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Abstract: The rapid advancement of intelligent assisted driving technology has significantly enhanced
transportation convenience in society and contributed to the mitigation of traffic safety hazards.
Addressing the potential for drivers to experience abnormal physical conditions during the driving
process, an enhanced lightweight network model based on YOLOv5 for detecting abnormal facial
expressions of drivers is proposed in this paper. Initially, the lightweighting of the YOLOv5 backbone
network is achieved by integrating the FasterNet Block, a lightweight module from the FasterNet
network, with the C3 module in the main network. This combination forms the C3-faster module.
Subsequently, the original convolutional modules in the YOLOv5 model are replaced with the
improved GSConvns module to reduce computational load. Building upon the GSConvns module,
the VoV-GSCSP module is constructed to ensure the lightweighting of the neck network while
maintaining detection accuracy. Finally, channel pruning and fine-tuning operations are applied
to the entire model. Channel pruning involves removing channels with minimal impact on output
results, further reducing the model’s computational load, parameters, and size. The fine-tuning
operation compensates for any potential loss in detection accuracy. Experimental results demonstrate
that the proposed model achieves a substantial reduction in both parameter count and computational
load while maintaining a high detection accuracy of 84.5%. The improved model has a compact size
of only 4.6 MB, making it more conducive to the efficient operation of onboard computers.

Keywords: YOLOv5; lightweighting; facial emotion recognition; model pruning

1. Introduction

In recent years, with the continuous improvement of industrial capabilities and rapid
socioeconomic development, there has been a simultaneous increase in the number of
automobiles. Alongside the expanding transportation networks, there is a growing fre-
quency of traffic accidents. This poses significant safety hazards to daily commuting,
substantially impacting people’s lives and property security. Among the various types
of traffic accidents, scenarios where drivers experience sudden health issues, leading to
physical discomfort and the inability to drive properly, are prevalent. Currently, with
the advancement of technology, automotive assisted driving technologies are increasingly
being applied to modern vehicles. This holds significant importance in reducing traffic
accidents, minimizing injuries, and enhancing highway transport capacity.

Machine vision technology, due to its perceptual similarity to human vision and
relatively lower implementation costs, has found wide application in various advanced
driver assistance systems. By leveraging machine vision, vehicles can identify important
elements such as road signs, vehicles, and pedestrians, providing real-time information
and alerts to drivers, thereby improving driving experience and reducing accident risks.
This widespread application has made machine vision technology an indispensable part of
advanced driver assistance systems.
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Given the widespread development of current assisted driving technology, when
drivers experience abnormal conditions such as bodily pain or discomfort, their facial
expressions often deviate from the norm, which can influence driving behavior and decision-
making. Utilizing technologies like machine vision and deep learning, facial expression
recognition and detection are conducted on drivers. Interventions are promptly made in the
vehicle’s assisted driving system when abnormal facial expressions are detected, providing
driving assistance to the driver. This approach significantly reduces the likelihood of traffic
accidents caused by drivers’ abnormal states. Therefore, based on the above circumstances,
research into a lightweight abnormal facial expression detection model suitable for onboard
computers is of utmost importance in reducing traffic accidents.

Currently, facial expression detection methods are mainly divided into two types:
traditional detection methods and deep learning-based detection methods. In traditional
facial expression recognition methods, common feature extraction techniques include local
binary patterns and histogram of oriented gradients (HOG). Luo et al. [1] proposed a
facial expression recognition method that combines local binary patterns with principal
component analysis. Shan et al. [2] proposed a boosted-LBP method for enhancing local
binary patterns (LBP) features in facial expression recognition. They achieved optimal
recognition performance using a support vector machine classifier with boosted-LBP
features. Kumar et al. [3] introduced an expression recognition approach that extracts
the histogram of oriented gradients features from the facial action region rather than the
entire face, imparting robustness to scale and pose variations. Wang et al. [4] presented
a hybrid expression recognition method combining weber local descriptor (WLD) with
HOG features, demonstrating good performance on the JAFFE and Cohn–Kanade facial
expression databases. In addition, there are appearance-based expression recognition
methods. Bartlett et al. [5] proposed an approach using Gabor wavelet features and
eigenface features for expression recognition. Anderson et al. [6] suggested using facial
motion to characterize facial expressions in monochromatic frontal views, identifying six
emotions commonly associated with unique facial expressions. For geometric feature-based
expression recognition, Pantic et al. [7] introduced an analysis system that automatically
recognizes facial action units and their temporal models from long profile-view facial image
sequences. For some simple scenarios, traditional methods do not require a large amount
of computational resources and are more efficient. However, in complex and dynamic
scenarios, the expressive capability of traditional methods may be limited.

