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Abstract: Natural language understanding is a crucial aspect of task-oriented dialogue systems,
encompassing intent detection (ID) and slot filling (SF). Conventional approaches for ID and SF solve
the problems in a separate manners, while recent studies are now leaning toward joint modeling
to tackle multi-intent detection and SF. Although the advancements in prompt learning offer a
unified framework for ID and SF, current prompt-based methods fail to fully exploit the semantics of
intent and slot labels. Additionally, the potential of using prompt learning to model the correlation
between ID and SF in multi-intent scenarios remains unexplored. To address the issue, we propose
a text-generative framework that unifies ID and SF. The prompt templates are constructed with
label semantical descriptions. Moreover, we introduce an auxiliary task to explicitly capture the
correlation between ID and SF. The experimental results on two benchmark datasets show that our
method achieves an overall accuracy improvement of 0.4–1.5% in a full-data scenario and 1.4–2.7% in
a few-shot setting compared with a prior method, establishing it as a new state-of-the-art approach.

Keywords: natural language understanding; large language model; intent detection; slot filling

1. Introduction

Natural language understanding (NLU) plays a irreplaceable role in task-oriented
dialogue (TOD) systems. It helps a machine to understand the user by extracting intent
and semantic constituents from users’ utterances. A robust NLU not only impacts the
performance of downstream tasks, e.g., dialogue state tracking (DST) [1] but also drives
advancements in interactive applications such as Siri , Cortana, Alexa, etc. In recent years,
there has been a significant increase in research attention paid to NLU [2–11].

A typical approach to NLU involves two separate tasks: intent detection (ID) and
slot filling (SF). The former focuses on classifying the intent(s) of an utterance, capturing
its sentence-level semantics, while the latter extracts fine-grained information from the
utterance in terms of slot–value pairs. With the advancements of NLU studies, there has
been a shift toward addressing multi-intent scenarios, where users express multiple intents
within a single utterance. This poses additional challenges, particularly in handling the
relationship between intent and slot [5,11].

Figure 1 illustrates an example of such an NLU scenario, in which the model is expected
to produce intents and their corresponding slot values. Unlike single-intent NLU, each
intent in a multi-intent scenario has its own scope. For example, in the phrase “list flights
between Pittsburgh and Milwaukee”, the intent “atis_flight” pertains to the query within
phrase, while “how many Canadian airlines” corresponds to the intent “atis_quantity”.
Consequently, each slot value with its associated intent is influenced by the semantics
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within its respective scope. Therefore, accurately determining each intent and enhancing
SF within the respective scope presents a major challenge.

List

flights

between

pittsburgh

and

mulwaukee

and

how

many

canadian

airlines

...

Utterance

atis_flight

atis_quantity

O

O

O

B-fromloc.city_name

B-toloc.city_name

O

O

O

O

B-airline_name

I-airline_name

Intent Slot

Figure 1. An example of multi-intent detection and slot filling. The column (Utterance) refers to the
sentence. There are two intents, with their associated sequences in dashed boxes. The column (Slot)
refers to the tag sequence. For instance, the tag “B-fromloc.city_name” refers to the first token of slot
“fromloc.city_name”.

Recent studies [4,12] have confirmed that ID results have a positive impact on SF
performance, indicating the two tasks are strongly correlated. In response to these findings,
researchers [9,10] have started exploring joint models for ID and SF to leverage shared
semantics. Two common approaches involve either using a shared text encoder [6] or
employing a masked language model strategy in a pretrained language model (PLM).
Additionally, the emergence of large PLMs has facilitated the development of end-to-end
solutions in a straightforward manner. One promising paradigm in natural language pro-
cessing (NLP), called “pretrain-prompt-predict”, has been proven successful across various
NLP applications [13]. In the context of multi-intent SLU, some researchers [10,14] have
adapted masked language techniques in a question-answering task for prompt learning.
It maintains the benefits of traditional prompt learning while incorporating prior knowl-
edge (such as the correlation between target and queries) during the fine-tuning process.
However, current prompt-based methods lack adequate modeling for the correlation be-
tween tasks while constructing the template. Furthermore, the conventional technique
of transforming ground truth labels into words lacks domain knowledge and does not
fully explore the potential of existing PLMs. Therefore, it is imperative to explore a more
unified framework that can effectively capture and utilize domain knowledge to enhance
the correlation between ID and SF.

