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Abstract: In the industrial field, the 3D target detection algorithm PointPillars has gained popularity.
Improving target detection accuracy while maintaining high efficiency has been a significant challenge.
To address the issue of low target detection accuracy in the PointPillars 3D target detection algorithm,
this paper proposes an algorithm based on feature enhancement to improve the backbone network.
The algorithm enhances preliminary feature information of the backbone network by modifying it
based on PointPillars with the aid of channel attention and spatial attention mechanisms. To address
the inefficiency caused by the excessive number of subsampled parameters in PointPillars, FasterNet
(a lightweight and efficient feature extraction network) is utilized for down-sampling and forming
different scale feature maps. To prevent the loss and blurring of extracted features resulting from
the use of inverse convolution, we utilize the lightweight and efficient up-sampling modules Carafe
and Dysample for adjusting resolution. Experimental results indicate improved accuracy under all
difficulties of the KITTI dataset, demonstrating the superiority of the algorithm over PointPillars.

Keywords: target detection; PointPillars; FasterNet; up-sampling; attention mechanism

1. Introduction

With the ongoing advancements in automatic driving, virtual reality, and intelligent
manufacturing, among other application scenarios, the detection of three-dimensional
object targets has emerged as a favored technique in the realm of computer vision [1].
The advancement in LiDAR manufacturing processes has led to a gradual increase in
the density of radar output point clouds, resulting in improved measurement accuracy.
As a result, the point cloud 3D object detection algorithm, which utilizes point clouds as
the input, has become mainstream technology in the field of vision. Currently, 3D target
detection in point clouds relies primarily on point- and voxel-based methods. While the
PointNet [2] and VoxelNet [3] approaches have adequately prepared for feature extraction
from point clouds, the data’s sparsity and complexity present difficulties in capturing the
target, leading to poor detection accuracy [4,5].

The PointPillars 3D target detection algorithm has gained immense popularity in
the industry owing to its high efficiency and accuracy [6]. The algorithm converts three-
dimensional point cloud voxel [3] features into two-dimensional images for detection,
thereby greatly reducing operating costs. However, the main challenge presently is to
enhance detection accuracy while maintaining efficiency. Several scholars from various
countries have proposed different methods to address this issue. Ryota et al. suggest
varying voxel sizes and carrying out feature fusion after extracting the features [7]. Li et al.
recommend incorporating the attention mechanism within the voxel and introducing re-
lationship features between diverse point clouds [8]. Konrad et al. [9] aim to replace the
backbone network with alternative feature extraction networks. However, although these
approaches have been attempted, they only result in marginal improvement of the detection
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accuracy. In light of this, they suggested that a considerable amount of parameters in Point-
Pillars are concentrated in the backbone network. As a solution, novel backbone networks
like MobileNet and DarkNet have been employed as substitutes to the original convolution.

The results showed that this modification greatly enhances detection efficiency. After a
meticulous investigation, this study concludes that enhancing the backbone network (2D
Convolutional Neural Networks) is the most effective way to maximize detection accuracy
and efficiency. Down-sampling the model and implementing the attention mechanism,
along with sampling the backbone network, can significantly enhance the detection preci-
sion and efficiency. Compared with the existing literature, the major contributions of this
work can be summarized as follows, and the new backbone network steps are shown in
Figure 1.

1. Enhancing features of pseudo-images generated through the algorithm via channel
attention, spatial attention, and 1 × 1 2D convolution.

2. FasterNet [10], a more lightweight network, replaces the feature extraction network,
resulting in a significant reduction in module parameters. This replacement not only
enhances detection accuracy but also decreases the number of parameters required.

3. Replacing the original model’s inverse convolution technique involves the implemen-
tation of two up-sampling methods and feature enhancement using proximity scale
sampling methods.

Pseudo Image CAM

× ×

SAM

×

New Feature

DownSample 
(FasterNet)

Three scale 
Feature

UpSample

Figure 1. New backbone network steps.