With the advancement of technologies such as computer vision and deep learning,
deep learning methods, particularly convolutional neural networks (CNN), have achieved
tremendous success in areas like object detection and image classification. Li et al. [8]
proposed a CNN network model with an attention mechanism for facial expression recog-
nition. The feasibility and effectiveness of the model were validated on four representative
datasets: JAFFE, CK+, FER2013, and Oulu-CASIA. Shan et al. [9] designed a facial au-
tomatic recognition system based on deep convolutional neural networks. This system
can discover deeper-level feature representations for facial expressions, enabling auto-
matic recognition. The accuracy achieved on the JAFFE and CK+ datasets was 76.7% and
80.3%, respectively, confirming the feasibility and effectiveness of the system. In addition,
Li et al. [10] introduced a Faster R-CNN facial expression recognition method based on con-
volutional neural networks to overcome the cumbersome explicit feature extraction process
and issues related to low-level data operations in traditional facial expression recognition.
Experimental results demonstrated that Faster R-CNN exhibits strong performance and
generalization capabilities in facial expression recognition. Febrian et al. [11] proposed a
BiLSTM-CNN model that integrates convolutional neural networks and bidirectional long
short-term memory with data augmentation functionality. Experimental results on the
CK+ dataset, containing seven common facial expressions, indicated that the augmented
BiLSTM-CNN model effectively integrates temporal and spatial information, perform-
ing well in complex facial expression recognition tasks. Wang et al. [12] utilized a blend
shapes technique in combination with convolutional neural networks. They introduced a
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BlendshapeFERNet network for facial expression recognition, which, by fully leveraging
3D blendshapes, enhanced the performance of facial expression recognition (FER). The
proposed model achieved promising experimental results on three typical datasets: CK+,
Oulu-CASIA, and MMI. Li et al. [13] proposed an improved multi-scale convolutional
neural network model to address issues such as severe information loss and insufficient
spatial connections between components in existing facial expression recognition models.
The algorithm’s effectiveness was experimentally validated on facial expression recogni-
tion datasets, including JAFFE and FER-2013. Qiao et al. [14] addressed the complexities
and suboptimal recognition issues in facial expression recognition using convolutional
neural networks. They introduced an optimization algorithm based on an improved CNN
combined with support vector machine. The proposed algorithm, when compared to the
traditional LeNet-5 algorithm, demonstrated a 2.2 percentage point improvement on the
Fer2013 dataset while maintaining a simpler structure.

Currently, most publicly available facial expression datasets include six basic emotion
types: happiness, anger, surprise, fear, disgust, and sadness. However, there is a scarcity of
facial expressions related to pain and suffering. Additionally, many current neural network
models achieve high accuracy in facial expression detection and recognition. However,
complex models can also result in significant computational overhead and lack the ability
to be efficiently deployed on hardware devices to address real-world problems.

Research has revealed that during normal driving, drivers should maintain a neutral
facial expression. However, in the event of sudden unexpected situations while driving,
facial expressions may reflect signs of distress. Furthermore, displaying a happy facial
expression while conversing with passengers could potentially affect the driver’s decision-
making process. Moreover, considering the limited computational capacity, resources, and
energy consumption of onboard computers in vehicles, it is not feasible to accommodate
large-scale, complex, and computationally intensive detection models. In light of the
aforementioned issues, researching a lightweight detection model with a simple network
structure and low computational requirements holds significant promise for reducing traffic
accidents. Therefore, this paper proposes a lightweight version of the YOLOv5 network to
detect abnormal facial expressions in drivers, aiming to meet the accuracy and practicality
requirements of detection.

