i:;l?é electronics

Article

A Malicious Program Behavior Detection Model Based on API

Call Sequences

Nige Li 2*, Ziang Lu 12, Yuanyuan Ma ', Yanjiao Chen 3 and Jiahan Dong *

check for
updates

Citation: Li, N.; Lu, Z.; Ma, Y.; Chen,
Y.; Dong, J. A Malicious Program
Behavior Detection Model Based on
API Call Sequences. Electronics 2024,
13,1092. https://doi.org/10.3390/
electronics13061092

Academic Editors: Lanting Fang and
‘Yubo Song

Received: 14 January 2024
Revised: 4 February 2024
Accepted: 14 February 2024
Published: 15 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 State Grid Smart Grid Research Institute Co., Ltd., Nanjing 210003, China; luziang@geiri.sgcc.com.cn (Z.L.);
mayuanyuan@geiri.sgcc.com.cn (Y.M.)

State Grid Laboratory of Power Cyber-Security Protection and Monitoring Technology, Nanjing 210003, China
College of Electrical Engineering, Zhejiang University, Hangzhou 310038, China; chenyanjiao@zju.edu.cn
State Grid Beijing Electric Power Research Institute, Beijing 100075, China; dongjiahan@bj.sgcc.com.cn
Correspondence: linige@geiri.sgce.com.cn

=W N

Abstract: To address the issue of low accuracy in detecting malicious program behaviors in new
power system edge-side applications, we present a detection model based on API call sequences
that combines rule matching and deep learning techniques in this paper. We first use the PrefixSpan
algorithm to mine frequent API call sequences in different threads of the same program within a
malicious program dataset to create a rule base for malicious behavior sequences. The API call
sequences to be examined are then matched using the malicious behavior sequence matching model,
and those that do not match are fed into the TextCNN deep learning detection model for additional
detection. The two models collaborate to accomplish program behavior detection. Experimental
results demonstrate that the proposed detection model can effectively identify malicious samples
and discern malicious program behaviors.

Keywords: API call sequences; malicious programs; behavior detection

1. Introduction

Compared to traditional power systems, the structure of the new power system is
more intricate. The integration of new energy sources, such as renewable energy, into the
power system and the growing number of distributed power sources connected to the grid
from the user’s side are posing greater challenges to the stability and security of the power
system. Edge-side applications in the new power system are those that directly interact
with power equipment, sensors, controllers, and other components. These applications
play a crucial role in collecting, processing, transmitting, and controlling power data,
significantly influencing the operational status, fault diagnosis, and dispatch control of
the power system. Abnormal or malicious behaviors in edge-side applications, such as
data tampering, command errors, or cyber-attacks, can lead to failures, damage, or even
paralysis of the power system, with potentially severe socio-economic repercussions [1].
Consequently, real-time behavior detection of edge-side applications is essential to detect
and prevent such adverse behaviors, ensuring the safe and stable operation of the new
power system.

There are two primary approaches to analyzing malicious programs: static analysis
and dynamic analysis [2]. Static analysis does not involve executing the code; instead, it
assesses whether a program is malicious based on code attributes, control flow diagrams,
function call diagrams, system call sequences, and other characteristics [3-7]. While static
analysis offers the benefits of rapid execution and high efficiency, its capacity for behavioral
analysis is notably limited. It struggles to detect obfuscation and encryption techniques
frequently employed by malicious programs, such as packing, modifications to the PE
header, and code obfuscation. In contrast, dynamic analysis evaluates the behavior of
an executable file by running it. This method’s advantage lies in its resilience to code

Electronics 2024, 13, 1092. https://doi.org/10.3390/ electronics13061092

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061092
https://doi.org/10.3390/electronics13061092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13061092
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061092?type=check_update&version=1

Electronics 2024, 13, 1092

2 of 15

obfuscation, shelling, and polymorphism, providing the most authentic representation of
the program’s behavior [8].

Behavior detection technology is a form of dynamic analysis that involves monitoring
a program’s behavior during execution and determining its maliciousness based on this
behavior. An Application Programming Interface (API) provides a means for applications
to interact with the system. The sequences of API calls can reveal the functionality and
behavioral traits of an application, making them a crucial element in the detection of
malicious code [9].

At present, the dynamic features of malicious programs are usually based on API
call sequences, with machine learning employed for their detection. However, traditional
machine learning methods face challenges in feature selection and struggle to address the
anomaly detection issue in high-dimensional massive network traffic, resulting in a high
false detection rate. In the detection of malicious programs, rule matching is a commonly
used method characterized by its simplicity and low false detection rate. However, it fails
to capture the deep relationships within API call sequences and does not leverage the
temporal nature of APIs, and the temporal nature of APIs is not utilized, which leads to
low accuracy of the model. Deep learning models, known for their robust learning and
classification capabilities, have found applications in power systems [10]. These models
can automatically extract features and categorize them based on these features, leading to
enhanced performance. Consequently, many researchers have explored using deep learning
to address the analysis of malicious programs. To ensure the stable operation and data
security of edge-side applications in new power systems and to reduce the false positive rate
of malicious program detection, we propose a malicious program behavior detection model
based on API call sequences by integrating rule matching and deep learning. Initially, the
API call sequence is processed to complete the preprocessing of the dataset. Subsequently,
the PrefixSpan algorithm is employed to mine frequent API call sequences and establish a
rule base for malicious behavior sequences. Finally, the behavior sequence matching model
and the TextCNN [11] deep learning detection model are jointly utilized to detect test API
call sequences, achieving program behavior detection.

The contributions of this study can be summarized as follows:

* We used the PrefixSpan algorithm to mine the frequent API call sequences from
various threads within a malicious program. These sequences serve as a foundation
for directly discriminating for malignant API execution actions, obtaining malicious
behavior sequences, and constructing a malicious behavior sequence rule base.

e We utilized two models, the behavior sequence matching model and the TextCNN
deep learning detection model, to collaboratively detect the tested API call sequences.
Firstly, the tested API call sequences are input into the behavior sequence matching
model to compare them against the malicious behavior sequence rule base. If a match
is found, the sequence is deemed malicious; otherwise, it is passed to the TextCNN
neural network model for further analysis to obtain the detection results, thereby
enhancing the accuracy of the detection.