To address the aforementioned issue, we followed the work of UGEN [9] and devel-
oped a unified generative framework with descriptive prompt (UGen-DP). It transforms
ID and SF into a unified text generation task and enhances the correlation between ID
and SF by exploiting the potential semantics. The main contributions of our paper can be
summarized as follows:

• We develoepd a prompt construction method with instructional description to enrich
the semantics of both intent and slot labels. The approach harnesses the power of
PLMs to refine the prompt template, while exploring the benefits of task relation, as
showcased in [15].
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• To model the correlation between specific intent and slot values, we introduced
an auxiliary task called intent-driven slot-filling. It encourages PLMs to capture
the inherent correlations between intents and slots, thereby enhancing the overall
performance of both ID and SF.

• We conducted extensive experiments on two multi-intent datasets, and we compared
our method with current state-of-the-art (SOTA) methods to illustrate the effectiveness
and superiority of our method.

2. Related Work
2.1. Natural Language Understanding

As previously introduced in Section 1, NLU consists of ID and SF. Early studies inves-
tigated the two tasks separately. Classic ID is typically formulated as a text classification
problem. Early approaches [16,17] relied on specific model architecture (such as long
short-term memory, gated recurrent unit, or capsule networks) to obtain the utterance-level
representations. For SF, the problem is framed as a sequence labeling task. Researches
have often combined recurrent neural network (RNN)-based models with various attention
mechanisms [18–20]. Later, with the development of pretrained language models (PLMs),
conventional embeddings (e.g., GloVe) were combined with PLM output to improve the
overall recognition performance [21].

Considering that an utterance in dialogue often contains multiple intents, recently,
researchers have begun to extend conventional ID to tackle multilabel problems [22].
Kim et al. [23] proposed an approach by breaking the problem into ID in subsentences.
However, the dividing of subsentences is challenging when training data are scarce. To
mitigate the effects of few annotated data, semisupervised learning [24,25] and metric
learning [26] were used. Aiming at the scenario where data are inaccessible, Wang et al. [27]
adopted prompt learning with only a pretrained model and few annotated data to achieve
ID. To compensate for the domain information between utterances, researches have either
focused on adaptively incorporating prior experience and domain-specific knowledge [28]
or have constructed a specific network to capture the semantic interactions between utter-
ances [29]. In addition, with the emergence of large language models, prompt learning
has also been applied to the task. For instance, Wu et al. [9] and Song et al. [10] used a
generative model to learn shared representations across multiple domains and achieved
competitive results in both ID and SF.

2.2. Joint Model in Natural Language Understanding

Considering the relationship between ID and SF, joint models have become the
mainstream in the field [30]. One straight forward idea, known as the implicit joint
mode) [6,7,31,32], involves using a shared encoder to model the feature across two tasks.
To name a few, Gangadharaiah et al. [5] proposed a slot gate mechanism for both sentences
and tokens; Qin et al. [4] proposed stack propagation to directly use intent information to
capture semantics; Qin et al. [6] proposed a graph-based method, where the intent and slot
are treated as nodes to model the interaction; Zhu et al. [33] constructed a multigrained
graph for dynamic interaction between intents and slots, leading to a better representation.
The fusion of intent and slot features improves slot prediction by utilizing the intent in-
formation to refine the slot output. In contrast, Xing et al. [32] emphasized the semantic
interactions between intent and slot by employing a bidirectional graph. However, they
overlooked the semantic meaning of intent labels, which provide valuable slot-related
information. To accelerate the speed of inference, Qin et al. [7] introduced a nonautore-
gressive framework, which enables faster generation and maintains accurate predictions.
Zhang et al. [11] jointly modeled ID and SF by incorporating a shared word-level encoder.
However, the predicted intent was not utilized to assist with slot generation.