The primary contributions are as follows:

(1) First, in response to the current scarcity of publicly available datasets for facial ex-
pressions of pain and distress, we created our own dataset. This dataset primarily
includes three categories of expressions that drivers commonly exhibit during driving:
happiness, neutrality, and pain. In the driving context, expressions of happiness and
pain can influence certain driving decisions, and in this paper, these two types of
expressions are classified as abnormal driving expressions.

(2) Next, in the realm of model lightweighting enhancements, a lightweight design
approach was implemented for the YOLOv5 backbone network. This involved sub-
stituting the C3 module in the backbone network with the C3-faster module and
replacing certain convolutional modules in the YOLOv5 network with the refined
GSConvns lightweight module. Additionally, lightweight processing was applied to
the neck network using the VoV-GSCSP module. These modifications were aimed at
reducing the overall model’s parameter count, computational load, and size while
ensuring that the model maintains a high level of detection accuracy.

(3) Finally, pruning and fine-tuning the improved network model further reduced its
parameter count, computational load, and size. Through fine-tuning, any perfor-
mance loss incurred during pruning was compensated for, enabling the model to
maintain a high level of detection accuracy and meet the practical detection needs in
driving environments.



Electronics 2024, 13, 1138 4 of 13

2. Introduction to the YOLOv5 Algorithm

YOLO (you only look once) [15] is an object detection algorithm, which implies that
the neural network only needs to examine an image once to output results. In June 2020, the
Ultralytics team introduced the YOLOv5 model as part of the YOLO series, and it has been
continuously updated since then. YOLOv5 consists of five versions: YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The only difference lies in the depth and width of
the models, denoted as depth multiple and width multiple, respectively. These values
increase in sequence from small to large, indicating a continuous increase in the model’s
depth and width. For a comprehensive consideration of detection accuracy, model size, and
detection speed, this method employs YOLOv5s as the baseline model for detection tasks.
The YOLOv5s network structure consists of three main parts: the backbone network, the
neck network, and the prediction end. The input end employs preprocessing techniques
such as Mosaic data augmentation, adaptive anchor box calculation, and adaptive image
scaling. Mosaic data augmentation involves random scaling, cropping, and arranging of
images, enhancing dataset diversity and the ability to detect small objects. Adaptive anchor
box calculation computes the optimal anchor box values for different datasets. Adaptive
image scaling adds minimal black borders adaptively to the original image, reducing
computational load and improving detection speed. The backbone network structure
includes C3, CBS, and SPPF modules. The C3 module consists of three CBS convolutional
layers and multiple bottleneck modules. The CBS structure combines Conv, BN, and SiLU
activation functions. The SPPF module transforms feature maps of any size into a fixed-size
feature vector, enhancing feature map expression capability. The neck network adopts
feature pyramid network [16] and path aggregation network [17] structures as the feature
fusion part of the network. The prediction end has detection heads for large, medium,
and small objects with sizes of 20 × 20, 40 × 40, and 80 × 80, respectively. Multiple-scale
predictions are made on the feature maps extracted from the neck network, ultimately
providing bounding box, class, and confidence information for the detected objects.

3. Related Improvements
3.1. Backbone Network Improvement

In order to achieve model lightweighting while ensuring a certain level of accuracy,
improvements were made to the backbone network of the model. In this study, the
lightweight FasterNet [18] was integrated with the YOLOv5 backbone network’s C3 module.
The FasterNet Block from the FasterNet network was employed to replace the bottleneck
module in the C3 module, which significantly impacts the overall model’s computational
and parameter count. While retaining the fundamental structure of the C3 module, the
C3-faster module is formed. The C3-faster module was used to replace the C3 module in the
backbone network responsible for feature extraction. The structure of the C3-faster module
is illustrated in Figure 1. The CBS module is a convolutional module defined in the YOLOv5
network, consisting of a two-dimensional convolutional layer, a batch normalization layer,
and a SiLU activation function. Through subsequent ablation experiments, it can be
observed that compared to the original C3 module, the C3-faster module effectively reduces
model parameters, computational load, and model size.