2. Related Work

Malicious programs represent a significant security threat to the Internet, with at-
tackers leveraging them for profit through remote control, private information theft, and
occasionally targeting network infrastructures. Malware typically disseminates and infects
susceptible systems via diverse propagation methods for nefarious purposes, including
spam distribution, privacy compromise, system disruption, and denial-of-service attacks.
Notable examples of malicious programs include Trojan horses, worms, viruses, ran-
somware, adware, and spyware [12,13].

On the Windows platform, program behaviors are predominantly executed through
system API calls, making the use of APIs for dynamic analysis a focal point in malicious
behavior detection research. API calls, whereby an application performs services by
invoking functions provided by the operating system, encompass activities such as registry

Electronics 2024, 13, 1092

30f15

operations, process manipulation, accessing network resources, and file reading. Malicious
code typically executes specific behaviors by calling a series of APIs, rather than a single APL
Analysis of API call sequences reveals that malicious code often invokes fixed sequences to
carry out destructive actions, with different malicious behaviors calling distinct sequences
rarely used in normal programs [14]. Therefore, API call sequences provide a more accurate
representation of program behavior, and malicious code can be identified by analyzing
these sequences and extracting subsequence features that differentiate malicious from
normal programs [15]. Modeling the API call behavior of malware and benign software,
the actual relationship between API functions is represented as a semantic transformation
matrix [16]. The author of [17] developed a malware detection model by integrating
statistical, contextual, and graph mining features on API call sequences, bridging the gap
of dynamic detection methods. The authors of [18] proposed a deep neural network-based
malware detection method for the Windows platform, which learns parameter-enhanced
API call sequences and employs rule-based and clustering-based classification methods to
evaluate the sensitivity of the parameters of the API call sequences to malicious behavior.
Kim [19] proposed a malware detection and classification system by generating a chain of
behavioral sequences of some malware families and calculating the similarity between the
chain of API behavioral sequences and the sequence of target processes. Dynamic malware
detection methods like CTIMD [20] utilize Cyber Threat Intelligences (CTIs) to improve
the learning of API call sequences with runtime parameters, offering better accuracy and
efficiency compared to traditional methods. However, this approach depends on external
threat knowledge and may have limited generalization capabilities.

With the ongoing advancements in natural language processing (NLP), API sequences
can be viewed as semantically rich text, enabling the application of machine learning (ML)
and deep learning techniques to analyze API call sequences [21-23]. K-nearest neighbor
(KNN), naive Bayes (NB), decision tree (DT), and support vector machine (SVM) are widely
used in the analysis of API sequences [24]. The authors of [25] propose an efficient malware
detection system based on deep learning, which uses a reweighted class balance loss
function in the final classification layer of the DenseNet model to significantly improve the
performance of malware classification by addressing imbalanced data issues. Huang [26]
proposed a hybrid visualization approach for malware that integrates static and dynamic
analysis, transforming code into images and conducting malicious detection based on the
VGG16 network, thereby improving the detection model’s performance. However, due
to the typically unbalanced distribution of malware and normal software, deep learning-
based methods for detecting malicious programs still exhibit a high false detection rate and
require further refinement.

A frequent sequence pattern is a subsequence that occurs more than a specified
threshold in a sequence database, indicating a regular behavior or trend. PrefixSpan algo-
rithm [27] is a prominent method for mining frequent sequence patterns from sequence
data, which employs prefix projection and a depth-first search strategy to efficiently dis-
cover frequent patterns in sequence data. This algorithm is highly effective in various fields,
including text processing, web log analysis, and bioinformatics. The core of the PrefixSpan
algorithm lies in identifying frequent items in each prefix projection, adding them to the
prefix to form a new prefix, and continuing this recursive projection and expansion until
no further frequent items can be added [28]. Consequently, the PrefixSpan algorithm starts
with frequent sequences of length 1, progressively generates longer frequent sequences,
and ultimately obtains all frequent sequence patterns in the database. The advantage of
the PrefixSpan algorithm is that it does not require generating candidate sequences, which
reduces computational and storage requirements, and it leverages the prefix information of
the sequence, minimizing unnecessary search space and enhancing efficiency.

Electronics 2024, 13, 1092

4of 15

3. Materials and Methods
3.1. Model Framework

In this paper, we propose a malicious program detection model based on API call
sequences, and its architecture is shown in Figure 1. Initially, the API call sequences to be
tested are extracted and subsequently preprocessed. The preprocessed API call sequences
are then fed into the behavior sequence matching model for sequence matching. A success-
ful match is denoted as 1, indicating a malicious sequence, while an unsuccessful match
is denoted as 0, indicating a normal sequence. Sequences marked as 0 are subsequently
input into the TextCNN model for detection, and the detection results from the TextCNN
model are considered the final detection results, superseding the results from the behavior
sequence matching model.

API Sequence Preprocessing
R . Behavior Sequence Matching
emove consecutive
program API . . Model
- - identical APIs -
under P sequence > »
test extraction * APl Sequence
- Matching
Remove consecutive
identical APl sequences
TextCNN
Y
Non-malicious API Malicious API
| Non-malicious API < = ﬁ < sequences Sequences
sequences O ¢
- d s
< E 1 ﬁ < ﬁ <% Input vectorization
Malicious AP o ﬂ <
- -
equences
Dense Concat pooling
P Classification results |«

*

Figure 1. Malicious program detection model framework based on API call sequences.