In recent advancements, researchers have shifted their attention to explicitly modeling
the interactions between ID and SF. Instead of using shared features, Song et al. [34]
used two encoderd (task-shared and task-specific) to encode intent and slot. A graph
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neural network was also utilized to directly model the interactions. To adaptively model
the interaction, Hou et al. [35] proposed a similarity-based learning framework, and Cai
et al. [36] incorporated a slot–intent classifier. Different from our method, these approaches
primarily focus on the model structure; researchers have not fully explored the potential
of PLMs.

2.3. Prompt Learning

Prompt learning (PL) has gained significant attention with the emergence of large
PLMs like GPT-3 and ChatGPT [37]. This paradigm involves transforming original tasks
into a text-to-text generation framework, yielding promising results in various NLP direc-
tions [1,13,38].

In the field of NLU, PL has garnered increasing interest [9,10,39]. A typical approach
involves using masked sentences as prompt templates, where the model predicts the
masked tokens based on their associated labels. Jin et al. [39] introduced an instance-aware
prompt method that provides a unique template for each sentence. To fully explore the
potential of PLM, Wu et al. [9] designed a unified generative framework (UGEN). UGEN
transforms conventional masked prediction task into a question-answering paradigm,
achieving state-of-the-art (SOTA) performance. With a similar motivation, Song et al. [10]
developed an alternative unified framework by converting original utterances into task-
specific templates. They utilized intent information to drive slot predictions, implicitly
capturing the correlation between intent and slot. However, these methods primarily focus
on modeling the relationship between slot type and its value, neglecting the importance
of explicitly considering the correlation between specific intents and their corresponding
slots. In related topics, such as dialogue state tracking (DST), Gao et al. [1] used prompt
templates to emphasize the correlation between keywords and domains. The idea sheds
light on constructing specific tasks to model the correlations between intents and slots.

3. Unified Generative Framework with Descriptive Prompt

In this section, we first describe the NLU task formulation using a generative frame-
work, which is followed by an overview of our method. Then, the implementation details
of label semantic description and intent-driven slot filling are provided.

3.1. Task Formulation

Following the work of UGEN [9], our method transforms both intent detection (ID)
and slot filling (SF) into a question-answering paradigm. Specifically, given a user utterance
X = {w1, w2, . . . , wn} of length n, the ID task involves generating a subset of intent Ik ∈ I,
while the SF task involves producing slot–value pairs S = {wi, · · ·wi+k : sj|wi, · · ·wi+k ∈
X, sj ∈ S}. I and S are the set of possible intents and slot types, respectively.

3.2. Framework Overview

Figure 2 provides an overview of a unified generative framework with descriptive
prompt (UGen-DP). Differing from conventional NLU approaches, the question-answering
paradigm transforms utterances into questions by adding additional context to enhance
the semantic information. For instance, Q1 in Figure 2 is an ID question. The prompt is
constructed as “Please identify the intent(s) in the following sentence · · · ” to distinguish
Q1 from other type of questions. To restrain the answer to the set of I, an option that lists
all the possible intents is also included in the question (see the yellow rectangle in Figure 2).
In this manner, different tasks are unified into the same paradigm, thus allowing a single
generative model to jointly learn all tasks.
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Context:
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Figure 2. Overview of UGen-DP. For a given utterance, UGen-DP updates backbone model with all 6
prompt templates. For inferring phase, only Q1 and Q6 are used to produce the intent and slot.

In UGEN [9], the authors claimed that the quantity of slot types is far larger than that of
intents. Therefore, they added 3 additional subtasks to enhance the extraction of slot–value
pairs. However, Q1 has no explicit relationship with the other questions, which further
hampers the consistency between intent and its corresponding slot–value pairs. Aiming at
this issue, we extended UGEN by adding an auxiliary task called intent-driven slot filling,
which emphasizes the correlation between intents and slots (see Q5). Accordingly, Q6 is
extended by incorporating potential intent label(s) into the prompt template (see the red
phrase in Q6). The intents in Q6 are the intent label(s) of the utterance; we used ground
truth labels for training and the output of Q1 for inference.