The FasterNet Block consists of a partial convolution layer [18] (PConv), a CBS mod-
ule, and a 2D convolutional layer. The inclusion of a BN layer within the CBS module
accelerates model training and convergence speed. Additionally, the SiLU activation func-
tion introduces non-linear characteristics to the model, enhancing its expressive capacity.
The partial convolution layer, denoted as PConv, selectively applies regular convolution
to a subset of input channels for spatial feature extraction. It has no impact on other
channels, keeping their sizes unchanged. This effectively reduces computational redun-
dancy. The computational formulas for PConv and standard convolution are provided in
Equations (1) and (2).

FLOPsp = h × w × k2 × c2
p (1)
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FLOPs = h × w × k2 × c2 (2)

Here, h, w, and c represent the height, width, and number of channels, respectively,
while k denotes the filter. cp represents the channels in the PConv network. When
cp/c = 1/4, the computational cost of PConv is only 1/16th of that of standard convo-
lution. Following PConv, to enhance model stability, training speed, and performance,
input data normalization and SiLU activation functions are applied between the two stan-
dard convolution layers. This aims to boost the expressive power and training efficiency of
the model. The FasterNet Block utilizes partial convolution to process input feature maps,
reducing computational complexity and model parameters to enhance algorithm efficiency.
This design enables a more effective utilization of computational resources, leading to
accelerated model inference speed.
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3.2. GSConv Module Improvement

The Ghost Conv [19] module is a high-performance convolutional module proposed
by Han K and others. It addresses the issues of parameter accumulation and feature
redundancy that arise when using a large number of standard convolutions for image
feature extraction. The Ghost Conv module performs a small number of convolutions
and linear transformation operations separately in its process, ultimately concatenating
the feature maps obtained from these operations. Due to the outstanding performance
of Ghost Conv, it has been widely used in research on lightweighting computer vision
models since its introduction. However, there is a potential issue of information loss in
the linear transformation. To address this problem, Li H and others proposed the GSConv
module [20]. In the GSConv module, assuming the input channel number is C1 and
the output channel number is C2, it first undergoes a standard convolution, reducing
the channel number to C2/2. Subsequently, it passes through a depthwise separable
convolution [21] (DWConv) with the channel number remaining unchanged. The feature
maps from the two convolutions are then concatenated, followed by a shuffle operation.

The traditional depthwise separable convolution employs separate convolution chan-
nels, reducing both computational and parameter costs. However, it also leads to the loss
of feature information, thereby diminishing feature extraction capability. The structure
is illustrated in Figure 2, and the depthwise separable convolution primarily consists of
two processes: depthwise convolution and pointwise convolution. It can replace convo-
lution operations in a convolutional neural network, resulting in reduced parameter and
computational costs. The computational formula for standard convolution is given by
Equation (3), while the computational formula for depthwise separable convolution is
provided in Equation (4). Here, W and H are the width and height of the input feature map,
K is the kernel size, and C1 and C2 represent the input and output feature channel num-
bers. Compared to standard convolution, the computational cost of depthwise separable
convolution is reduced, as shown in Equation (5).

GFLOPs = W × H × K × K × C1 × C2 (3)
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GFLOPs1 = W × H × K × K×C1 + W × H × 1 × 1 × C1 × C2 (4)

GFLOPs1

GFLOPs
=

W × H × K × K×C1 + W × H × 1 × 1 × C1 × C2

W × H × K × K × C1 × C2
=

1
K2 +

1
C2

(5)
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Figure 2. Depthwise separable convolution process diagram.

To address the limitations in the feature extraction capability of depthwise separable
convolution, the GSConv module compensates by concatenating the feature maps from
standard convolution with those from depthwise separable convolution. Subsequently,
a shuffle operation is applied to the concatenated feature maps. This shuffle operation
uniformly mixes and disrupts the channel feature information from depthwise separable
convolution and standard convolution, enhancing the extraction of semantic information.
However, it is worth noting that this operation may be less friendly to certain mobile
hardware devices with limited computational resources.