3.1.1. Data Pre-Processing

Preprocessing API call sequences to remove redundant behavior is an important step
in sequence mining. Malicious code frequently incorporates numerous redundant behav-
iors into normal behaviors, resulting in sequences characterized by multiple consecutive
identical APIs or API sequence fragments. This increases the length and complexity of
the sequences, leading to an increase in the time and space overhead of sequence mining.
Moreover, it impacts the precision and interpretability of the mining process, making it
difficult to identify the core behaviors of the malicious code.

In this paper, we deduplicate the sequence of API call sequences to reduce their
complexity. The deduplication process involves retaining only one instance of APIs that
are repeated consecutively within the sequence. The specifics of this process are outlined
in Algorithm 1.

Electronics 2024, 13, 1092

50f 15

Algorithm 1: API deduplication algorithm

Input: API sequence set S, new API list
Output: new API sequence
foreach APIseqin S do
foreach API in API seq do
if isEmpty(new API list) or API # last(new API list) then
| Append(new API list, API)

new API sequence = join(new API list, “ ”)
return new API sequence

3.1.2. Model Construction

Building a malicious program detection model based on the API call sequence is the
key to this study. In the process of API sequence matching, we employ the PrefixSpan
algorithm to mine frequent API call sequences and establish a rule base for malicious
behavior sequences. This rule base, containing malicious behavior sequences, serves as
the foundation for subsequent detection.

In this paper, we consider API call sequences from different processes of the same
program. Initially, the PrefixSpan algorithm is employed to mine frequent API call se-
quences within each process of a malicious program, identifying key API call sequences for
each program. Subsequently, the PrefixSpan algorithm is further applied to mine frequent
sequences from the key API call sequences of all programs, yielding malicious API call
sequences that are stored in the malicious behavior sequence repository. This repository
is a collection of sequence sets that encapsulate the typical behavioral characteristics of
various malicious programs and can be used to assess the behavior of unknown programs.
By analyzing the API call sequences of different processes, we can more comprehensively
capture the behavior patterns of malicious programs, enhancing the accuracy and inter-
pretability of the detection model. Examples of malicious API call sequences are illustrated
in Figure 2.

GetSystemTimeAsFileTime SetUnhandledExceptionFilter NtCreateFile NtCreateSection NtMapViewOfSection NtClose NtOpenKey NtQueryValueKey
NtClose ColnitializeEx ColnitializeSecurity CoCreatelnstance GetSystemDirectoryW LdrLoadDIl LdrGetProcedureAddress GetFileVersionlnfoSizeW
GetFileVersionInfoW NtClose LoadStringW LookupPrivilegeValueW NtClose LdrGetDIIHandle NtOpenKey NtQueryValueKey NtClose NtOpenKey
NtQueryValueKey NtClose NtOpenKey NtQueryValueKey NtClose NtOpenKey NtQueryValueKey NtClose CoCreatelnstanceEx GetComputerNameW
CoCreatelnstance CoGetClassObject IWbemServices ExecQuery NtOpenKey NtClose RegOpenKeyExW RegCloseKey RegOpenKeyExW
RegQueryValueExW RegCloseKey NtAllocateVirtualMemory NtOpenKey NtClose RegOpenKeyExW RegCloseKey RegOpenKeyExW
RegQueryValueExW RegCloseKey UuidCreate CoCreatelnstance NtAllocateVirtualMemory LdrGetProcedureAddress RegOpenKeyExW
RegQueryValueExW RegCloseKey NtOpenDirectoryObject NtClose EnumWindows FindWindowExW EnumWindows FindWindowExW LoadStringW
GetFileType WriteConsoleW LdrUnloadDIl CoUninitialize LdrGetDlIHandle NtTerminateProcess NtClose NtUnmapViewOfSection NtClose
GetSystemTimeAsFileTime RegOpenKeyExW RegQuerylnfoKeyW RegQueryValueExXW RegCloseKey NtClose LdrGetProcedureAddress LdrUnloadDlI
NtOpenKey NtQueryValueKey NtClose NtTerminateProcess,5

NtOpenDirectoryObject NtClose LdrLoadDIl LdrGetProcedureAddress LdrLoadDIl LdrGetProcedureAddress LdrLoadDIl LdrGetProcedureAddress
NtProtectVirtualMemory NtAllocateVirtualMemory NtQuerySystemInformation NtProtectVirtualMemory NtAllocateVirtualMemory
NtFreeVirtualMemory LdrLoadDlI| LdrGetProcedureAddress LdrLoadDlIl LdrGetProcedureAddress NtProtectVirtualMemory NtFreeVirtualMemory
LdrLoadDIl LdrGetProcedureAddress LdrLoadDIl LdrGetProcedureAddress NtProtectVirtualMemory RegOpenKeyExA RegQueryValueExA
RegCloseKey FindFirstFileExW NtClose NtCreateMutant NtClose GetVolumePathNameW NtClose LdrLoadDIl LdrGetProcedureAddress
GetSystemWindowsDirectoryW NtCreateFile NtCreateSection NtMapViewOfSection NtClose CreateDirectoryW GetFileAttributesW NtCreateFile
NtClose NtCreateFile NtClose DeleteFileW NtAllocateVirtualMemory CopyFileA CreateProcessinternal W NtClose NtFreeVirtualMemory
NtTerminateProcess NtClose LdrUnloadDIl NtOpenKey NtQueryValueKey NtClose NtTerminateProcess,5