Another difference between UGen-DP and UGEN is that we enhance the performance
of ID and SF by incorporating label semantical descriptions for both intent and slot labels.
In reproducing the results of UGEN, we found that some of the labels (either intent in Q1
or slot types in Q2) were misclassified, especially for those that were rare in training set.
We believe it is insufficient to solely rely on la arge model to comprehend domain-specific
labels. Therefore, we added a descriptivel prompt for each label to enhance their semantics.

Before training, UGen-DP first transforms the original utterance into question–answer
pairs with all 6 templates, as shown in Figure 2. To train the model jointly on these tasks, we
integrate all the losses from Q1 to Q6 as L. For each task, UGen-DP minimizes the negative
log-likelihood loss (see Equation (1)), which is similar to other text-to-text methods. θ is the
learnable model parameter, yi is ith predicted token, and |Y| refers to the sequence length.

L =
6

∑
j=1

Lj

Lj = −
|Y|

∑
i=1

log p(yi|X, θ)

(1)

3.3. Label Semantic Description

As mentioned in Section 3.2, a large language model is employed to produce multi-
intent labels [9,10]. It has been shown that expanding the semantical meaning of label can
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lead to improved overall performance [10,14]. However, current methods mainly focus on
expanding abbreviations or converting tokens into words, which lacks specific semantic
construction for domain intent labels. Therefore, we aimed to construct a semantic descrip-
tion for each label, allowing the large model to capture more label-related information.

Table 1 presents a sample list of intents and their corresponding descriptions. Instead
of explicitly removing a special token (such as “_”) from the labels, we additionally added
a description phrase at the end of each label. Specifically, we first extracted the words
associated with different intent labels from the training set and selected the most frequent
ones as the initial description.

Table 1. Examples of intents with their corresponding semantic descriptions.

Original Intent Intent with Semantic Description

atis_abbreviation abbreviation (shortened forms of words or phrases)

atis_airport airport (airport)

atis_city city (from somewhere to somewhere, such as cities, locations)

atis_capacity capacity (such as seats)

For labels with specific meanings, such as “atis_airport”, we used the original label
as the description. For labels containing one or more concepts, we enriched the semantics
by including their subclasses. For example, the description for “meal” can be expanded as
“meal (such as snacks, meals, and beverages served on flights)”. After preprocessing the
data, the prompt template for Q1 can be formatted as “<s> Prompt: [Template]:[Utterance]
</s> Options: [Intent List] </s>”. Here, “Template” refers to the prompt sentence be-
tween the utterance and the word “Prompt:”. “Intent List” includes the intent labels with
semantic descriptions.

With the success of ChatGPT and other similar pretrained generative models, large
models can memorize the context of a conversation and generate topic-related answers.
These characteristics make it appealing to explore the possibility of incorporating the
external knowledge (specific label semantics) contained in such large models. Motivated by
this idea, we refined the prompt template via a multistep conversation with large model.

Table 2 provides a simple demonstration of refining the template. In the training set,
there is an utterance "From Boston to BWI that serves a snack...”, where the word “snack”
is tagged as “B-meal_description”. We utilized the word and the intent label “atis_meal”
(colored in blue) to stimulate the text-generative model (ChatGPT) to produce words and
phrases related to “snack” and “meal”. Subsequently, we further guided the model to
generate text containing the prompt description.

In the end, the final prompt template was as follows: “<s>Please identify the intent(s)
in the following sentence and select the corresponding option(s) from the list below. The
content in parentheses provides an interpretation of the intent: </s> [Utterance]</s>
Options: [Intent List]</s>”.

To enhance the semantic description of slot labels, we performed a similar but simpler
operation to generate additional semantic descriptions. Table 3 presents a sample list of
slots, which were randomly selected from the dataset. We first constructed a baseline using
UGEN and summarized its performance on the training set. For slots with high accuracy,
we simply converted the labels into phrases by removing special tokens such as “_”.
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Table 2. An example of using a large language model to refine semantic descriptions. “Q” refers to
the question for large language model, which is the input from the user, while “R” is the response of
the large model.

Q:
In common understanding, when the word “snacks” appears in a sentence, there
is a high probability that the intention is to refer to “atis_meal”. Consequently,
the semantic information of labels can be enhanced through semantic expansion.

