3, EV5} 330.1 —20.8 40.0 {EV1, EV3, EV4, EV6} 2710.2 28.5 128.9
{EV3, EV6} 350.2 —20.6 40.9 {EV1, EV3, EV5, EV6)} 2630.6 42.8 109.9
{EV4, EV5} 170.5 —27.6 375 {EV1, EV4, EV5, EV6)} 2490.7 320 112.7
{EV4, EV6} 160.6 —25.6 35.0 {EV2, EV3, EV4, EV5} 5640.2 84.1 243.4
{EV5, EV6} 90.2 —13.5 18.7 {EV2, EV3, EV4, EV6)} 5630.5 924 234.6
{EV1, EV2, EV3} 6940.5 97.2 305.9 {EV2, EV3, EV5, EV6)} 5520.1 98.3 2222
{EV1, EV2, EV4} 6860.8 81.4 317.0 {EV2, EV4, EV5, EV6)} 5460.7 81.0 236.1
{EV1, EV2, EV5} 10,440.5 134.4 4719 {EV3, EV4, EV5, EV6)} 550.0 —46.3 78.2
{EV1, EV2, EV6} 11,000.9 117.5 521.3 {EV1, EV2, EV3, EV4, EV5} 7160.3 494 366.4
{EV1, EV3, EV4} 2660.1 35.0 119.4 {EV1, EV2, EV3, EV4, EV6} 7140.1 49.7 365.0
{EV1, EV3, EV5} 2660.3 46.3 108.2 {EV1, EV2, EV3, EV5, EV6} 7060.4 61.1 348.9
{EV1, EV3, EV6} 2660.2 50.1 104.4 {EV1, EV2, EV4, EV5, EV6} 6970.8 55.8 349.0
{EV1, EV4, EV5} 2410.5 41.2 98.8 {EV1, EV3, EV4, EV5, EV6} 2770.2 225 138.3
{EV1, EV4, EV6} 2400.6 434 96.0 {EV2, EV3, EV4, EV5, EV6} 5690.6 66.7 263.8
{EV1, EV5, EV6} 2330.8 55.3 80.1 {EV1, EV2, EV3, EV4, EV5, EV6)} 7200.2 424 375.7
{EV2, EV3, EV4} 5580.2 80.5 243.6

In most cases, cooperative operation results in higher carbon reduction revenue com-
pared to independent operation. Taking EV1 and EV2 as an example, when EV1 and EV2
operate independently, the EV1 carbon reduction revenue is RMB 60.2, and the EV2 carbon
contribution is RMB 187.0. However, when EV1 and EV2 operate together, the alliance’s
overall carbon reduction revenue is RMB 299.3. This means that compared to operating
independently, cooperative operation results in an additional RMB 52.1 of carbon reduction
revenue for the system, primarily due to a reduction in carbon costs by RMB 94.4. In such
cases, EV1 and EV2 are more inclined to cooperate. When EVs form a large alliance, the
system’s low carbon cost decreases by 83%, and the total revenue increases by 82.8%.

Based on the allocation results shown in Table 6, the analysis reveals that EV1 has
a high carbon reduction contribution, and its CI when leaving the grid has a significant
decrease compared to when it connects to the grid. Therefore, it incurs a higher low-carbon
cost. The carbon reduction revenue allocation for EV1 is RMB 103.02. EV2 also has a high
carbon reduction contribution, and the CI of EV2 when leaving the grid is the lowest,
implying that it incurs the highest low-carbon cost. After allocation, EV2 receives a carbon
reduction revenue of RMB 219.41.
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Table 6. CI and Distribution ratio of each subject.
Types of EVs CI (kg/kWh) Benefit Distribution Ratio
EV1 0.4383 0.2742
EV2 0.4379 0.5840
EV3 0.5135 0.0400
EV4 0.4801 0.0425
EV5 0.5159 0.0243
EVé6 0.5098 0.0349

For EV3, EV4, EV5, and EV6, considering the carbon reduction contributions and the low
carbon costs incurred by these four entities, the revenue allocation based on the improved
Shapley value is as follows: RMB 15.03, RMB 15.97, RMB 9.13, and RMB 13.11, respectively.