GetSystemTimeAsFileTime SetUnhandledExceptionFilter NtCreateFile NtCreateSection NtMapViewOfSection NtClose NtOpenKey NtQueryValueKey
NtClose ColnitializeEx ColnitializeSecurity CoCreatelnstance GetSystemDirectoryW LdrLoadDI| LdrGetProcedureAddress GetFileVersionlnfoSizeW
GetFileVersionInfoW NtClose LoadStringW LookupPrivilegeValueW NtClose LdrGetDIIHandle NtOpenKey NtQueryValueKey NtClose NtOpenKey
NtQueryValueKey NtClose NtOpenKey NtQueryValueKey NtClose NtOpenKey NtQueryValueKey NtClose CoCreatelnstanceEx GetComputerNameW
CoCreatelnstance CoGetClassObject IWbemServices ExecQuery NtOpenKey NtClose RegOpenKeyExW RegCloseKey RegOpenKeyExW
RegQueryValueExW RegCloseKey NtOpenKey NtClose RegOpenKeyExW RegCloseKey RegOpenKeyExW RegQueryValueExW RegCloseKey
UuidCreate CoCreatelnstance NtAllocateVirtualMemory LdrGetProcedureAddress RegOpenKeyExW RegQueryValueExW RegCloseKey
NtOpenDirectoryObject NtClose EnumWindows FindWindowExW EnumWindows FindWindowExW NtAllocateVirtualMemory FindWindowExW
LoadStringW GetFileType WriteConsoleW LdrUnloadDIl CoUninitialize LdrGetDIIHandle NtTerminateProcess NtClose NtUnmapViewOfSection
NtClose GetSystemTimeAsFileTime RegOpenKeyExW RegQuerylnfoKkeyW RegQueryValueExXW RegCloseKey NtClose LdrGetProcedureAddress
LdrUnloadDIl NtOpenKey NtQueryValueKey NtClose NtTerminateProcess,5

NtDelayExecution gethostbyname socket connect closesocket setsockopt RegOpenKeyExA RegQueryValueExA RegCloseKey RegOpenKeyExA
RegQueryValueExA RegCloseKey LdrGetDlIHandle send closesocket NtClose,5

Figure 2. Partial malicious API call sequences.

In this study, we employ regular expressions for sequence matching. Regular expres-
sions utilize metacharacters, quantifiers, grouping, assertions, and additional grammatical
constructs to formulate complex matching rules, catering to a wide range of matching
requirements. Sequence matching is conducted on the API call sequences of the test set,
using the malicious behavior sequence repository. This results in a label of 1 for success-

Electronics 2024, 13, 1092

6 of 15

ful matches, denoting a malicious sequence, and a label of 0 for unsuccessful matches,
signifying a normal sequence.

After API sequence matching for the API call sequences to be tested, those sequences
marked as 0 are further detected using the TextCNN model. The detection process of
malicious programs in the neural network model is shown in Figure 3.

training
sample

tokenizer
API Sequence word

. | Sem— — TextCNN | Classification results
Preprocessing

vector

test
sample

Figure 3. Neural network model malicious program detection process.

The specific steps for constructing the TextCNN malicious program detection model
are as follows:

1. Data preprocessing: Remove redundant APIs that appear consecutively in the se-
quence, retaining only one instance of each API;

2. Data vectorization: The Keras toolkit is used for word vectorization. Treating the
API sequence as text, the “fit_on_texts” method is employed to convert the text into
integer sequences. Subsequently, the “texts_to_sequences” method transforms the
integer sequences into vectors. Finally, the “pad_sequences” method is used to pad or
truncate different-length text sequences to a uniform length, ensuring consistency in
input data, with the length set to 5000;

3. Training model: The detailed structure of the TextCNN model is shown in Figure 4.

The training set data are input to the Input layer, and word embedding is performed
in the Embedding layer to obtain the vector X; = {x1,x2,- -+, x5000} (1 <i < n), where X;
denotes the vector representation of the ith API sequence, x; denotes the vector represented
by the ith APIin a sample of API call sequences, and # denotes the number of samples in
the training set. The vector X is input into the dropout layer to prevent overfitting, and
then input to the TextCNN module. Firstly, feature extraction is performed by three convo-
lutional modules with convolutional kernel sizes of 1, 3, and 5, and then MaxPooling1D is
used for pooling, respectively, followed by Concat for feature fusion to obtain the vector
M; = {mq,my,--- ,msppo }, and finally, the vector F; is obtained by using the flatten layer
for flattening.

The vector F; is input into a dropout layer to obtain vector D;, preventing over-fitting.
The vector is then input into a dense layer.

Subsequently, the vector D; is input into both a dropout layer and a dense layer. The
softmax function is employed as the classifier to obtain the classification results.

The TextCNN configuration is shown in Table 1.

Electronics 2024, 13, 1092 7 of 15

|

MaxPoolinglD ‘

!

MaxPooling1D ‘

MaxPaolinglD ‘

Flatten

Output

Figure 4. Detailed structure of TextCNN model.

Table 1. TextCNN configuration table.

Layer Output Shape Param Connected to
input_1 (InputLayer) (None, 5000) 0
embedding (Embedding) (None, 5000, 20) 6080 input_1
spatial_dropoutld (SpatialDropout) (None, 5000, 20) 0 embedding
convld (Conv1D) (None, 5000, 32) 672 spatial_dropoutld
convld_1 (Conv1D) (None, 5000, 32) 1952 spatial_dropoutld
convld_2 (Conv1D) (None, 5000, 32) 3232 spatia_dropoutld
max_poolingld (MaxPooling1D) (None, 2500, 32) 0 convld
max_poolingld_1 (MaxPoolinglD) (None, 2500, 32) 0 convld_1
max_poolingld_2 (MaxPooling1D) (None, 2500, 32) 0 convld_2

max_pooling1ld
concatenate(Concatenate) (None, 2500, 96) 0 max_poolingld_1
max_poolingld_2

flatten (Flatten) (None, 240,000) 0 concatenate
dropout (Dropout) (None, 240,000) 0 flatten
dense (Dense) (None, 256) 61,440,256 dropout
dropout_1 (Dropout) (None, 256) 0 dense
dense_1 (Dense) (None, 8) 2056 dropout_1

3.2. Datasets

In this paper, we utilize the dataset of AliCloud Security Malicious Program Detection
Challenge [29], and the data provided by the competition are derived from the API com-

Electronics 2024, 13, 1092

8 of 15

mand sequence of the Windows binary executable program after simulated execution in a
sandbox environment, with a total of 13,887 files and nearly 90 million call records, of which
4978 are normal files and 8909 are malicious files. There are a total of 7 types of malicious
files, which are worms, infection viruses, Trojans, mining programs, ransomware, backdoor
programs, and DDoS Trojans. The distribution of sample types and specific numbers are
presented in Table 2.