R:

· · · For instance, you can gather words, phrases, or concepts related to meals, s-
uch as “airline meals”, “pilot meals”, “special diets”, “appetizers”, “beverages”,
“snacks”, and so on, and add them to the semantic information of the “atis_meal
” intent label. · · ·

Q: According to the description above, the intent label is “atis_meal”. Please return
an optimized semantic expansion of the label (separated by a colon).

R: Sure, here is an example of expanded “atis_meal” label based on the semantic
information: “atis_meal”: snacks, meals, and beverages served on flights.

For other slots with prepositions, we added a prepositional combination as the de-
scription, e.g., from location.city name (slot value before the word ‘to’). As for the slots with
vague meanings, we added descriptions by either using a large language model (similar
to the procedure for intent) or excluding the negative examples, depending on whether
the response of large language model is meaningful. For instance, the slot “flight_mod” in
Table 3 cannot be enumerated using the response from a large language model. In this case,
we summarized the negative samples by using the original UGEN and used the phrase
“day of the week” to represent the majority of negative samples.

Table 3. Examples of slot label with their corresponding semantic descriptions. “Original Slot” refers
to the slot name in the dataset. Constructed slot names for UGEN and our method are provided in
“Baseline” and “Slot with Semantical Descriptions”, respectively.

Original Slot Baseline Slot with Semantic Descriptions

flight_number flight number flight number

fromloc.city_name from location.city
name

from location.city name (slot value
before the word ‘to’)

flight_mod flight mod flight mod (slot value excluding
‘day of the week’)

depart_date.today
_relative

depart date.today
relative

depart date.today relative

3.4. Intent-Driven Slot Filling

In UGEN [9], SF is divided into four subtasks: (1) slot value extraction, (2) slot
name extraction, (3) slot name–value matching, and (4) slot extraction. The first two
subtasks aim to help the PLM learn the correlation between tokens and slot names (values).
The third subtask is designed to build the relationship between slot names and values,
while the last subtask ensures that the model can correctly provide slot names and their
corresponding values. Although UGEN unifies both ID and SF in the same framework, the
subtasks are separately processed. Slot types that are not in the scope of the true intent are
inevitably generated.

In the work of Song et al. [10], an auxiliary subtask was used to encourage semantical
interactions among tokens, intents, and slots, thereby strengthening the correlation between
different tasks. However, this modeling approach ignores the direct correlation between
specific intents and their corresponding slots. A more straightforward idea involves
constructing a subtask to explicitly using the result of ID for SF. Motivated by this idea, we
propose another subtask called intent-driven slot filling (see Q5 and Q6 in Figure 2). It adds
another auxiliary task to predict the associated slot types for a given intent. Subsequently,
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it explicitly incorporates the predicted intent from Q1 and provides the corresponding slot
types. In this manner, it forces the PLM to focus on the correlation between each intent and
its associated slot types.

The overall prompt template is as follows: “<s> Sentence: The intents of the sentence
are I. Which words are the slot values in the sentence? List them with their slot names.
The content in parentheses provides a limitation on the slot values:</s> Options: S </s>”.
Here, I refers to the predicted intent(s), and S represents the set of corresponding slot
types related to I. In the training process, we used the ground truth labels to construct the
question, while, in the inference stage, we used the output of Q1 to construct the template.

4. Experiments

In this section, we first introduce the dataset and experimental settings. Then, we
evaluate our method against recent multi-intent and slot filling approaches.

4.1. Datasets and Settings

To evaluate the performance of UGen-DP, we conducted comprehensive experiments
on two challenging and widely used datasets: MixSNIPS and MixATIS. MixSNIPS was
constructed based on SNIPS [40], while MixATIS was built on the ATIS [41]. The statistics
of the datasets are shown in Table 4. As a challenging NLU dataset, MixATIS has only
17 out of 18 intents in the training utterance (missing intent “day name”). The test set
contains 16 intents (missing “cheapest” and “restriction”). A similar issue exists for slot
labels. The difference between the train and test set explains why most methods achieve
better performance on MixSNIPS than on MixATIS.

Table 4. Statistics of MixATIS and MixSNIPS. “#” refers to the number of each value.