The comparison between the conventional allocation method and the improved Shap-
ley value method proposed in this paper is shown in Figure 12. Under the conventional
allocation method, EVs that charge overnight have longer grid connection times, and their
time period includes the grid load valley period with lower carbon emissions. EV1 and
EV2 use V2G scheduling to utilize low-carbon electricity to meet their charging needs,
significantly reducing their carbon emissions. They can also provide power to the base
load during high carbon emission factor periods in the distribution grid, resulting in higher
carbon reduction. On the other hand, EV3, EV4, EV5, and EV6 connect to the grid during
peak load periods with higher carbon emissions. Their V2G scheduling capabilities are
limited, making it difficult to reduce their own carbon emissions while satisfying their
charging needs. The improved Shapley value allocation method takes into account both the
carbon reduction of EVs and the corresponding low carbon costs associated with changes
in carbon emissions. It provides a more comprehensive evaluation of the carbon reduction
contributions of different entities in the operating system, leading to a more reasonable
carbon reduction revenue distribution.
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Figure 12. Revenue distribution results.
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4. Conclusions

This paper proposes a method for optimizing EV charging and carbon revenue dis-
tribution. Initially, it constructs a carbon accounting model for the DS using carbon flow
theory, analyzing the carbon flow in EVs under V2G modes and tracing the carbon emis-
sions within the distribution network. Subsequently, aiming to minimize system carbon
emissions, the study establishes a low-carbon optimization model for the DS. This model
considers constraints such as energy supply and demand balance, flow constraints, and EV
charging and discharging constraints. It explores the carbon reduction potential of V2G
by comparing system carbon emissions under different EV charging modes. Furthermore,
the paper develops an improved Shapley value revenue allocation model based on the
carbon reduction contributions of EVs through V2G. This model allocates carbon revenues
to EVs proportionally. The effectiveness of the proposed method is validated through
numerical simulations on a real 31-node distribution network at the Southern University of
Science and Technology. The proposed carbon accounting model is capable of calculating
carbon emissions for EVs in different charging states and tracing the impact of carbon flow
during charging and discharging on both the CI of EVs and the overall carbon emissions
of the distribution network. The established low-carbon optimization model for the DS
can assist in reducing carbon emissions by 4.12%. However, while EV1 and EV2 reduce
their carbon emissions by 14.8% and 12.1% respectively, the carbon emissions of other
EVs increase, which is not equitable for EV owners participating in the scheduling. This
may reduce their willingness to participate in such programs. By analyzing the impact of
CI on EV carbon emissions and the system’s carbon emissions, introducing low-carbon
costs into the allocation criteria, and employing the improved Shapley value method, a
multi-dimensional benefit allocation is achieved. The allocation ratios for the six EVs are
27%, 58%, 4%, 4%, 2%, and 3%, respectively. Compared to allocation methods that do not
consider the CI of EVs, this approach provides a more reasonable allocation of benefits,
balancing contributions from individual EVs and alliances. Within the context of China’s
low-carbon transition, this study provides valuable insights into low-carbon scheduling for
DSs and carbon accounting for EV charging, emphasizing the necessity of further incen-
tives to reduce carbon emissions. It explores the potential of EVs to enhance the economic
viability of the CEM in future scenarios. The methodology proposed can be generalized
to other EV distribution network integration scenarios, encouraging more EV owners to
participate in low-carbon scheduling of the DS by offering verifiable carbon reduction data
and benefits.

This research also has limitations. The current charging scenarios are somewhat
simplistic and do not fully integrate EVs with the CEM. Further studies should broaden
to encompass a wider array of charging scenarios, thereby enhancing the applicability of
the carbon accounting model and carbon revenue distribution methods. Moreover, further
research into carbon trading market mechanisms is needed, empowering EV owners to
participate in carbon markets, leveraging carbon trading to maximize owners’ carbon
revenues, promoting the democratization of the energy system, and aiding the achievement
of a sustainable and equitable low-carbon transition. Consequently, additional research is
required to validate our findings and to further explore the extensive impact of EVs on the
power system and society.
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