Table 2. Experimental dataset.

Label Type Number
0 Normal sample 4978
1 Ransomware 502
2 Mining program 1196
3 DDoS Trojan 820
4 worm 100
5 infection virus 4289
6 backdoor program 515
7 Trojan 1487

The statistics of API sequence length before and after deduplication are shown in
Figure 5.

6000
5000
4000

3000

N
=
=,
=
Number

2000

ilnaanad - 11 i
° Bl Em -

500 1000 2000 3000 4000 5000 6000 7000 >7000 o
500 1000 2000 3000 4000 5000 6000 7000 >7000

Length of API sequence Length of APl sequence

(a) (b)

Figure 5. API sequence length statistics before and after deduplication. (a) API sequence length
statistics before deduplication. (b) API sequence length statistics after deduplication.

We quantified the number of APIs in the samples before and after deduplication.
As shown in the figure, before deduplication, 65% of the samples exhibitedhad an API
sequence length of less than 5000. Following deduplication, this proportion increased
to 83%. The deduplication process effectively shortened the length of the API sequence,
thereby enhancing the efficiency of subsequent analyses.

3.3. Performance Metrics Used

For model evaluation, we employed Accuracy, Precision, Recall, F1-score, and execu-
tion time as metrics. The specific formula is as follows:

TP
Accuracy = 4o TN FP 4 EN' M
.. TP+ TN
Precision = TPLEP’)
TP
Recall = TP+ EN’ 3)

2 X Recall x Precision
Fl score = Recall + Precision '’ @)

Electronics 2024, 13, 1092

9 of 15

where TP (True Positive) represents the number of instances that are actually positive and
are correctly predicted as positive, TN (True Negative) represents the number of instances
that are actually negative and are correctly predicted as negative, FP (False Positive)
represents the number of instances that are actually negative but are predicted as positive,
FN (False Negative) represents the number of instances that are actually positive but are
predicted as negative. Accuracy represents the ratio of correctly classified samples to all
samples; Precision represents the proportion of true positive instances among the instances
predicted as positive in the classification model; Recall represents the proportion of correctly
predicted positive instances among all positive instances; F1 score is the harmonic mean of
Precision and Recall, which balances both precision and recall. A higher value of the metric
indicates better classification performance.

4. Experimental Setup

Experiments were performed on a PC with an Intel Core i5-1240P CPU running at
1.70 GHz. We completed the experiment based on Python 3.8, Keras, Scikit-learn and
Matplotlib. The experimental hyper-parameter settings for the TextCNN in this paper are
shown in Table 3.

Table 3. Hyper-parameter settings for TextCNN.

Parameter Value

Optimizer Adam

Batch_size 1000
Epoch 100

5. Results

To verify the performance of the model, in the case of the same dataset, we conducted
comparisons with the following models using the same dataset:

¢ TextCNN model: This model employs multiple convolutional kernels of different sizes
(1, 3, 5) to extract key information from the program;

* Sequence Matching: We use the Prefixspan algorithm to mine the API call sequences of
all malicious programs, obtaining the malicious API call sequences, and then perform
sequence matching using these sequences;

* CNN model: We use Conv1D with convolutional kernel size 3 to extract local features
by sliding the convolutional kernel over the input sequences;

* Our model: We initially employ the behavioral sequence matching model to match
the API call sequences with malicious sequences, marking successful matches as 1 and
unsuccessful matches as 0. Subsequently, sequences marked as 0 are input into the
TextCNN model for detection. The detection result from the TextCNN model is
considered the final detection result, overriding the outcome from the behavioral
sequence matching model.

For the neural network model, this paper carried out 5-fold cross-validation on the
training data, divided the training set into training and verification sets, and trained the
model for each fold.

From the comparative results in Table 4, it can be observed that the Recall value of
sequence matching is relatively high, indicating its effectiveness in capturing malicious
samples. Utilizing a network with multiple convolutional layers allows for a more compre-
hensive extraction of API features, resulting in better detection performance compared to
models with a single convolutional layer. Hence, the CNN model’s performance is not as
strong as the TextCNN model. By combining sequence matching and the TextCNN model,
high values for Accuracy, Precision, Recall, and F1-score are achieved. However, since
sequence matching is performed one by one using regular expressions, it results in a longer
detection time. Our model, which combines sequence matching and a deep learning model,
exhibits the longest execution time.

Electronics 2024, 13, 1092 10 of 15

Table 4. Comparison of evaluation results of the models mentioned above.

Model Accuracy Precision Recall F1-Score Execution Time (s)
TextCNN [11] 0.9279 0.9278 0.9280 0.9276 41.98
Sequence matching 0.8636 0.8681 0.9938 0.9267 292.3
CNN [30] 0.8779 0.8784 0.8779 0.8761 29.69
Our model 0.9288 0.9246 0.9993 0.9605 366.7

To obtain optimal classification performance, determining the appropriate size of
the convolutional kernel in the TextCNN model is essential. The effectiveness of one-
dimensional convolutional neural networks for text categorization lies in employing con-
volutional kernels of varying lengths to extract local features of the sequence. Utilizing
multiple sizes of convolutional kernels allows for a more comprehensive capture of the
information between APIs. In this paper, we fuse multiple convolutional kernels of dif-
ferent sizes to generate various TextCNN models. The experimental results are presented
in Table 5.

Table 5. Comparison of evaluation results of the models mentioned above. The contents of the
parentheses refer to the size of convolutional kernels.