In response to the aforementioned issue, improvements are made based on the GSConv
module. A standard 2D convolution module and ReLU activation function were employed
to replace the original shuffle operation, which consumes significant computational re-
sources. This resulted in the formation of the GSConvns module, as illustrated in Figure 3.
Convolutional operations are applied to the concatenated feature maps, followed by the
application of the ReLU activation function. In terms of improvements, replacing the
original shuffle operation with convolutional layers effectively reduces computational load
while enhancing the model’s feature extraction capabilities. This modification also enables
the model to be effectively implemented on some low-power mobile devices. After passing
through the convolutional layers, the addition of the ReLU activation function introduces
non-linearity, enabling the network to learn and represent more complex functions. This
aids in reducing overfitting and improving the model’s generalization capabilities. The
improvements contribute to enhancing the model’s feature representation, reducing model
parameters and computational load, and increasing compatibility with hardware such as
in-vehicle computers.
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3.3. Improvement of the Neck Network

While lightweighting the model, it is essential to ensure the detection accuracy to
meet practical requirements. In the neck network, a slim-neck structure was added based
on the aforementioned GSConvns module. The slim-neck [18] structure includes the
GSbottleneck module and the VoV-GSCSP module constructed based on the GSConvns
module, where GSConvns is an improved lightweight convolution module in the YOLOv5
model, and VoV-GSCSP represents a lightweight module in the neck network of YOLOv5,
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as shown in Figure 4. Subsequently, the C3 module in the neck network was replaced
with the VoV-GSCSP module containing GSConvns. Through experimental validation,
this module, compared to the C3 module with a similar computational load, effectively
improved the model’s detection accuracy, meeting the accuracy requirements in practical
detection scenarios.
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In this paper, the GSConvns module is used in the neck network and some parts of
the backbone network to replace the regular CBS convolution module. This ensures a
reduction in parameters, computational load, and model size, achieving lightweighting
while also addressing the comprehensive extraction and fusion of target feature information.
Furthermore, the introduction of the VoV-GSCSP module replaces the C3 module in the
neck network, which was limited in terms of feature fusion. This not only reduces model
complexity but also enhances model accuracy and inference time. The improved network
model is illustrated in Figure 5.
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3.4. Model Channel Pruning and Fine-Tuning

In the development of convolutional neural networks, there has been continuous
improvement in both detection accuracy and speed. Some models exhibit stronger fea-
ture extraction capabilities, but this comes at the cost of increased computational resource
consumption. Taking YOLOv5 as an example, in the YOLOv5 network model, multiple
convolutional layers are used for feature extraction to enable accurate and fast object de-
tection and localization. These layers output multiple channels, assigning corresponding
weights to each channel for result prediction based on their magnitudes. However, some
channel weight parameters are extremely close to zero, exerting minimal impact on the
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overall predictive capability of the network. Nevertheless, they still contribute to subse-
quent computation, leading to a certain degree of computational resource wastage and
impacting detection efficiency. To address this, pruning operations [22] are applied to the
improved model to eliminate redundant and non-critical weights. Before channel pruning,
a scaling factor is introduced for each channel, which is multiplied by the output of that
channel. Subsequently, the model undergoes sparse training to differentiate between dif-
ferent channels, facilitating better identification of redundant channels for the subsequent
pruning operation. In the YOLOv5 network, there are multiple convolutional modules, and
the batch normalization (BN) layer within these modules can accelerate network training
convergence and enhance network generalization performance. The iterative process of
batch normalization is as follows:

µB =
1
m∑m

i=1 zi, (6)

σB =
1
m∑m

i=1 (zi − µB)
2, (7)

where µB and σB represent the mean and standard deviation computed for the input, m is
the current mini-batch size, and ε is a regularization parameter introduced to prevent stan-
dard deviation from becoming zero. Normalization is performed to obtain Ẑ, and the input
is reconstructed to obtain Zout. The calculation formulae are shown in Equations (8) and (9).

Ẑ =
Zin − µB√

σ2
B + ε

(8)

Zout = γẐ + β (9)

Adding L1-norm regularization to the loss function can leverage the sparsity effect
of the L1-norm to induce sparsity in the scaling factors of channels. The loss function for
sparse training is represented as shown in Equation (10).

L = ∑(x,y) l( f (x, W), y) + λ∑γϵΓ g(γ) (10)

In the equation, (x, y) represents the training input and output. The first term repre-
sents the loss function for regular training, where W is the training weight. The second
term denotes the L1-norm regularization term used to induce sparsity. γ is the scaling
factor, Γ represents the set of pruned channels, and λ is the penalty factor.