MixATIS MixSNIPS

Train (#) 13,161 Train (#) 39,776
Val (#) 759 Val (#) 2198
Test (#) 828 Test (#) 2199
Intent (#) 18 Intent (#) 7
Slot (#) 78 Slot (#) 39

All experiments were conducted on a Linux X64 Server with a 64 GB NVIDIA A6000
GPU. For comparison purposes, we used the T5 base model as the backbone (generative
model), which consisted of 12 encoder/decoder layers. Other implementation details are
summarized in Table 5. It is worth noting that UGen-DP achieved stable performance
before 30 epochs, so we used this setting for all experiments.

Table 5. Experimental settings.

Experimental Settings

Backbone T5-base Hidden Size 768
Optimizer Adam Learning Rate 1× 10−5

Batch Size 4 No. of Epochs 30
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4.2. Overall Comparison Results

To demonstrate the improvements of UGen-DP, we compare it with 10 current ap-
proaches in NLU. Table 6 summarizes the results on MixATIS and MixSNIPS. For ID and SF,
we use accuracy (“I-Acc”) and F1 score (“S-F1”), respectively. Moreover, we also measure
the overall performance in terms of accuracy (“O-Acc”).

Table 6. Overall results on the MixSNIPS and MixATIS datasets with full data. * refers to the best
result presented in [10]. “S-F1” is the F1 scores of slot filling, while “I-Acc” and “O-Acc” refer to the
accuracy of intent prediction and overall performance (both intents and slots are correct), respectively.
The best scores are highlighted in bold.

Model
MixATIS MixSNIPS

S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc

Bi-Model [2] 83.9 70.3 34.4 90.7 95.6 63.4
SF_ID [3] 87.4 66.2 34.9 90.6 95.0 59.9
Stack-Propagation [4] 87.8 72.1 40.1 94.2 96.0 72.9
Joint Learning [5] 84.6 73.4 36.1 90.6 95.1 62.9
AGIF [6] 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN [7] 88.3 76.3 43.5 94.9 95.6 75.4
SDJN [8] 88.2 77.1 44.6 94.4 96.5 75.5
DGIF [33] 88.5 83.3 50.7 95.9 97.8 84.3
PromptSLU [10] 89.6 85.8 57.2 96.5 97.5 84.8 *
UGEN [9] 89.2 83.0 55.3 95.0 96.9 78.8

UGen-DP 90.3 86.2 58.7 96.6 97.6 84.7

In general, UGen-DP outperformed the other methods except for PromptSLU [10] in
O-Acc on MixSNIPS. Compared with UGen, UGen-DP maintained an improvement of
3.2 in I-Acc on MixATIS. Similar results were observed on MixSNIPS. This finding proves
that, with semantic descriptions, UGen-DP has better intent identification ability than
UGEN. Moreover, UGen-DP surpassed other methods by over 1.5 in O-Acc on MixATIS.
For MixSNIPS, although there was a 0.1% gap between PromptSLU and UGen-DP, our
method maintained the best results for both datasets. Note that there was no available code
for [10]. Hence, we directly used the results reported in [10].

To better illustrate the improvements provided by UGen-DP over UGEN, we evaluated
the fine-grained performance on the intent and slot label (see Figure 3). For intent, we
drew all 5 intents in the test set (see Figure 3a). For slos, we selected 5 slot categories that
were not fully recognized and 2 that were correctly labeled. The other 10 intent labels were
predicted by both UGEN and UGen-DP with 100% accuracy; hence, the results for these
labels are not included in Figure 3.

In general, our method outperformed UGEN in detecting all intents. For “atis_city” and
“atis_meal”, UGen-DP detected 108/133 (81.20%) and 118/118 (100%), while UGEN only
detected 78/133 (58.64%) and 100/118 (84.74%). For the particular intent “atis_day_name”,
which did not appear in the training set, UGEN recognized none. However, with the help
of the semantic description for the intent label, UGen-DP detected some of the intents.
In our experiments, we also observed that although UGen-DP could detect some of the
utterances with “atis_day_name”, the performance was not stable. Under the same settings,
the best detection rate was over 10/118. The reason for this finding may be that there
was no training sample to provide correct supervised signals. Therefore, the detection
only relied on the semantical description, which could have led to T5 not fully capturing
the semantics.
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(a) Fine-grained results for intent detection.

