
Citation: Yao, K.; Wang, Z.; Guo, F.;

Li, F. Driver Abnormal Expression

Detection Method Based on Improved

Lightweight YOLOv5. Electronics 2024,

13, 1138. https://doi.org/10.3390/

electronics13061138

Academic Editor: Byung-Gyu Kim

Received: 21 February 2024

Revised: 14 March 2024

Accepted: 19 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Driver Abnormal Expression Detection Method Based on
Improved Lightweight YOLOv5
Keming Yao *,†, Zhongzhou Wang †, Fuao Guo and Feng Li

College of Electrical Information Engineering, Jiangsu University of Technology, Changzhou 213000, China;
wzz980202@163.com (Z.W.); 13218032675@163.com (F.G.); 2018500089@jsut.edu.cn (F.L.)
* Correspondence: ykm1997@jsut.edu.cn
† These authors contributed equally to this work.

Abstract: The rapid advancement of intelligent assisted driving technology has significantly enhanced
transportation convenience in society and contributed to the mitigation of traffic safety hazards.
Addressing the potential for drivers to experience abnormal physical conditions during the driving
process, an enhanced lightweight network model based on YOLOv5 for detecting abnormal facial
expressions of drivers is proposed in this paper. Initially, the lightweighting of the YOLOv5 backbone
network is achieved by integrating the FasterNet Block, a lightweight module from the FasterNet
network, with the C3 module in the main network. This combination forms the C3-faster module.
Subsequently, the original convolutional modules in the YOLOv5 model are replaced with the
improved GSConvns module to reduce computational load. Building upon the GSConvns module,
the VoV-GSCSP module is constructed to ensure the lightweighting of the neck network while
maintaining detection accuracy. Finally, channel pruning and fine-tuning operations are applied
to the entire model. Channel pruning involves removing channels with minimal impact on output
results, further reducing the model’s computational load, parameters, and size. The fine-tuning
operation compensates for any potential loss in detection accuracy. Experimental results demonstrate
that the proposed model achieves a substantial reduction in both parameter count and computational
load while maintaining a high detection accuracy of 84.5%. The improved model has a compact size
of only 4.6 MB, making it more conducive to the efficient operation of onboard computers.

Keywords: YOLOv5; lightweighting; facial emotion recognition; model pruning

1. Introduction

In recent years, with the continuous improvement of industrial capabilities and rapid
socioeconomic development, there has been a simultaneous increase in the number of
automobiles. Alongside the expanding transportation networks, there is a growing fre-
quency of traffic accidents. This poses significant safety hazards to daily commuting,
substantially impacting people’s lives and property security. Among the various types
of traffic accidents, scenarios where drivers experience sudden health issues, leading to
physical discomfort and the inability to drive properly, are prevalent. Currently, with
the advancement of technology, automotive assisted driving technologies are increasingly
being applied to modern vehicles. This holds significant importance in reducing traffic
accidents, minimizing injuries, and enhancing highway transport capacity.

Machine vision technology, due to its perceptual similarity to human vision and
relatively lower implementation costs, has found wide application in various advanced
driver assistance systems. By leveraging machine vision, vehicles can identify important
elements such as road signs, vehicles, and pedestrians, providing real-time information
and alerts to drivers, thereby improving driving experience and reducing accident risks.
This widespread application has made machine vision technology an indispensable part of
advanced driver assistance systems.

Electronics 2024, 13, 1138. https://doi.org/10.3390/electronics13061138 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061138
https://doi.org/10.3390/electronics13061138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13061138
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061138?type=check_update&version=1

Electronics 2024, 13, 1138 2 of 13

Given the widespread development of current assisted driving technology, when
drivers experience abnormal conditions such as bodily pain or discomfort, their facial
expressions often deviate from the norm, which can influence driving behavior and decision-
making. Utilizing technologies like machine vision and deep learning, facial expression
recognition and detection are conducted on drivers. Interventions are promptly made in the
vehicle’s assisted driving system when abnormal facial expressions are detected, providing
driving assistance to the driver. This approach significantly reduces the likelihood of traffic
accidents caused by drivers’ abnormal states. Therefore, based on the above circumstances,
research into a lightweight abnormal facial expression detection model suitable for onboard
computers is of utmost importance in reducing traffic accidents.

Currently, facial expression detection methods are mainly divided into two types:
traditional detection methods and deep learning-based detection methods. In traditional
facial expression recognition methods, common feature extraction techniques include local
binary patterns and histogram of oriented gradients (HOG). Luo et al. [1] proposed a
facial expression recognition method that combines local binary patterns with principal
component analysis. Shan et al. [2] proposed a boosted-LBP method for enhancing local
binary patterns (LBP) features in facial expression recognition. They achieved optimal
recognition performance using a support vector machine classifier with boosted-LBP
features. Kumar et al. [3] introduced an expression recognition approach that extracts
the histogram of oriented gradients features from the facial action region rather than the
entire face, imparting robustness to scale and pose variations. Wang et al. [4] presented
a hybrid expression recognition method combining weber local descriptor (WLD) with
HOG features, demonstrating good performance on the JAFFE and Cohn–Kanade facial
expression databases. In addition, there are appearance-based expression recognition
methods. Bartlett et al. [5] proposed an approach using Gabor wavelet features and
eigenface features for expression recognition. Anderson et al. [6] suggested using facial
motion to characterize facial expressions in monochromatic frontal views, identifying six
emotions commonly associated with unique facial expressions. For geometric feature-based
expression recognition, Pantic et al. [7] introduced an analysis system that automatically
recognizes facial action units and their temporal models from long profile-view facial image
sequences. For some simple scenarios, traditional methods do not require a large amount
of computational resources and are more efficient. However, in complex and dynamic
scenarios, the expressive capability of traditional methods may be limited.