2. Related Work

LiDAR data are commonly processed with Deep Convolutional Neural Networks
(DCNNs), which integrate the entire processing flow, resulting in high computational and
storage complexity. Target detection algorithms based on DCNNs outperform traditional
methods in terms of detection accuracy and recognition rate [9]. Traditional 2D image
detection algorithms, which utilize a camera as a data source, rely on an external light source
and cannot precisely determine information such as distance, position, depth, and angle of
targeted vehicles and individuals. In contrast, LiDAR generates three-dimensional point
cloud data that provide details such as the object’s position, distance, depth, and angle,
making the data representation more realistic. LiDAR provides the benefits of precise
ranging and does not require visible light [11].

The unstructured and non-fixed-size characteristics of the point cloud hinder its
direct processing by 3D target detectors; therefore, it necessitates transcription into a more
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condensed structure through some sort of expression form [12]. Currently, there are two
primary expression forms: point-based and voxel-based procedures. The transcribed point
cloud can undergo feature detection via convolutional or established backbone networks.
Networks vary in their feature extraction capabilities and parametric quantities; thus,
network choice should be evaluated on a case-by-case basis.

2.1. Point-Based, Voxel-Based Approach to Target Detection

Qi et al. first extracts the PointNet network to derive features directly from the disor-
dered point cloud. The T-Net network is then employed to predict the affine transformation
matrix to align all the points with features. The symmetric function (MaxPooling) is utilized
to address the disorderedness of the point cloud, while the multilayer perceptron resolves
the problem of point cloud order invariance [2]. PointNet fails to address the issue of
uncertain local feature extraction. To obtain more efficient features, PointNet++ [13] em-
ploys a Hierarchical Set Abstraction layer, with each module using several Set Abstraction
modules to extract features. To enhance feature extraction capability, PointNet++ utilizes
Hierarchical Set Abstraction (HSA). HSA leverages various Set Abstraction modules for
extracting features. Each module differs in the number of sampling points and the sampling
radius. Consequently, this approach effectively improves local feature extraction. PointR-
CNN [14] utilizes PointNet++ for feature extraction, alongside foreground and background
segmentation based on the aforementioned extracted features, 3D frame prediction on each
foreground point, and, ultimately, further refinement on the object of interest. Whilst these
approaches allow for maximization of geometric point cloud features and consequently im-
prove detection performance, they do demand extensive time and computational resources
during the feature extraction phase [15].

The process of transforming point clouds into voxels involves dividing the space occu-
pied by the point cloud into blocks of a fixed size. The features of the point clouds within
these voxel blocks are then extracted. The VoxelNet algorithm utilizes the Voxel Feature
Encoder (VFE) to measure and standardize the features across voxels. Subsequently, a 3D
convolutional neural network is employed to extract the features of the voxels, and finally,
an RPN network is used to generate the detection frame. Due to numerous voxels, feature
extraction is sluggish. Yan et al. [16] proposed utilizing 3D sparse convolution to conduct
feature extraction of regulated voxels based on VoxelNet due to the rarity of the point cloud,
which significantly improved the processing speed in contrast to VoxelNet. Lang et al. [17]
recommended PointPillars, which effectively columnate the voxel points and change the
height of the voxel to correspond to that of the point cloud space. A straightforward
PointNet is applied to convert the voxel into a pseudo-image, allowing 2D convolution
to extract features while maintaining 3D characteristics, thus significantly increasing the
operational speed. PointPillars is the most prevalent 3D detection algorithm in the industry
due to its rapid operation and exceptional accuracy. Voxel-based techniques have lower
detection accuracy than point methods. How to ensure the detection efficiency on the basis
of improving the detection accuracy has become a research hotspot.