Model Accuracy Precision Recall F1-Score
TextCNN (133 55) 0.9073 0.9057 0.9073 0.9047
TextCNN (1 3 5) 0.9279 0.9278 0.9280 0.9276
TextCNN (1 2 4) 0.9179 0.9173 0.9179 0.9163
TextCNN (2 3 4) 0.9165 0.9169 0.9165 0.9160

From the comparison results in the above table, it can be seen that the TextCNN model
achieves its highest accuracy of 0.9279 when the convolutional kernel sizes are 1, 3, and
5. Therefore, in this paper, we choose the TextCNN model with the convolutional kernel
sizes 1, 3, and 5 for the detection of malicious programs.

The confusion matrix of the TextCNN model (1, 3, 5) is shown in Figure 6.

Confusion Matrix

o 1 14 2 0 % 7 29

- 6 4712 1 0 0 12 1 10 4000
~- 66 0 1069 1 0 il 3 26
- 3000
m- 16 6 4 667 3 2 8 %9
L1
&
< 3 0 0 7 63 9 0 18 | 2000
- 49 0 13 2 1 BEIN 4
o- 12 0 4 5 0 18 397 79 - 1000
~- 46 19 16 69 7 s a1 1254
i ‘ i i i . : ! -0
0 1 2 3 4 5 6 7

Predicted
Figure 6. Confusion matrix of the TextCNN model (1, 3, 5).

The AUC value represents the area under the ROC curve. It serves as an evalua-
tion metric to assess the quality of a classification model and effectively describes the
model’s overall performance. The ROC curves for each class of the TextCNN model with
convolutional kernel sizes of 1, 3, and 5 are illustrated in Figure 7.

Electronics 2024, 13, 1092 11 of 15

Multi-Class ROC Curve

e
(-]

ROC curve (class 0) (AUC = 0.9079)
ROC curve (class 1) (AUC = 0.9482)
ROC curve (class 2) (AUC = 0.9079)
ROC curve (class 3) (AUC = 0.9505)
ROC curve (class 4) (AUC = 0.9084)
ROC curve (class 5) (AUC = 0.8996)
ROC curve (class 6) (AUC = 0.9278)
ROC curve (class 7) (AUC = 0.8989)
Micro-average ROC curve (AUC = 0.95)

Tue Positive Rate

[=]
S

0.2

0.0 T r T T
00 02 04 06 08 10

False Positive Rate

Figure 7. ROC curves for each class of TextCNN model (1, 3, 5).

Figure 8 shows the ROC curves of the four TextCNN models, from which it can be
seen that the TextCNN model with convolutional kernel sizes 1, 3, and 5 exhibits the largest
AUC value, indicating superior performance compared to the other models.

ROC Curves for Class 0

10
08
]
£ 06
v
=
Z
w
&
o
B 04
02 /’ —— ExtCNN(1 3 5) (AUC = 0.9079)
L —— BxtCNN(1 2 4) (AUC = 0.8849)
L7 —— ®extCNN(2 3 4) (AUC = 0.8943)
o —— EBxtCNN(1 3 3 5 5) (AUC = 0.8797)
0.0 ' ' . .
0.0 02 04 0.6 0.8 10

False Positive Rate
Figure 8. ROC curves of the four TextCNN models.

Furthermore, to validate the efficacy of deep learning, a machine learning algorithm is
employed. The N-Gram algorithm is utilized for feature extraction of API call sequences,
and the optimal size of n in the N-Gram algorithm must be determined to achieve the
best classification performance. The value of n is set to 2, 3, and 4, and the random forest
algorithm (the number of decision trees is set to 500), logistic regression and KNN algorithm
are selected for model training.

The results of machine learning experiments with different values of 7 in the N-Gram
algorithm are presented in Table 6.

Electronics 2024, 13, 1092

12 of 15
Table 6. Results of machine learning experiments with different values of 7 in N-Gram.

Value of n Model Accuracy Precision Recall
Random Forest 0.9005 0.9022 0.9010
2 Logistic Regression 0.8928 0.8950 0.8928
KNN 0.8856 0.8856 0.8830
Random Forest 0.9028 0.9037 0.9048
3 Logistic Regression 0.8938 0.8964 0.8959
KNN 0.8882 0.8882 0.8902
Random Forest 0.8988 0.9029 0.9003
4 Logistic Regression 0.8910 0.8933 0.8949
KNN 0.8856 0.8882 0.8558

The detection results of each machine learning algorithm are shown in Figure 9.

0.91

o
o

>
o
e
>
=
=
< 089
0.88
Random Forest Logistic Regression KNN
— =2 n=3 n=4
(a)
0.91

089 \

Random Forest Logistic Regression KNN
— =2 n=3 n=4
(c)

0.91

0.9

Precision

0.88

s

~

~

Random Forest Logistic Regression

(b)

KNN

Figure 9. The detection results of three machine learning algorithms. (a) The statistical chart of
Accuracy. (b) The statistical chart of Precision. (c) The statistical chart of Recall.

According to Figure 9 and Table 6, it can be seen that for the same value of n, the
random forest algorithm outperforms logistic regression and KNN in terms of accuracy,
precision and recall, and when # is taken as 3, the random forest algorithm achieves the
highest performance in terms of Accuracy, Precision and Recall. All three algorithms exhibit
slightly better detection results when n = 3, compared to when n = 2 or 4. However, their
performance is still inferior to that of deep learning. The comparison chart of the detection
results of machine learning algorithms and TextCNN and our model is shown in Figure 10.

According to Figure 10, it can be seen that the model we proposed outperforms other
machine learning algorithms and TextCNN in terms of performance.

Electronics 2024, 13, 1092

13 of 15

Our model

I —
TextCNN(135)
I —
] Recall
B KNN .
s . Precision
B Accuracy
Logistic Regression
I
Random Forest
I ——

0.8 0.85 0.9 0.95 1

Figure 10. Comparison chart of performance metrics of different classifiers.