With the advancement of technologies such as computer vision and deep learning,
deep learning methods, particularly convolutional neural networks (CNN), have achieved
tremendous success in areas like object detection and image classification. Li et al. [8]
proposed a CNN network model with an attention mechanism for facial expression recog-
nition. The feasibility and effectiveness of the model were validated on four representative
datasets: JAFFE, CK+, FER2013, and Oulu-CASIA. Shan et al. [9] designed a facial au-
tomatic recognition system based on deep convolutional neural networks. This system
can discover deeper-level feature representations for facial expressions, enabling auto-
matic recognition. The accuracy achieved on the JAFFE and CK+ datasets was 76.7% and
80.3%, respectively, confirming the feasibility and effectiveness of the system. In addition,
Li et al. [10] introduced a Faster R-CNN facial expression recognition method based on con-
volutional neural networks to overcome the cumbersome explicit feature extraction process
and issues related to low-level data operations in traditional facial expression recognition.
Experimental results demonstrated that Faster R-CNN exhibits strong performance and
generalization capabilities in facial expression recognition. Febrian et al. [11] proposed a
BiLSTM-CNN model that integrates convolutional neural networks and bidirectional long
short-term memory with data augmentation functionality. Experimental results on the
CK+ dataset, containing seven common facial expressions, indicated that the augmented
BiLSTM-CNN model effectively integrates temporal and spatial information, perform-
ing well in complex facial expression recognition tasks. Wang et al. [12] utilized a blend
shapes technique in combination with convolutional neural networks. They introduced a

Electronics 2024, 13, 1138 3 of 13

BlendshapeFERNet network for facial expression recognition, which, by fully leveraging
3D blendshapes, enhanced the performance of facial expression recognition (FER). The
proposed model achieved promising experimental results on three typical datasets: CK+,
Oulu-CASIA, and MMI. Li et al. [13] proposed an improved multi-scale convolutional
neural network model to address issues such as severe information loss and insufficient
spatial connections between components in existing facial expression recognition models.
The algorithm’s effectiveness was experimentally validated on facial expression recogni-
tion datasets, including JAFFE and FER-2013. Qiao et al. [14] addressed the complexities
and suboptimal recognition issues in facial expression recognition using convolutional
neural networks. They introduced an optimization algorithm based on an improved CNN
combined with support vector machine. The proposed algorithm, when compared to the
traditional LeNet-5 algorithm, demonstrated a 2.2 percentage point improvement on the
Fer2013 dataset while maintaining a simpler structure.

Currently, most publicly available facial expression datasets include six basic emotion
types: happiness, anger, surprise, fear, disgust, and sadness. However, there is a scarcity of
facial expressions related to pain and suffering. Additionally, many current neural network
models achieve high accuracy in facial expression detection and recognition. However,
complex models can also result in significant computational overhead and lack the ability
to be efficiently deployed on hardware devices to address real-world problems.

Research has revealed that during normal driving, drivers should maintain a neutral
facial expression. However, in the event of sudden unexpected situations while driving,
facial expressions may reflect signs of distress. Furthermore, displaying a happy facial
expression while conversing with passengers could potentially affect the driver’s decision-
making process. Moreover, considering the limited computational capacity, resources, and
energy consumption of onboard computers in vehicles, it is not feasible to accommodate
large-scale, complex, and computationally intensive detection models. In light of the
aforementioned issues, researching a lightweight detection model with a simple network
structure and low computational requirements holds significant promise for reducing traffic
accidents. Therefore, this paper proposes a lightweight version of the YOLOv5 network to
detect abnormal facial expressions in drivers, aiming to meet the accuracy and practicality
requirements of detection.

The primary contributions are as follows:

(1) First, in response to the current scarcity of publicly available datasets for facial ex-
pressions of pain and distress, we created our own dataset. This dataset primarily
includes three categories of expressions that drivers commonly exhibit during driving:
happiness, neutrality, and pain. In the driving context, expressions of happiness and
pain can influence certain driving decisions, and in this paper, these two types of
expressions are classified as abnormal driving expressions.

(2) Next, in the realm of model lightweighting enhancements, a lightweight design
approach was implemented for the YOLOv5 backbone network. This involved sub-
stituting the C3 module in the backbone network with the C3-faster module and
replacing certain convolutional modules in the YOLOv5 network with the refined
GSConvns lightweight module. Additionally, lightweight processing was applied to
the neck network using the VoV-GSCSP module. These modifications were aimed at
reducing the overall model’s parameter count, computational load, and size while
ensuring that the model maintains a high level of detection accuracy.

(3) Finally, pruning and fine-tuning the improved network model further reduced its
parameter count, computational load, and size. Through fine-tuning, any perfor-
mance loss incurred during pruning was compensated for, enabling the model to
maintain a high level of detection accuracy and meet the practical detection needs in
driving environments.

Electronics 2024, 13, 1138 4 of 13

2. Introduction to the YOLOv5 Algorithm

YOLO (you only look once) [15] is an object detection algorithm, which implies that
the neural network only needs to examine an image once to output results. In June 2020, the
Ultralytics team introduced the YOLOv5 model as part of the YOLO series, and it has been
continuously updated since then. YOLOv5 consists of five versions: YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The only difference lies in the depth and width of
the models, denoted as depth multiple and width multiple, respectively. These values
increase in sequence from small to large, indicating a continuous increase in the model’s
depth and width. For a comprehensive consideration of detection accuracy, model size, and
detection speed, this method employs YOLOv5s as the baseline model for detection tasks.
The YOLOv5s network structure consists of three main parts: the backbone network, the
neck network, and the prediction end. The input end employs preprocessing techniques
such as Mosaic data augmentation, adaptive anchor box calculation, and adaptive image
scaling. Mosaic data augmentation involves random scaling, cropping, and arranging of
images, enhancing dataset diversity and the ability to detect small objects. Adaptive anchor
box calculation computes the optimal anchor box values for different datasets. Adaptive
image scaling adds minimal black borders adaptively to the original image, reducing
computational load and improving detection speed. The backbone network structure
includes C3, CBS, and SPPF modules. The C3 module consists of three CBS convolutional
layers and multiple bottleneck modules. The CBS structure combines Conv, BN, and SiLU
activation functions. The SPPF module transforms feature maps of any size into a fixed-size
feature vector, enhancing feature map expression capability. The neck network adopts
feature pyramid network [16] and path aggregation network [17] structures as the feature
fusion part of the network. The prediction end has detection heads for large, medium,
and small objects with sizes of 20 × 20, 40 × 40, and 80 × 80, respectively. Multiple-scale
predictions are made on the feature maps extracted from the neck network, ultimately
providing bounding box, class, and confidence information for the detected objects.

3. Related Improvements
3.1. Backbone Network Improvement

In order to achieve model lightweighting while ensuring a certain level of accuracy,
improvements were made to the backbone network of the model. In this study, the
lightweight FasterNet [18] was integrated with the YOLOv5 backbone network’s C3 module.
The FasterNet Block from the FasterNet network was employed to replace the bottleneck
module in the C3 module, which significantly impacts the overall model’s computational
and parameter count. While retaining the fundamental structure of the C3 module, the
C3-faster module is formed. The C3-faster module was used to replace the C3 module in the
backbone network responsible for feature extraction. The structure of the C3-faster module
is illustrated in Figure 1. The CBS module is a convolutional module defined in the YOLOv5
network, consisting of a two-dimensional convolutional layer, a batch normalization layer,
and a SiLU activation function. Through subsequent ablation experiments, it can be
observed that compared to the original C3 module, the C3-faster module effectively reduces
model parameters, computational load, and model size.