2.2. Feature Extraction Networks

Different blocks and depths are employed by feature extraction networks to extract
features. To prevent the issue of gradient explosion and gradient disappearance from
more extensive models, He et al. [18] proposed ResNet, which uses residual networks that
allow network layers to reach significant depth. The MobileNet [19] algorithm reduces
the number of network parameters by using depth-separable convolution and introducing
shrinkage hyperparameters. This approach provides excellent support for real-world
scenarios in devices with limited computational power. DarkNet employs a repeated
stacked down-sampled convolution and residual block architecture, renowned for its speed
and efficiency, particularly in YOLO model series. This structure enables DarkNet to
perform real-time or near real-time target detection, making it ideal for use on devices with
limited computational power [20]. Extraction networks are progressing towards achieving
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greater accuracy with fewer parameters, and the utilization of appropriate feature extraction
networks can significantly enhance target detection efficiency and accuracy.

3. Feature-Enhanced Backbone Network

This section will introduce the PointPillars model and how it can be improved for the
backbone network.

3.1. PointPillars

The PointPillars algorithm comprises four main parts: point cloud columnarization,
backbone feature extraction, and detection header output, as illustrated in Figure 2.

PointCloud Pillar Feature 
Net

Backbone(2D 
CNN)

Detection 
Head(SSD)

Figure 2. PointPillars process.

1. Point cloud input. The original input point cloud is entered, and the point cloud
is augmented using data augmentation methods, including random inversion and
random scaling, to improve model performance.

2. Columnarization of point cloud. A square box is created based on X-Y, with Z as the
vertical dimension of point columns. Each column comprises multiple points, and a
basic PointNet network is then employed to project the original point cloud onto a
2D plane, generating a sparse 2D pseudo-image that assists in subsequent feature
learning. Technical abbreviations are explained when first employed [5].

3. Feature extraction. A 2D convolutional neural network down-samples the pseudo-
image several times, creating feature maps with varying resolutions and channels.
The down-sampling-generated feature maps are up-sampled using inverse convolu-
tion to the same channel and resolution feature maps, and subsequently merged to
form the final map.

4. Detection head output. The feature map is fed to the SSD (Single Shot MultiBox
Detector) detection head to perform the target’s classification and the regression of
the enclosing frame, obtaining the object’s position and type. SSD is a deep learning
model used for detecting multiple image targets simultaneously. It achieves this by
applying multiple anchor frames (anchors) on different levels of the feature map.
PointPillars applies the same idea to point cloud data for target detection.

3.2. FasterNet Lightweight Feature Extraction Network

In the original version of the PointPillars network, most of the multiply-add operations
(about 84%) are concentrated in the backbone, specifically in the “top-down” submodule.
Thus, potentially, speeding up this part of the algorithm will have the greatest impact on the
time results obtained [9]. To create faster neural networks, researchers have concentrated on
reducing FLOPs. However, it is important to note that FLOPs and neural network latency
do not always have a direct correlation. To achieve greater speed, FasterNet utilizes Partial
Convolution (PConv), which improves the extraction of spatial features and reduces both
redundant computation and memory access. As a result, FasterNet [10] is considerably
quicker than other networks. To fully utilize all channel information, we have incorporated
Point-Wise Convolution (PWConv) after PConv. This enhances the effective sensory field
of input feature maps to resemble a T-shaped Conv, which focuses more on the central
position than regular Conv.

FasterNet is designed primarily as a combination of Stage and Embedding. Each Stage
is subject to an Embedding or Merging layer for spatial down-sampling and expansion of
channel number. Each stage consists of a series of FasterNet Blocks comprised of PConv
and PWConv. This paper presents the fine-tuning of the original FasterNet model to align
with the PointPillars setup. The proceedings are elaborated as Figure 3.
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Figure 3. Multi-scale extraction network after FasterNet replacement. The blue and green colors
represent the feature maps, and the purple colors represent the Block Convolution operation.

• Block depth settings correspond to PointPillars.
• Add Embedding before each block for down-sampling.
• The activation function uses GELU as suggested by FasterNet, and PointPillars re-

mains unchanged using RELU. GELU is an activation function based on the Gaussian
distribution. It has the advantage of avoiding the gradient vanishing problem, as the
gradient does not become very small when the input value is relatively large or small.
Additionally, the GELU function has a non-zero derivative when the input value is
negative, which helps to avoid the neuron death problem. This improves the running
effect when the computational complexity is low.