During sparse training, the sparsity level of the model can be controlled and adjusted
by a penalty factor. As the penalty factor is tuned, some channels in the batch normal-
ization layer tend towards zero scaling factors. The outputs of these BN layers with very
small scaling factors are also very small, having minimal impact on the overall predictive
performance of the model while still consuming computational resources. Hence, these
redundant channels are pruned, which may result in a slight loss in accuracy, but this loss
can potentially be compensated for during the subsequent fine-tuning process. After sparse
training, a pruning threshold is determined based on the specified pruning rate, and BN
layer channels below this threshold are pruned from the network model. The pruning pro-
cess is illustrated in Figure 6, where the blue and green rectangles, respectively, represent
portions of the BN layer channels with different scaling factors after sparse training.

Fine-tuning is conducted to compensate for the loss in the original model’s expressive
power caused by channel pruning. Channel pruning may introduce varying degrees of
changes to the original network structure, leading to a decrease in model performance,
particularly in terms of reduced detection accuracy. Therefore, fine-tuning helps improve
the model’s accuracy to some extent, thereby restoring its performance.
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4. Experimental Results
4.1. Introduction to the Experimental Dataset

Due to the scarcity of publicly available datasets for facial expressions of pain, the
dataset used in this experiment is a self-made dataset. This dataset includes three types of
facial expressions commonly observed during driving, namely, happy, neutral, and pain,
with some of the painful facial expression images sourced from the PEMF dataset [23].
The dataset was first subjected to preprocessing steps such as uniform sample distribution
and data augmentation. Subsequently, the LabelImg tool software is used to annotate the
dataset in a format suitable for YOLO network training. The processed dataset comprises
approximately 2500 images. The created dataset was divided into training, validation, and
test sets in a ratio of 8:1:1. During the input stage of the YOLOv5 network, the model
utilizes Mosaic data augmentation, involving the scaling and juxtaposition of any four
images. This approach enriched the dataset and enhanced the network’s robustness to a
certain extent.

4.2. Experimental Environment

The main configuration for the experiment includes a GPU, specifically the NVIDIA
GeForce RTX 3090 and the PyTorch deep learning framework. During the training phase,
the number of epochs was set to 400, the batch size was set to 32, and the optimizer chosen
was SGD. The baseline model is YOLOv5s, with network depth gain and convolution
channel gain parameters set to 0.33 and 0.5, respectively.

4.3. Evaluation Metrics

In this experiment, lightweighting of the model is pursued, and the evaluation metrics
include the model’s parameter count (parameters), computational complexity (floating
point operations, FLOPs), single object detection average precision (AP), mean average
precision (mAP), and model size. The calculation process for mean average precision (mAP)
is outlined as follows:

P =
TP

TP + FP,
(11)

R =
TP

TP + FN,
(12)

AP =
∫ 1

0
P(R)dR, (13)

mAP =
∑n

i=1 APi

n
. (14)

Among these, P stands for precision, indicating the proportion of correctly predicted
samples among positive samples, while R represents recall, denoting the proportion of
positive samples predicted as positive among all positive samples. TP signifies the number
of true positive predictions (actual positives predicted as positives), FP is the count of false
positive predictions (actual negatives predicted as positives), and FN is the number of false
negative predictions (actual positives predicted as negatives). AP represents the average
precision value, APi represents the average precision value for the corresponding category,
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n represents the number of categories, mAP is the mean average precision across all classes,
and mAP@0.5 denotes the mAP value when the IoU threshold is set to 0.5. Model size
indicates the size of the weight file obtained after training.

4.4. The Analysis of Experimental Results

In the above dataset, facial expressions are mainly divided into three categories: happy,
neutral, and pain. Ensuring the dataset and related parameters are the same, we selected
several key lightweight networks for comparative testing, as shown in Table 1. It can
be observed that compared to YOLOv7-tiny, the improved lightweight model exhibits a
significant reduction in both parameter count and computational complexity. The mAP
has increased by nearly two points, and there is also a noticeable decrease in model size.
In comparison to MobileNet and ShuffleNet, two other lightweight networks, although
there is a slight drawback in computational complexity, there are significant advantages in
terms of parameter count, model size, and detection accuracy. Compared to the original
model, there is a substantial decrease in parameter count, computational complexity, and
model size. This makes the improved model more friendly to mobile devices with limited
computational resources. While there is a slight decrease in detection accuracy by 1.2%, it
still maintains a relatively high level of accuracy, achieving practical detection effectiveness
in real-world usage.