6. Discussion

In this paper, we use the public dataset from the AliCloud Malicious Program De-
tection Challenge. This dataset is derived from the API instruction sequence of Windows
executable programs after sandbox simulation. The imbalance between categories exists
in real-world scenarios, so an unbalanced dataset can better simulate the actual situation.
However, the disparity between different categories and the relatively small size of this
dataset compared to the expanding family of malicious code may impact detection results.

In this paper, we focus on dynamic API call sequences as the primary subject of study.
However, dynamic analysis relies on the samples executing in the sandbox and producing
an execution report. As malicious code countermeasures improve, anti-virtualization
techniques used by malicious code can evade detection, preventing the samples from
successfully executing in the sandbox. In the future, we consider employing static analysis
for further feature extraction and combining both dynamic and static approaches for
malicious code detection.

Although the malicious samples in the training set encompass various types of ma-
licious code, their behavior remains constrained. In the future, a more comprehensive
analysis of program behaviors can be conducted manually to uncover potential connections
among multiple APIs. Enriching the behavioral dataset will be more conducive to the
detection of malicious programs.

7. Conclusions

In this paper, we initially mitigate the impact of repetitive information in API call
sequences, then analyze the API call sequences in the program to extract behavioral charac-
teristics. Based on these characteristics, we employ a combination of rule matching and
deep learning to detect malicious programs. Firstly, malicious sequences are filtered out
using behavior sequence matching. Subsequently, the remaining sequences are examined
using the TextCNN model. Finally, the detection results from the TextCNN model are
used as the final outcomes, superseding the results from the behavioral sequence matching
model, to achieve more effective detection of malicious sequences. Since this study only
considers the names of the APIs, disregarding information such as parameters, a future
direction is to incorporate API parameter information to enhance the accuracy of malicious
program detection. In future work, we will continue to collect samples to balance the
amount of data across categories. Moreover, we will further consider the parameters of
API call sequences to augment their expressive capability. For instance, parameter informa-
tion of API call sequences related to file operations could include file names, paths, sizes,
permissions, etc. This information can aid in identifying potential malicious behaviors in
the program, such as deleting, modifying, and hiding important files. Additionally, we

Electronics 2024, 13, 1092 14 of 15

will address the imbalance of dataset categories, which may lead to the model favoring
categories with more data while overlooking the characteristics of categories with less data.

Author Contributions: Conceptualization, N.L., Z.L. and Y.M.; methodology, N.L., Z.L. and Y.M.;
writing—review and editing, N.L., Z.L. and Y.M.; investigation, Y.C. and].D.; software, Y.C. and].D.;
writing—original draft preparation, Y.C. and J.D.; validation: N.L., Z.L. and Y.M.; supervision: N.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the science and technology project of State Grid Corporation
of China: “Research on Key Technologies of Multi-agent Trusted Interaction and Monitoring Response
for New-type Power System User Side Business” (Grand No. 5108-202218280A-2-405-XG).

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors N.L., Z.L. and Y.M., were employed by State Grid Smart Grid
Research Institute Co., Ltd. The author].D., was employed by the State Grid Beijing Electric Power
Research Institute. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1.

@

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Wang, B.; Zhang, J.; Luo, C.; Yang, L.; Chen, J.; Ma, H. Research on Deep Detection Technology of Abnormal Behavior of
Power Industrial Control System. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering
Conference (ITOEC), Chongqing, China, 4-6 March 2022; Volume 6, pp. 1256-1261. [CrossRef]

Aboaoja, FA.; Zainal, A.; Ghaleb, FA.; Al-Rimy, B.A.S.; Eisa, T.A.E.; ElInour, A.A.H. Malware Detection Issues, Challenges, and
Future Directions: A Survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

Ghillani, D.; Gillani, D.H. A perspective study on Malware detection and protection, A review. Authorea Prepr. 2022 . [CrossRef]
Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2021, 112, 101861.
[CrossRef]

Gao, H.; Cheng, S.; Zhang, W. GDroid: Android malware detection and classification with graph convolutional network. Comput.
Secur. 2021, 106, 102264. [CrossRef]

Cesare, S.; Xiang, Y.; Zhou, W. Control Flow-Based Malware VariantDetection. IEEE Trans. Dependable Secur. Comput. 2014, 11,
307-317. [CrossRef]

Hassen, M.; Chan, PK. Scalable function call graph-based malware classification. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, Scottsdale, AR, USA, 22-24 March 2017; pp. 239-248. [CrossRef]
Garcia, D.E.; DeCastro-Garcia, N. Optimal feature configuration for dynamic malware detection. Comput. Secur. 2021, 105, 102250.
[CrossRef]

Muzaffar, A.; Hassen, H.R.; Lones, M.A.; Zantout, H. An in-depth review of machine learning based android malware detection.
Comput. Secur. 2022, 121, 102833. [CrossRef]

Xu, P; Duan, J.; Zhang, J.; Pei, Y.; Shi, D.; Wang, Z.; Dong, X.; Sun, Y. Active power correction strategies based on deep reinforce-
ment learning—Part I: A simulation-driven solution for robustness. CSEE]. Power Energy Syst. 2021, 8, 1122-1133. [CrossRef]
Wang, Q.; Qian, Q. Malicious code classification based on opcode sequences and textCNN network. J. Inf. Secur. Appl. 2022,
67,103151. [CrossRef]

Gopinath, M.; Sethuraman, S.C. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev.
2023, 47,100529. [CrossRef]

Faruk, M.J.H.; Shahriar, H.; Valero, M.; Barsha, F.L.; Sobhan, S.; Khan, M.A.; Whitman, M.; Cuzzocrea, A.; Lo, D.; Rahman, A.;
et al. Malware detection and prevention using artificial intelligence techniques. In Proceedings of the 2021 IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA, 15-18 December 2021; pp. 5369-5377. [CrossRef]

Li, C.; Lv, Q. Li, N.; Wang, Y.; Sun, D.; Qiao, Y. A novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Comput. Secur. 2022, 116, 102686. [CrossRef]