The FasterNet Block consists of a partial convolution layer [18] (PConv), a CBS mod-
ule, and a 2D convolutional layer. The inclusion of a BN layer within the CBS module
accelerates model training and convergence speed. Additionally, the SiLU activation func-
tion introduces non-linear characteristics to the model, enhancing its expressive capacity.
The partial convolution layer, denoted as PConv, selectively applies regular convolution
to a subset of input channels for spatial feature extraction. It has no impact on other
channels, keeping their sizes unchanged. This effectively reduces computational redun-
dancy. The computational formulas for PConv and standard convolution are provided in
Equations (1) and (2).

FLOPsp = h × w × k2 × c2
p (1)

Electronics 2024, 13, 1138 5 of 13

FLOPs = h × w × k2 × c2 (2)

Here, h, w, and c represent the height, width, and number of channels, respectively,
while k denotes the filter. cp represents the channels in the PConv network. When
cp/c = 1/4, the computational cost of PConv is only 1/16th of that of standard convo-
lution. Following PConv, to enhance model stability, training speed, and performance,
input data normalization and SiLU activation functions are applied between the two stan-
dard convolution layers. This aims to boost the expressive power and training efficiency of
the model. The FasterNet Block utilizes partial convolution to process input feature maps,
reducing computational complexity and model parameters to enhance algorithm efficiency.
This design enables a more effective utilization of computational resources, leading to
accelerated model inference speed.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 13

Figure 1. (a) C3-faster module structure; (b) FasterNet Block module structure.

The FasterNet Block consists of a partial convolution layer [18] (PConv), a CBS mod-
ule, and a 2D convolutional layer. The inclusion of a BN layer within the CBS module
accelerates model training and convergence speed. Additionally, the SiLU activation func-
tion introduces non-linear characteristics to the model, enhancing its expressive capacity.
The partial convolution layer, denoted as PConv, selectively applies regular convolution
to a subset of input channels for spatial feature extraction. It has no impact on other chan-
nels, keeping their sizes unchanged. This effectively reduces computational redundancy.
The computational formulas for PConv and standard convolution are provided in Equa-
tions (1) and (2). 𝐹𝐿𝑂𝑃𝑠 = ℎ × 𝑤 × 𝑘ଶ × 𝑐ଶ (1)𝐹𝐿𝑂𝑃s = ℎ × 𝑤 × 𝑘ଶ × 𝑐ଶ (2)

Here, ℎ, 𝑤, and 𝑐 represent the height, width, and number of channels, respectively,
while k denotes the filter. 𝑐 represents the channels in the PConv network. When 𝑐/𝑐 =
1/4, the computational cost of PConv is only 1/16th of that of standard convolution. Fol-
lowing PConv, to enhance model stability, training speed, and performance, input data
normalization and SiLU activation functions are applied between the two standard con-
volution layers. This aims to boost the expressive power and training efficiency of the
model. The FasterNet Block utilizes partial convolution to process input feature maps,
reducing computational complexity and model parameters to enhance algorithm effi-
ciency. This design enables a more effective utilization of computational resources, lead-
ing to accelerated model inference speed.

3.2. GSConv Module Improvement
The Ghost Conv [19] module is a high-performance convolutional module proposed

by Han K and others. It addresses the issues of parameter accumulation and feature re-
dundancy that arise when using a large number of standard convolutions for image fea-
ture extraction. The Ghost Conv module performs a small number of convolutions and
linear transformation operations separately in its process, ultimately concatenating the
feature maps obtained from these operations. Due to the outstanding performance of
Ghost Conv, it has been widely used in research on lightweighting computer vision mod-
els since its introduction. However, there is a potential issue of information loss in the
linear transformation. To address this problem, Li H and others proposed the GSConv
module [20]. In the GSConv module, assuming the input channel number is C1 and the
output channel number is C2, it first undergoes a standard convolution, reducing the
channel number to C2/2. Subsequently, it passes through a depthwise separable convolu-
tion [21] (DWConv) with the channel number remaining unchanged. The feature maps
from the two convolutions are then concatenated, followed by a shuffle operation.

The traditional depthwise separable convolution employs separate convolution
channels, reducing both computational and parameter costs. However, it also leads to the

Figure 1. (a) C3-faster module structure; (b) FasterNet Block module structure.

3.2. GSConv Module Improvement

The Ghost Conv [19] module is a high-performance convolutional module proposed
by Han K and others. It addresses the issues of parameter accumulation and feature
redundancy that arise when using a large number of standard convolutions for image
feature extraction. The Ghost Conv module performs a small number of convolutions
and linear transformation operations separately in its process, ultimately concatenating
the feature maps obtained from these operations. Due to the outstanding performance
of Ghost Conv, it has been widely used in research on lightweighting computer vision
models since its introduction. However, there is a potential issue of information loss in
the linear transformation. To address this problem, Li H and others proposed the GSConv
module [20]. In the GSConv module, assuming the input channel number is C1 and
the output channel number is C2, it first undergoes a standard convolution, reducing
the channel number to C2/2. Subsequently, it passes through a depthwise separable
convolution [21] (DWConv) with the channel number remaining unchanged. The feature
maps from the two convolutions are then concatenated, followed by a shuffle operation.

The traditional depthwise separable convolution employs separate convolution chan-
nels, reducing both computational and parameter costs. However, it also leads to the loss
of feature information, thereby diminishing feature extraction capability. The structure
is illustrated in Figure 2, and the depthwise separable convolution primarily consists of
two processes: depthwise convolution and pointwise convolution. It can replace convo-
lution operations in a convolutional neural network, resulting in reduced parameter and
computational costs. The computational formula for standard convolution is given by
Equation (3), while the computational formula for depthwise separable convolution is
provided in Equation (4). Here, W and H are the width and height of the input feature map,
K is the kernel size, and C1 and C2 represent the input and output feature channel num-
bers. Compared to standard convolution, the computational cost of depthwise separable
convolution is reduced, as shown in Equation (5).