(b) Fine-grained results for slot filling.

Figure 3. Fine-grained results for intent and slot on MixATIS. “Baseline” refers to UGEN. (a) All
5 intents in the test set; (b) 7 slots, including 5 that were not fully recognized and 2 that were
correctly predicted.

We also conducted the same evaluation on MixSNIPS, and similar results were ob-
served (see Figure 4). For ID (see Figure 4a), our method maintained equal or better
performance than UGEN, but the gap was not as significant as on MixATIS. The reason
may be that there are more training samples in the MixSNIPS dataset, and all seven intents
existed in both the train and test sets. Therefore, having enough samples leads to better
performance. The same results also applied to slot filling (see Figure 4b), except that there
were more slot categories. Therefore, the differences between the methods were amplified.
For slot categories like “object name”, our method obtained an improvement of over 5%.

To track the performance changes in the training process, we summarize the loss and
overall accuracy on MixATIS in Figure 5. It shows that with the decrease in training loss,
the overall accuracy on the test set increases and eventually converges to a stable state.
The results indicate that the decrease in L = ∑6

j=1 Lj ensures the probability of P(yi|X, θ)
improving. Moreover, the overall accuracy is relatively stable with no clear performance
drop between adjacent epochs.
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(a) Fine-grained results for intent detection.

(b) Fine-grained results for slot filling.

Figure 4. Fine-grained results for intent and slot in MixSNIPS. “Baseline” refores to UGEN. (a) All
7 intent predictions in the test set; (b) 6 slot categories that are not fully recognized, and 1 that is
correctly predicted.

Figure 5. Loss and overall accuracy in the training process on MixATIS. The overall accuracy on test
set and training loss are colored in orange and blue, respectively.

4.3. Comparison in Few-Shot Scenario

To better demonstrate the effectiveness in a few-shot scenario, we conducted ex-
periments using 5, 10, and 10% of training data to tune the generative model. For fair
comparison, we used the same sampling method as in [9] for the experiments. Table 7
summarizes the results.
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Table 7. Results on the MixSNIPS dataset in few-shot settings. * SP refers to stack propagation. For
SP, AGIF, and GL-GIN, we used the results reported in [9]. The best scores are highlighted in bold.

Model
5-Shot 10-Shot 10%

S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc

* SP [4] 58.7 78.2 11.9 71.5 88.3 24.8 90.3 93.5 58.4
AGIF [6] 60.7 77.8 14.4 73.0 86.3 27.5 91.2 93.0 62.8
GL-GIN [7] 54.3 86.1 10.1 69.5 90.2 23.9 92.1 95.3 66.6
UGEN [9] 84.2 92.4 42.5 87.4 93.3 50.5 93.6 96.0 71.7

UGen-DP 85.9 93.2 43.9 89.3 94.1 52.2 94.1 96.2 74.4

With 10% annotated samples, UGen-DP outperformed UGEN in O-Acc by 2.7, al-
though both I-Acc and S-F1 increased by 0.2 and 0.5, respectively. This indicates that
UGen-DP can better predict the intent and its related slot when annotated data are scarce.
Similar improvements were observed in the 5/10-shot results (increased by 1.4/1.7). How-
ever, the difference decreased as the number of training sample dropped. In the meantime,
compared with the other methods in five-shot settings, UGen-DP maintained a superiority
of over 29.5 (compared with AGIF). Even when 10% of the data was used, the gap was still
over 7.8 (compared with GL-GIN).

4.4. Ablation Study

To further investigate the improvements of UGen-DP compared with UGEN, we
conducted an ablation study, and we summarize the results in Table 8.

Table 8. Ablation study using MixATIS and MixSNIPS. “LSD” refers to label semantic description,
while "IDSF" denotes intent-driven slot filling. If there was no refined template, LSD or IDSF is used;
UGen-DP was identical to UGEN. Therefore, we used UGEN as the baseline in the ablation study.