Lu, X,; Jiang, E; Zhou, X; Yi, S.; Sha, J.; Pietro, L. ASSCA: API sequence and statistics features combined architecture for malware
detection. Computer Networks. Comput. Netw. 2019, 157, 99-111. [CrossRef]

Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

Amer, E.; Zelinka, I.; El-Sappagh, S. A multi-perspective malware detection approach through behavioral fusion of api call
sequence. Comput. Secur. 2021, 110, 102449. [CrossRef]

Chen, X,; Hao, Z.; Li, L,; Cui, L.; Zhu, Y.; Ding, Z.; Liu, Y. Cruparamer: Learning on parameter-augmented api sequences for
malware detection. IEEE Trans. Inf. Forensics Secur. 2022, 17, 788-803. 10.1109/TIFS.2022.3152360. [CrossRef]

Kim, H.; Kim, J.; Kim, Y.; Kim, L; Kim, K.J.; Kim, H. Improvement of malware detection and classification using API call sequence
alignment and visualization. Clust. Comput. 2019, 22, 921-929. [CrossRef]

[
http://doi.org/10.1109/ITOEC53115.2022.9734439
[
http://dx.doi.org/10.3390/app12178482
[
http://dx.doi.org/10.22541/au.166308976.63086986/v1.
[
http://dx.doi.org/10.1016/j.sysarc.2020.101861
[
http://dx.doi.org/10.1016/j.cose.2021.102264
[
http://dx.doi.org/10.1109/TDSC.2013.40
[
http://dx.doi.org/10.1145/3029806.3029824
[
http://dx.doi.org/10.1016/j.cose.2021.102250
[
http://dx.doi.org/10.1016/j.cose.2022.102833
[
http://dx.doi.org/10.17775/CSEEJPES.2020.07090
[
http://dx.doi.org/10.1016/j.jisa.2022.103151
[
http://dx.doi.org/10.1016/j.cosrev.2022.100529
[
http://dx.doi.org/10.1109/BigData52589.2021.9671434
[
http://dx.doi.org/10.1016/j.cose.2022.102686
[
http://dx.doi.org/10.1016/j.comnet.2019.04.007
[
http://dx.doi.org/10.1016/j.cose.2020.101760
[
http://dx.doi.org/10.1016/j.cose.2021.102449
1
http://dx.doi.org/10.1109/TIFS.2022.3152360
[
http://dx.doi.org/10.1007/s10586-017-1110-2

Electronics 2024, 13, 1092 15 of 15

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Chen, T.; Zeng, H.; Lv, M,; Zhu, T. CTIMD: Cyber threat intelligence enhanced malware detection using API call sequences with
parameters. Comput. Secur. 2024, 136, 103518. [CrossRef]

Zhang, Z.; Qi, P.; Wang, W. Dynamic malware analysis with feature engineering and feature learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7-12 February 2020; Volume 34, pp. 1210-1217. [CrossRef]

Kim, C.W. Ntmaldetect: A machine learning approach to malware detection using native api system calls. arXiv 2018,
arXiv:1802.05412. https:/ /doi.org/10.48550/arXiv.1802.05412.

Lin, Z.; Xiao, F; Sun, Y;; Ma, Y; Xing, C.C.; Huang,]. A secure encryption-based malware detection system. In Proceedings of the
KSII Transactions on Internet and Information Systems (TIIS), Online, 23 December 2018; Volume 12, pp. 1799-1818. [CrossRef]
Fan, M,; Liu, J.; Luo, X.; Chen, K,; Tian, Z.; Zheng, Q.; Liu, T. Android malware familial classification and representative sample
selection via frequent subgraph analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1890-1905. [CrossRef]

Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damasevicius, R. An efficient densenet-based deep learning model for malware
detection. Entropy 2021, 23, 344. [CrossRef]

Huang, X.; Ma, L.; Yang, W.; Zhong, Y. A method for windows malware detection based on deep learning. . Signal Process. Syst.
2021, 93, 265-273. [CrossRef]

Mane, R.V. A comparative study of Spam and PrefixSpan sequential pattern mining algorithm for protein sequences. In
Proceedings of the International Conference on Advances in Computing, Communication and Control, Mumbai, India, 18-
19 January 2013; pp. 147-155. [CrossRef]

Han, J.; Pei,].; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M. Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany,
2-6 April 2001; pp. 215-224. [CrossRef]

AliCloud Security Malicious Program Detection Dataset. Available online: https://tianchi.aliyun.com/dataset/dataDetail?
datald=137262 (accessed on 13 September 2022).

Ganesh, M.; Pednekar, P.; Prabhuswamy, P.; Nair, D.S.; Park, Y.; Jeon, H. CNN-based android malware detection. In Proceed-
ings of the 2017 International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 24-25 July 2017;
pp. 60-65. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

[
http://dx.doi.org/10.1016/j.cose.2023.103518
[
http://dx.doi.org/10.1609/aaai.v34i01.5474
https://doi.org/10.48550/arXiv.1802.05412
[
http://dx.doi.org/10.3837/tiis.2018.04.022
[
http://dx.doi.org/10.1109/TIFS.2018.2806891
[
http://dx.doi.org/10.3390/e23030344
[
http://dx.doi.org/10.1007/s11265-020-01588-1
[
http://dx.doi.org/10.1007/978-3-642-36321-4_13
[
http://dx.doi.org/10.1109/ICDE.2001.914830
https://tianchi.aliyun.com/dataset/dataDetail?dataId=137262
https://tianchi.aliyun.com/dataset/dataDetail?dataId=137262
[
http://dx.doi.org/10.1109/ICSSA.2017.18

	Introduction
	Related Work
	Materials and Methods
	Model Framework
	Data Pre-Processing
	 Model Construction

	Datasets
	Performance Metrics Used

	Experimental Setup
	Results
	Discussion
	Conclusions
	References