Table 1. Comparative experiment.

Method Parameters/M FLOPs/G mAP@0.5/% Size/MB

YOLOv5s 6.7 15.8 85.7 13.7
YOLOV7-tiny 5.9 13.9 82.3 11.7
Mobilenetv3 5.5 2.8 83.1 17.9
Shufflenetv2 3.5 2.5 82.6 9.83

Improved YOLOv5 2.1 5.1 84.5 4.6

The ablation experiment, as shown in Table 2, indicates that the original model had a
detection accuracy of 85.7%. After undergoing lightweight network model improvements,
the detection accuracy experienced a slight decrease, reaching 84.9%. However, there was
a noticeable reduction in computational load, parameters, and model size. Subsequently,
pruning was applied to the lightweight improved model, resulting in further reductions
in the above-mentioned metrics, while the detection accuracy decreased by only 0.4%,
reaching 84.5%. Specifically, the detection accuracies for the three categories of facial
expressions—happy, neutral, and pain—were 81.9%, 88.1%, and 83.5%, respectively; the
model still maintains a robust detection performance in practical detection tasks. This
satisfies the requirements for both practicality and accuracy, making it more suitable for
deployment on mobile devices.

Table 2. Ablation experiment.

C3-Faster GSConvns VoV-GSCSP Prune Parameters/M FLOPs/G mAP@0.5/% Size/MB

- - - - 6.7 15.8 85.7 13.7√
- - - 6.3 13.8 84.5 12.4

-
√

- - 6.2 12.4 82.0 12.2
- -

√
- 7.7 15.8 86.0 15.2

-
√ √

- 6.3 14.5 85.3 12.4√ √ √
- 5.5 10.4 84.9 10.7√ √ √ √

2.1 5.1 84.5 4.6

After adding the C3-faster module and GSConvns module, there was a reduction in
model parameters, computational load, and model size. However, this led to a certain
degree of accuracy decrease. The introduction of the VoV-GSCSP module helped com-
pensate for some of the lost accuracy. Following these improvements, with reductions in
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model parameters, computational load, and model size, the mean average precision only
decreased by 0.8%. After fine-tuning the pruned model, a mere 0.4% accuracy loss was
observed, achieving reductions in the other three metrics. This indicates a nearly lossless
pruning of the model to the maximum extent possible.

For a more intuitive assessment of the model’s real-world scene detection perfor-
mance, the detection results are visualized, as depicted in Figure 7. The results encompass
detections for driver expressions of pain, happiness, and neutrality. By conducting de-
tection on images from actual driving scenarios beyond the dataset, it becomes evident
that the method proposed in this paper demonstrates both accuracy and practicality. It is
well-suited to meet the detection requirements in real-world scenes.
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5. Conclusions

Considering practical application needs, this paper proposes an improved lightweight
YOLOv5 detection model for detecting abnormal expressions in drivers during the driving
process, potentially caused by body pain or discomfort. These abnormal expressions can
influence driving behavior decisions. Timely detection of such expressions allows for inter-
vention through the vehicle’s advanced driver-assistance system, preventing subsequent
traffic safety incidents resulting from the driver’s discomfort. The experimental results in-
dicate that the proposed improvement method, compared to the baseline model YOLOv5s,
reduces the model size from 13.7 MB to 4.6 MB, an approximately 66.42% reduction. The
parameter count has been reduced from 6.7 million to 2.1 million, and the computational
load has been reduced from 15.8 billion to 5.1 billion. The improved model still maintains a
high level of detection accuracy. Due to the reduction in computational load, parameter
count, and model size, it can execute model inference and data processing more quickly.
This not only enhances system response time but also reduces energy consumption. It
is more convenient for deployment on mobile devices and contributes to the efficient
operation of in-vehicle computers. In addition, in further research on lightweighting, it is
essential to consider multi-angle recognition of the driver’s facial expressions as well as
facial expression detection when the driver is in complex background environments. This
includes scenarios with poor lighting conditions or high interference in the background.
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