GFLOPs = W × H × K × K × C1 × C2 (3)

Electronics 2024, 13, 1138 6 of 13

GFLOPs1 = W × H × K × K×C1 + W × H × 1 × 1 × C1 × C2 (4)

GFLOPs1

GFLOPs
=

W × H × K × K×C1 + W × H × 1 × 1 × C1 × C2

W × H × K × K × C1 × C2
=

1
K2 +

1
C2

(5)

Electronics 2024, 13, x FOR PEER REVIEW 6 of 13

loss of feature information, thereby diminishing feature extraction capability. The struc-
ture is illustrated in Figure 2, and the depthwise separable convolution primarily consists
of two processes: depthwise convolution and pointwise convolution. It can replace con-
volution operations in a convolutional neural network, resulting in reduced parameter
and computational costs. The computational formula for standard convolution is given
by Equation (3), while the computational formula for depthwise separable convolution is
provided in Equation (4). Here, 𝑊 and 𝐻 are the width and height of the input feature
map, 𝐾 is the kernel size, and 𝐶ଵ and 𝐶ଶ represent the input and output feature channel
numbers. Compared to standard convolution, the computational cost of depthwise sepa-
rable convolution is reduced, as shown in Equation (5). 𝐺𝐹𝐿𝑂𝑃𝑠 = 𝑊 ×𝐻 × 𝐾 × 𝐾 × 𝐶ଵ × 𝐶ଶ (3)𝐺𝐹𝐿𝑂𝑃𝑠ଵ = 𝑊 × 𝐻 × 𝐾 × 𝐾 × 𝐶ଵ +𝑊 ×𝐻 × 1 × 1 × 𝐶ଵ × 𝐶ଶ (4)

ீிை௦భீிை௦ = ௐ×ு×××భାௐ×ு×ଵ×ଵ×భ×మௐ×ு×××భ×మ = ଵమ + ଵమ (5)

Figure 2. Depthwise separable convolution process diagram.

To address the limitations in the feature extraction capability of depthwise separable
convolution, the GSConv module compensates by concatenating the feature maps from
standard convolution with those from depthwise separable convolution. Subsequently, a
shuffle operation is applied to the concatenated feature maps. This shuffle operation uni-
formly mixes and disrupts the channel feature information from depthwise separable con-
volution and standard convolution, enhancing the extraction of semantic information.
However, it is worth noting that this operation may be less friendly to certain mobile hard-
ware devices with limited computational resources.

In response to the aforementioned issue, improvements are made based on the
GSConv module. A standard 2D convolution module and ReLU activation function were
employed to replace the original shuffle operation, which consumes significant computa-
tional resources. This resulted in the formation of the GSConvns module, as illustrated in
Figure 3. Convolutional operations are applied to the concatenated feature maps, followed
by the application of the ReLU activation function. In terms of improvements, replacing
the original shuffle operation with convolutional layers effectively reduces computational
load while enhancing the model’s feature extraction capabilities. This modification also
enables the model to be effectively implemented on some low-power mobile devices. Af-
ter passing through the convolutional layers, the addition of the ReLU activation function
introduces non-linearity, enabling the network to learn and represent more complex func-
tions. This aids in reducing overfitting and improving the model’s generalization capabil-
ities. The improvements contribute to enhancing the model’s feature representation, re-
ducing model parameters and computational load, and increasing compatibility with
hardware such as in-vehicle computers.

Figure 2. Depthwise separable convolution process diagram.

To address the limitations in the feature extraction capability of depthwise separable
convolution, the GSConv module compensates by concatenating the feature maps from
standard convolution with those from depthwise separable convolution. Subsequently,
a shuffle operation is applied to the concatenated feature maps. This shuffle operation
uniformly mixes and disrupts the channel feature information from depthwise separable
convolution and standard convolution, enhancing the extraction of semantic information.
However, it is worth noting that this operation may be less friendly to certain mobile
hardware devices with limited computational resources.

In response to the aforementioned issue, improvements are made based on the GSConv
module. A standard 2D convolution module and ReLU activation function were employed
to replace the original shuffle operation, which consumes significant computational re-
sources. This resulted in the formation of the GSConvns module, as illustrated in Figure 3.
Convolutional operations are applied to the concatenated feature maps, followed by the
application of the ReLU activation function. In terms of improvements, replacing the
original shuffle operation with convolutional layers effectively reduces computational load
while enhancing the model’s feature extraction capabilities. This modification also enables
the model to be effectively implemented on some low-power mobile devices. After passing
through the convolutional layers, the addition of the ReLU activation function introduces
non-linearity, enabling the network to learn and represent more complex functions. This
aids in reducing overfitting and improving the model’s generalization capabilities. The
improvements contribute to enhancing the model’s feature representation, reducing model
parameters and computational load, and increasing compatibility with hardware such as
in-vehicle computers.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

Figure 3. GSConvns module structure.

3.3. Improvement of the Neck Network
While lightweighting the model, it is essential to ensure the detection accuracy to

meet practical requirements. In the neck network, a slim-neck structure was added based
on the aforementioned GSConvns module. The slim-neck [18] structure includes the
GSbottleneck module and the VoV-GSCSP module constructed based on the GSConvns
module, where GSConvns is an improved lightweight convolution module in the
YOLOv5 model, and VoV-GSCSP represents a lightweight module in the neck network of
YOLOv5, as shown in Figure 4. Subsequently, the C3 module in the neck network was
replaced with the VoV-GSCSP module containing GSConvns. Through experimental val-
idation, this module, compared to the C3 module with a similar computational load, ef-
fectively improved the model’s detection accuracy, meeting the accuracy requirements in
practical detection scenarios.

Figure 4. Slim-neck structure: (a) GSbottleneck module; (b) VoV-GSCSP module.

In this paper, the GSConvns module is used in the neck network and some parts of
the backbone network to replace the regular CBS convolution module. This ensures a re-
duction in parameters, computational load, and model size, achieving lightweighting
while also addressing the comprehensive extraction and fusion of target feature infor-
mation. Furthermore, the introduction of the VoV-GSCSP module replaces the C3 module
in the neck network, which was limited in terms of feature fusion. This not only reduces
model complexity but also enhances model accuracy and inference time. The improved
network model is illustrated in Figure 5.

Figure 3. GSConvns module structure.