Model
MixATIS MixSNIPS

S-F1 I-Acc O-Acc S-F1 I-Acc O-Acc

UGEN 89.2 83.0 55.3 95.0 96.9 78.8
w/o LSD or IDSF 89.5 84.1 55.9 95.7 97.1 81.2
w/o IDSF 89.7 86.0 56.2 95.8 97.4 81.6
w/o LSD 89.9 84.3 56.4 96.4 97.2 84.2
UGen-DP 90.3 86.2 58.7 96.6 97.6 84.7

As shown in Table 8, with only the refined prompt template (“w/o LSD and IDSF”),
there were slight O-Acc improvements on MixATIS (0.6). However, for MixSNIPS, the
improvement reached 2.4. The difference shows that although the large model could
provide latent semantics, the effects varied from one domain to another. In the meantime,
when label semantic description (denoted by “LSD”) was included, the performance
increased on both datasets. For MixATIS, it improved 0.2, 1.9, and 0.3 for S-F1, I-Acc, and
O-Acc, respectively. With further integration of intent-driven slot filling (denoted by ’IDSF’),
the improvement escalated. Without IDSF, the performance on MixATIS (“O-Acc”) dropped
2.5 and that on MixSNIPS dropped 3.5. This indicates that combining the intent in slot
filling helps the method to learn strong associations between intent and its corresponding
slot(s). Hence, the overall performance improves.

4.5. Case Study

To further illustrate the effectiveness of UGen-DP, Figure 6 shows two representative
samples and their model predictions. In the first case (a), the sentence contains three intents,
i.e., “airfare”, “day name”, and “meal”. UGen-DP correctly predicted all three intents, while
UGEN misclassified them into “flight”. The wrong intent further caused the phrase “days
of the week” to be tagged as “flight days”. With label semantical description, the prompt
template can provide additional information to help recognize both intents and slots.
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list the cheapest fare from charlotte to las vegas , what days of the week do 

flights from san jose to nashville fly on and also what meals are served on 

american flight 665 673 from milwaukee to seattle.

Intent

...

O

O

O

O

...

Slot

B-flight_days

I-flight_days

I-flight_days

I-flight_days

...

...

days

of

the

week

...

Glod Baseline Ours

...

O

O

O

O

...

airfare

meal

airfare

day

name

meal

airfare

day

name

meal

Glod Basline Ours

flight

(a) Case 1: Wrong intent and wrong slot value.

(b) Case 2: Wrong intent and correct slot value.

Figure 6. Two representative utterances in MixATIS. “Baseline” refers to UGEN, and “Gold” is the
ground truth. All intent and slot labels were transformed to phrases for comprehensive purposes.

In the second case (b), it can be observed that both our method and UGEN correctly
recognized all slots. However, the intent of “get weather” was mis-recognized into “book
restaurant” by UGEN. We believe the reason for this is that UGEN only helped to capture
the correlation between “need a table” and “book restaurant”, while the correlation between
the correct intent “get weather” and “it’s chillier” was not obtained. We further examined
the dataset and found few utterances that contained adjectives related to weather. Therefore,
by incorporating a semantical description with the intent “get weather”, it helped to capture
the correlation. Moreover, since we could not enumerate all adjectives related to weather,
we chose a more general way of incorporating similar words that commonly appear in
other contexts. In this example, the semantic description contains words such as “warm”
and “warmer”. By doing so, UGen-DP successfully captured the correlation, as presented
in (b).

5. Conclusions

In this paper, we proposed a prompt learning framework (called UGen-DP) for joint
multi-intent and slot filling, which solves ID and SF in a unified question-answering
paradigm. To achieve better performance, we incorporated a semantic description to en-
hance the semantics of the intent and slot labels. In addition, we constructed a subtask of
using intent prediction to promote slot filling. Moreover, we exploited the potential of utiliz-
ing a text-generative model to help rephrase the template. Comprehensive experiments on
two challenging datasets showed that UGen-DP outperforms other methods and achieves
competitive performance in few-shot scenarios. Future directions include automatically
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constructing the prompt template based on interactions with a large language model and
exploring additional techniques for optimizing performance. For scenarios with no training
instances regarding specific intent labels, integrating the zero-shot learning mechanism is
also important to improve the generalization ability of the method.
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