3.3. Improvement of the Neck Network

While lightweighting the model, it is essential to ensure the detection accuracy to
meet practical requirements. In the neck network, a slim-neck structure was added based
on the aforementioned GSConvns module. The slim-neck [18] structure includes the
GSbottleneck module and the VoV-GSCSP module constructed based on the GSConvns
module, where GSConvns is an improved lightweight convolution module in the YOLOv5
model, and VoV-GSCSP represents a lightweight module in the neck network of YOLOv5,

Electronics 2024, 13, 1138 7 of 13

as shown in Figure 4. Subsequently, the C3 module in the neck network was replaced
with the VoV-GSCSP module containing GSConvns. Through experimental validation,
this module, compared to the C3 module with a similar computational load, effectively
improved the model’s detection accuracy, meeting the accuracy requirements in practical
detection scenarios.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

Figure 3. GSConvns module structure.

3.3. Improvement of the Neck Network
While lightweighting the model, it is essential to ensure the detection accuracy to

meet practical requirements. In the neck network, a slim-neck structure was added based
on the aforementioned GSConvns module. The slim-neck [18] structure includes the
GSbottleneck module and the VoV-GSCSP module constructed based on the GSConvns
module, where GSConvns is an improved lightweight convolution module in the
YOLOv5 model, and VoV-GSCSP represents a lightweight module in the neck network of
YOLOv5, as shown in Figure 4. Subsequently, the C3 module in the neck network was
replaced with the VoV-GSCSP module containing GSConvns. Through experimental val-
idation, this module, compared to the C3 module with a similar computational load, ef-
fectively improved the model’s detection accuracy, meeting the accuracy requirements in
practical detection scenarios.

Figure 4. Slim-neck structure: (a) GSbottleneck module; (b) VoV-GSCSP module.

In this paper, the GSConvns module is used in the neck network and some parts of
the backbone network to replace the regular CBS convolution module. This ensures a re-
duction in parameters, computational load, and model size, achieving lightweighting
while also addressing the comprehensive extraction and fusion of target feature infor-
mation. Furthermore, the introduction of the VoV-GSCSP module replaces the C3 module
in the neck network, which was limited in terms of feature fusion. This not only reduces
model complexity but also enhances model accuracy and inference time. The improved
network model is illustrated in Figure 5.

Figure 4. Slim-neck structure: (a) GSbottleneck module; (b) VoV-GSCSP module.

In this paper, the GSConvns module is used in the neck network and some parts of
the backbone network to replace the regular CBS convolution module. This ensures a
reduction in parameters, computational load, and model size, achieving lightweighting
while also addressing the comprehensive extraction and fusion of target feature information.
Furthermore, the introduction of the VoV-GSCSP module replaces the C3 module in the
neck network, which was limited in terms of feature fusion. This not only reduces model
complexity but also enhances model accuracy and inference time. The improved network
model is illustrated in Figure 5.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 5. Improved model structure.

3.4. Model Channel Pruning and Fine-Tuning
In the development of convolutional neural networks, there has been continuous im-

provement in both detection accuracy and speed. Some models exhibit stronger feature
extraction capabilities, but this comes at the cost of increased computational resource con-
sumption. Taking YOLOv5 as an example, in the YOLOv5 network model, multiple con-
volutional layers are used for feature extraction to enable accurate and fast object detec-
tion and localization. These layers output multiple channels, assigning corresponding
weights to each channel for result prediction based on their magnitudes. However, some
channel weight parameters are extremely close to zero, exerting minimal impact on the
overall predictive capability of the network. Nevertheless, they still contribute to subse-
quent computation, leading to a certain degree of computational resource wastage and
impacting detection efficiency. To address this, pruning operations [22] are applied to the
improved model to eliminate redundant and non-critical weights. Before channel prun-
ing, a scaling factor is introduced for each channel, which is multiplied by the output of
that channel. Subsequently, the model undergoes sparse training to differentiate between
different channels, facilitating better identification of redundant channels for the subse-
quent pruning operation. In the YOLOv5 network, there are multiple convolutional mod-
ules, and the batch normalization (BN) layer within these modules can accelerate network
training convergence and enhance network generalization performance. The iterative pro-
cess of batch normalization is as follows: 𝜇 = ଵ∑ 𝑧ୀଵ , (6)

𝜎 = ଵ∑ (𝑧 − 𝜇)ଶ,ୀଵ (7)

where 𝜇 and 𝜎 represent the mean and standard deviation computed for the input, 𝑚 is the current mini-batch size, and ε is a regularization parameter introduced to prevent
standard deviation from becoming zero. Normalization is performed to obtain 𝑍መ, and the
input is reconstructed to obtain 𝑍௨௧. The calculation formulae are shown in Equations (8)
and (9). 𝑍መ = ିఓಳටఙಳమାఌ (8)

𝑍௨௧ = 𝛾𝑍መ + 𝛽 (9)

Adding L1-norm regularization to the loss function can leverage the sparsity effect
of the L1-norm to induce sparsity in the scaling factors of channels. The loss function for
sparse training is represented as shown in Equation (10).

Figure 5. Improved model structure.

3.4. Model Channel Pruning and Fine-Tuning

In the development of convolutional neural networks, there has been continuous
improvement in both detection accuracy and speed. Some models exhibit stronger fea-
ture extraction capabilities, but this comes at the cost of increased computational resource
consumption. Taking YOLOv5 as an example, in the YOLOv5 network model, multiple
convolutional layers are used for feature extraction to enable accurate and fast object de-
tection and localization. These layers output multiple channels, assigning corresponding
weights to each channel for result prediction based on their magnitudes. However, some
channel weight parameters are extremely close to zero, exerting minimal impact on the

Electronics 2024, 13, 1138 8 of 13

overall predictive capability of the network. Nevertheless, they still contribute to subse-
quent computation, leading to a certain degree of computational resource wastage and
impacting detection efficiency. To address this, pruning operations [22] are applied to the
improved model to eliminate redundant and non-critical weights. Before channel pruning,
a scaling factor is introduced for each channel, which is multiplied by the output of that
channel. Subsequently, the model undergoes sparse training to differentiate between dif-
ferent channels, facilitating better identification of redundant channels for the subsequent
pruning operation. In the YOLOv5 network, there are multiple convolutional modules, and
the batch normalization (BN) layer within these modules can accelerate network training
convergence and enhance network generalization performance. The iterative process of
batch normalization is as follows:

µB =
1
m∑m

i=1 zi, (6)

σB =
1
m∑m

i=1 (zi − µB)
2, (7)

where µB and σB represent the mean and standard deviation computed for the input, m is
the current mini-batch size, and ε is a regularization parameter introduced to prevent stan-
dard deviation from becoming zero. Normalization is performed to obtain Ẑ, and the input
is reconstructed to obtain Zout. The calculation formulae are shown in Equations (8) and (9).

Ẑ =
Zin − µB√

σ2
B + ε

(8)

Zout = γẐ + β (9)

Adding L1-norm regularization to the loss function can leverage the sparsity effect
of the L1-norm to induce sparsity in the scaling factors of channels. The loss function for
sparse training is represented as shown in Equation (10).

L = ∑(x,y) l(f (x, W), y) + λ∑γϵΓ g(γ) (10)

In the equation, (x, y) represents the training input and output. The first term repre-
sents the loss function for regular training, where W is the training weight. The second
term denotes the L1-norm regularization term used to induce sparsity. γ is the scaling
factor, Γ represents the set of pruned channels, and λ is the penalty factor.

During sparse training, the sparsity level of the model can be controlled and adjusted
by a penalty factor. As the penalty factor is tuned, some channels in the batch normal-
ization layer tend towards zero scaling factors. The outputs of these BN layers with very
small scaling factors are also very small, having minimal impact on the overall predictive
performance of the model while still consuming computational resources. Hence, these
redundant channels are pruned, which may result in a slight loss in accuracy, but this loss
can potentially be compensated for during the subsequent fine-tuning process. After sparse
training, a pruning threshold is determined based on the specified pruning rate, and BN
layer channels below this threshold are pruned from the network model. The pruning pro-
cess is illustrated in Figure 6, where the blue and green rectangles, respectively, represent
portions of the BN layer channels with different scaling factors after sparse training.

Fine-tuning is conducted to compensate for the loss in the original model’s expressive
power caused by channel pruning. Channel pruning may introduce varying degrees of
changes to the original network structure, leading to a decrease in model performance,
particularly in terms of reduced detection accuracy. Therefore, fine-tuning helps improve
the model’s accuracy to some extent, thereby restoring its performance.

Electronics 2024, 13, 1138 9 of 13

Electronics 2024, 13, x FOR PEER REVIEW 9 of 13

𝐿 = ∑ 𝑙(𝑓(𝑥,𝑊), 𝑦)(௫,௬) + 𝜆∑ 𝑔(𝛾)ఊఢ (10)

In the equation, (𝑥, 𝑦) represents the training input and output. The first term rep-
resents the loss function for regular training, where 𝑊 is the training weight. The second
term denotes the L1-norm regularization term used to induce sparsity. 𝛾 is the scaling
factor, Γ represents the set of pruned channels, and 𝜆 is the penalty factor.

During sparse training, the sparsity level of the model can be controlled and adjusted
by a penalty factor. As the penalty factor is tuned, some channels in the batch normaliza-
tion layer tend towards zero scaling factors. The outputs of these BN layers with very
small scaling factors are also very small, having minimal impact on the overall predictive
performance of the model while still consuming computational resources. Hence, these
redundant channels are pruned, which may result in a slight loss in accuracy, but this loss
can potentially be compensated for during the subsequent fine-tuning process. After
sparse training, a pruning threshold is determined based on the specified pruning rate,
and BN layer channels below this threshold are pruned from the network model. The
pruning process is illustrated in Figure 6, where the blue and green rectangles, respec-
tively, represent portions of the BN layer channels with different scaling factors after
sparse training.

Figure 6. Model pruning process.

Fine-tuning is conducted to compensate for the loss in the original model’s expressive
power caused by channel pruning. Channel pruning may introduce varying degrees of
changes to the original network structure, leading to a decrease in model performance,
particularly in terms of reduced detection accuracy. Therefore, fine-tuning helps improve
the model’s accuracy to some extent, thereby restoring its performance.

4. Experimental Results
4.1. Introduction to the Experimental Dataset

Due to the scarcity of publicly available datasets for facial expressions of pain, the
dataset used in this experiment is a self-made dataset. This dataset includes three types of
facial expressions commonly observed during driving, namely, happy, neutral, and pain,
with some of the painful facial expression images sourced from the PEMF dataset [23].
The dataset was first subjected to preprocessing steps such as uniform sample distribution
and data augmentation. Subsequently, the LabelImg tool software is used to annotate the
dataset in a format suitable for YOLO network training. The processed dataset comprises
approximately 2500 images. The created dataset was divided into training, validation, and
test sets in a ratio of 8:1:1. During the input stage of the YOLOv5 network, the model
utilizes Mosaic data augmentation, involving the scaling and juxtaposition of any four
images. This approach enriched the dataset and enhanced the network’s robustness to a
certain extent.

4.2. Experimental Environment
The main configuration for the experiment includes a GPU, specifically the NVIDIA

GeForce RTX 3090 and the PyTorch deep learning framework. During the training phase,

Figure 6. Model pruning process.

4. Experimental Results
4.1. Introduction to the Experimental Dataset

Due to the scarcity of publicly available datasets for facial expressions of pain, the
dataset used in this experiment is a self-made dataset. This dataset includes three types of
facial expressions commonly observed during driving, namely, happy, neutral, and pain,
with some of the painful facial expression images sourced from the PEMF dataset [23].
The dataset was first subjected to preprocessing steps such as uniform sample distribution
and data augmentation. Subsequently, the LabelImg tool software is used to annotate the
dataset in a format suitable for YOLO network training. The processed dataset comprises
approximately 2500 images. The created dataset was divided into training, validation, and
test sets in a ratio of 8:1:1. During the input stage of the YOLOv5 network, the model
utilizes Mosaic data augmentation, involving the scaling and juxtaposition of any four
images. This approach enriched the dataset and enhanced the network’s robustness to a
certain extent.

4.2. Experimental Environment

The main configuration for the experiment includes a GPU, specifically the NVIDIA
GeForce RTX 3090 and the PyTorch deep learning framework. During the training phase,
the number of epochs was set to 400, the batch size was set to 32, and the optimizer chosen
was SGD. The baseline model is YOLOv5s, with network depth gain and convolution
channel gain parameters set to 0.33 and 0.5, respectively.

4.3. Evaluation Metrics

In this experiment, lightweighting of the model is pursued, and the evaluation metrics
include the model’s parameter count (parameters), computational complexity (floating
point operations, FLOPs), single object detection average precision (AP), mean average
precision (mAP), and model size. The calculation process for mean average precision (mAP)
is outlined as follows:

P =
TP

TP + FP,
(11)

R =
TP

TP + FN,
(12)

AP =
∫ 1

0
P(R)dR, (13)

mAP =
∑n

i=1 APi

n
. (14)

Among these, P stands for precision, indicating the proportion of correctly predicted
samples among positive samples, while R represents recall, denoting the proportion of
positive samples predicted as positive among all positive samples. TP signifies the number
of true positive predictions (actual positives predicted as positives), FP is the count of false
positive predictions (actual negatives predicted as positives), and FN is the number of false
negative predictions (actual positives predicted as negatives). AP represents the average
precision value, APi represents the average precision value for the corresponding category,

Electronics 2024, 13, 1138 10 of 13

n represents the number of categories, mAP is the mean average precision across all classes,
and mAP@0.5 denotes the mAP value when the IoU threshold is set to 0.5. Model size
indicates the size of the weight file obtained after training.

4.4. The Analysis of Experimental Results

In the above dataset, facial expressions are mainly divided into three categories: happy,
neutral, and pain. Ensuring the dataset and related parameters are the same, we selected
several key lightweight networks for comparative testing, as shown in Table 1. It can
be observed that compared to YOLOv7-tiny, the improved lightweight model exhibits a
significant reduction in both parameter count and computational complexity. The mAP
has increased by nearly two points, and there is also a noticeable decrease in model size.
In comparison to MobileNet and ShuffleNet, two other lightweight networks, although
there is a slight drawback in computational complexity, there are significant advantages in
terms of parameter count, model size, and detection accuracy. Compared to the original
model, there is a substantial decrease in parameter count, computational complexity, and
model size. This makes the improved model more friendly to mobile devices with limited
computational resources. While there is a slight decrease in detection accuracy by 1.2%, it
still maintains a relatively high level of accuracy, achieving practical detection effectiveness
in real-world usage.

Table 1. Comparative experiment.

Method Parameters/M FLOPs/G mAP@0.5/% Size/MB

YOLOv5s 6.7 15.8 85.7 13.7
YOLOV7-tiny 5.9 13.9 82.3 11.7
Mobilenetv3 5.5 2.8 83.1 17.9
Shufflenetv2 3.5 2.5 82.6 9.83

Improved YOLOv5 2.1 5.1 84.5 4.6

The ablation experiment, as shown in Table 2, indicates that the original model had a
detection accuracy of 85.7%. After undergoing lightweight network model improvements,
the detection accuracy experienced a slight decrease, reaching 84.9%. However, there was
a noticeable reduction in computational load, parameters, and model size. Subsequently,
pruning was applied to the lightweight improved model, resulting in further reductions
in the above-mentioned metrics, while the detection accuracy decreased by only 0.4%,
reaching 84.5%. Specifically, the detection accuracies for the three categories of facial
expressions—happy, neutral, and pain—were 81.9%, 88.1%, and 83.5%, respectively; the
model still maintains a robust detection performance in practical detection tasks. This
satisfies the requirements for both practicality and accuracy, making it more suitable for
deployment on mobile devices.

Table 2. Ablation experiment.

C3-Faster GSConvns VoV-GSCSP Prune Parameters/M FLOPs/G mAP@0.5/% Size/MB

- - - - 6.7 15.8 85.7 13.7√
- - - 6.3 13.8 84.5 12.4

-
√

- - 6.2 12.4 82.0 12.2
- -

√
- 7.7 15.8 86.0 15.2

-
√ √

- 6.3 14.5 85.3 12.4√ √ √
- 5.5 10.4 84.9 10.7√ √ √ √

2.1 5.1 84.5 4.6

After adding the C3-faster module and GSConvns module, there was a reduction in
model parameters, computational load, and model size. However, this led to a certain
degree of accuracy decrease. The introduction of the VoV-GSCSP module helped com-
pensate for some of the lost accuracy. Following these improvements, with reductions in

Electronics 2024, 13, 1138 11 of 13

model parameters, computational load, and model size, the mean average precision only
decreased by 0.8%. After fine-tuning the pruned model, a mere 0.4% accuracy loss was
observed, achieving reductions in the other three metrics. This indicates a nearly lossless
pruning of the model to the maximum extent possible.

For a more intuitive assessment of the model’s real-world scene detection perfor-
mance, the detection results are visualized, as depicted in Figure 7. The results encompass
detections for driver expressions of pain, happiness, and neutrality. By conducting de-
tection on images from actual driving scenarios beyond the dataset, it becomes evident
that the method proposed in this paper demonstrates both accuracy and practicality. It is
well-suited to meet the detection requirements in real-world scenes.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 13

Figure 7. Detection results.

5. Conclusions
Considering practical application needs, this paper proposes an improved light-

weight YOLOv5 detection model for detecting abnormal expressions in drivers during the
driving process, potentially caused by body pain or discomfort. These abnormal expres-
sions can influence driving behavior decisions. Timely detection of such expressions al-
lows for intervention through the vehicle’s advanced driver-assistance system, preventing
subsequent traffic safety incidents resulting from the driver’s discomfort. The experi-
mental results indicate that the proposed improvement method, compared to the baseline
model YOLOv5s, reduces the model size from 13.7 MB to 4.6 MB, an approximately
66.42% reduction. The parameter count has been reduced from 6.7 million to 2.1 million,
and the computational load has been reduced from 15.8 billion to 5.1 billion. The im-
proved model still maintains a high level of detection accuracy. Due to the reduction in
computational load, parameter count, and model size, it can execute model inference and
data processing more quickly. This not only enhances system response time but also re-
duces energy consumption. It is more convenient for deployment on mobile devices and
contributes to the efficient operation of in-vehicle computers. In addition, in further re-
search on lightweighting, it is essential to consider multi-angle recognition of the driver’s
facial expressions as well as facial expression detection when the driver is in complex
background environments. This includes scenarios with poor lighting conditions or high
interference in the background.

Author Contributions: Conceptualization, K.Y. and Z.W. methodology, K.Y. and Z.W.; software,
Z.W. and F.G.; Validation, K.Y. and Z.W.; Resources, F.L.; Writing—original draft, Z.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The main purpose of this study is to improve the detection of human
attention in YOLOv5. The experimental dataset was mainly obtained through public data such as
VOC.

Acknowledgments: The authors gratefully acknowledge the reviewers and editors for their careful
work, and they also thank the data sharer for their selfless dedication.

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 7. Detection results.

5. Conclusions

Considering practical application needs, this paper proposes an improved lightweight
YOLOv5 detection model for detecting abnormal expressions in drivers during the driving
process, potentially caused by body pain or discomfort. These abnormal expressions can
influence driving behavior decisions. Timely detection of such expressions allows for inter-
vention through the vehicle’s advanced driver-assistance system, preventing subsequent
traffic safety incidents resulting from the driver’s discomfort. The experimental results in-
dicate that the proposed improvement method, compared to the baseline model YOLOv5s,
reduces the model size from 13.7 MB to 4.6 MB, an approximately 66.42% reduction. The
parameter count has been reduced from 6.7 million to 2.1 million, and the computational
load has been reduced from 15.8 billion to 5.1 billion. The improved model still maintains a
high level of detection accuracy. Due to the reduction in computational load, parameter
count, and model size, it can execute model inference and data processing more quickly.
This not only enhances system response time but also reduces energy consumption. It
is more convenient for deployment on mobile devices and contributes to the efficient
operation of in-vehicle computers. In addition, in further research on lightweighting, it is
essential to consider multi-angle recognition of the driver’s facial expressions as well as
facial expression detection when the driver is in complex background environments. This
includes scenarios with poor lighting conditions or high interference in the background.

Author Contributions: Conceptualization, K.Y. and Z.W. methodology, K.Y. and Z.W.; software, Z.W.
and F.G.; Validation, K.Y. and Z.W.; Resources, F.L.; Writing—original draft, Z.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2024, 13, 1138 12 of 13

Data Availability Statement: The main purpose of this study is to improve the detection of human
attention in YOLOv5. The experimental dataset was mainly obtained through public data such as
VOC.

Acknowledgments: The authors gratefully acknowledge the reviewers and editors for their careful
work, and they also thank the data sharer for their selfless dedication.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Luo, Y.; Wu, C.-M.; Zhang, Y. Facial expression recognition based on fusion feature of PCA and LBP with SVM. Opt.-Int. J. Light

Electron. Opt. 2013, 124, 2767–2770. [CrossRef]
2. Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis.

Comput. 2009, 27, 803–816. [CrossRef]
3. Kumar, P.; Happy, S.; Routray, A. A real-time robust facial expression recognition system using HOG features. In Proceedings of

the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016;
pp. 289–293.

4. Wang, X.; Jin, C.; Liu, W.; Hu, M.; Xu, L.; Ren, F. Feature fusion of HOG and WLD for facial expression recognition. In Proceedings
of the 2013 IEEE/SICE International Symposium on System Integration, Kobe, Japan, 15–17 December 2013; pp. 227–232.

5. Bartlett, M.S.; Littlewort, G.; Frank, M.; Lainscsek, C.; Fasel, I.; Movellan, J. Fully automatic facial action recognition in spontaneous
behavior. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton,
UK, 10–12 April 2006; pp. 223–230.

6. Anderson, K.; McOwan, P.W. A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst.
Man Cybern. Part B Cybern. 2006, 36, 96–105. [CrossRef] [PubMed]

7. Pantic, M.; Patras, I. Dynamics of facial expression: Recognition of facial actions and their temporal segments from face profile
image sequences. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2006, 36, 433–449. [CrossRef] [PubMed]

8. Li, J.; Jin, K.; Zhou, D.; Kubota, N.; Ju, Z. Attention mechanism-based CNN for facial expression recognition. Neurocomputing
2020, 411, 340–350. [CrossRef]

9. Shan, K.; Guo, J.; You, W.; Lu, D.; Bie, R. Automatic facial expression recognition based on a deep convolutional-neural-network
structure. In Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research, Management and
Applications (SERA), London, UK, 7–9 June 2017; pp. 123–128.

10. Li, J.; Zhang, D.; Zhang, J.; Zhang, J.; Li, T.; Xia, Y.; Yan, Q.; Xun, L. Facial expression recognition with faster R-CNN. Procedia
Comput. Sci. 2017, 107, 135–140. [CrossRef]

11. Febrian, R.; Halim, B.M.; Christina, M.; Ramdhan, D.; Chowanda, A. Facial expression recognition using bidirectional LSTM-CNN.
Procedia Comput. Sci. 2023, 216, 39–47. [CrossRef]

12. Wang, S.; Cheng, Z.; Deng, X.; Chang, L.; Duan, F.; Lu, K. Leveraging 3D blendshape for facial expression recognition using CNN.
Sci. China Inf. Sci. 2020, 63, 120114. [CrossRef]

13. Li, J.; Li, M. Research on facial expression recognition based on improved multi-scale convolutional neural networks. J. Chongqing
Univ. Posts Telecommun. 2022, 34, 201–207.

14. Qiao, G.; Hou, S.; Liu, Y. Facial expression recognition algorithm based on combination of improved convolutional neural network
and support vector machine. J. Comput. Appl. 2022, 42, 1253–1259.

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

16. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

17. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

18. Chen, J.; Kao, S.-h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster
Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 17–24 June 2023; pp. 12021–12031.

19. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

20. Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for
autonomous vehicles. arXiv 2022, arXiv:2206.02424.

21. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

https://doi.org/10.1016/j.ijleo.2012.08.040
https://doi.org/10.1016/j.imavis.2008.08.005
https://doi.org/10.1109/TSMCB.2005.854502
https://www.ncbi.nlm.nih.gov/pubmed/16468569
https://doi.org/10.1109/TSMCB.2005.859075
https://www.ncbi.nlm.nih.gov/pubmed/16602602
https://doi.org/10.1016/j.neucom.2020.06.014
https://doi.org/10.1016/j.procs.2017.03.069
https://doi.org/10.1016/j.procs.2022.12.109
https://doi.org/10.1007/s11432-019-2747-y

Electronics 2024, 13, 1138 13 of 13

22. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.

23. Fernandes-Magalhaes, R.; Carpio, A.; Ferrera, D.; Van Ryckeghem, D.; Peláez, I.; Barjola, P.; De Lahoz, M.E.; Martín-Buro, M.C.;
Hinojosa, J.A.; Van Damme, S. Pain E-motion Faces Database (PEMF): Pain-related micro-clips for emotion research. Behav. Res.
Methods 2023, 55, 3831–3844. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3758/s13428-022-01992-4
https://www.ncbi.nlm.nih.gov/pubmed/36253599

	Introduction
	Introduction to the YOLOv5 Algorithm
	Related Improvements
	Backbone Network Improvement
	GSConv Module Improvement
	Improvement of the Neck Network
	Model Channel Pruning and Fine-Tuning

	Experimental Results
	Introduction to the Experimental Dataset
	Experimental Environment
	Evaluation Metrics
	The Analysis of Experimental Results

	Conclusions
	References