For the modifications in this paper, the parameters and other relevant data were
calculated for PointPillars with FasterNet replacement.

From the Table 1, it can be seen that by using FasterNet instead of down-sampling,
the total parameters are reduced by almost 50% and the multiply-add operation is reduced
by about nine times. The detection accuracy is improved after performing the substitution,
and we will give detailed results in the next section.

Table 1. Parameter characteristics. TotalpParams represent the overall number of trainable parameters
in the down-sampling process, such as weights and biases. The total mul-adds and pseudo-add
operations executed during the propagation period is known as Total multiplicative addition, and it
enables us to evaluate the procedure’s complexity. Params size measures the amount of memory
consumed by the parameters, with the estimated total size indicating the entire space occupied by
the down-sampling process. The estimated total size pertains to the memory that the down-sampling
process uses.

PointPillar Total Params Total Mult-Adds
(G)

Params Size
(MB)

Estimated Size
(MB)

PointPillars 4,207,616 29.63 444.66 513.02

OurFasterNet 2,339,712 3.96 91.55 152.78
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3.3. Attention-Based Feature Enhancement

The primary objective of attentional mechanisms is to suppress the influence of unim-
portant regions in an image through a heightened focus on regions of interest [21]. Attention
mechanisms can be categorized into channel attention mechanisms, spatial attention mecha-
nisms, and self-attention mechanisms. Some commonly used attention mechanism modules
include ECA [22], CBAM [23], SENet [24], PAN, STN, and PSA [25], et al.

The channel attention mechanism enhances the network’s expressiveness in the feature
representation by evaluating the significance of each channel. This, in turn, advances the
model’s performance. Each channel of the feature map acts as a feature detector that
concentrates on the positional information within the image. Equation (1) shows that the
feature F is computed by a multilayer perceptron using average pooling and maximum
pooling. The attention score is obtained by processing the sum of the results through an
activation function.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

The spatial attention mechanism aims to facilitate the model’s adaptive learning of
attention weights in various regions through the integration of an attention module. This
allows the model to prioritize important image regions while ignoring those that are
unimportant. To calculate spatial attention, the average pooling and maximum pooling
are performed in the channel dimensions before concatenating the feature maps. Then,
a convolution operation is applied to the spliced feature maps to generate the ultimate
spatial attention feature maps. Equation (2) shows that the spatial attention score is
obtained by combining the results of average pooling and maximum pooling, followed
by convolution with a 7 × 7 kernel and activation function. The use of a 7 × 7 kernel
significantly improves field of viewability and feature extraction.

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (2)

The attention mechanism aims to highlight significant features of the image while min-
imizing irrelevant regional responses. Through analyzing research on channel and spatial
dimensions, the CBAM (Convolutional Block Attention Module) has been developed and
proven to enhance network performance by accurately directing attention and suppressing
irrelevant noise information. As shown in Equation (3), the feature map, channel attention
scores, and spatial attention scores are multiplied element-wise to obtain the spatial channel
attention scores after the activation function.

Mcbam(F) = σ((F × Mc(F)× Ms(F × Mc(F)))) (3)

3.4. Carafe and Dysample Sampling on the Proximity Scale

The commonly used feature up-samplers are NN and bilinear interpolation. They
apply fixed rules to interpolate the low-res feature, ignoring the semantic meaning in the
feature map [26]. Max unpooling has been adopted in semantic segmentation by SegNet to
preserve the edge information, but the introduction of noise and zero filling destroy the
semantic consistency in smooth areas. Similar to convolution, some learnable up-samplers
introduce learnable parameters in up-sampling. For example, deconvolution up-samples
features in a reverse fashion of convolution. Pixel Shuffle uses convolution to increase the
channel number ahead and then reshapes the feature map to increase the resolution.

PointPillars utilizes the inverse convolution technique to up-sample, which can en-
hance image resolution but disregards significant semantic content. To circumvent this
limitation, this study replaces the original deconvolution with Carafe [27] and Dysam-
ple’s [26] light-weight up-sampling operators, respectively. Furthermore, an up-sampling
approach involving an approximated scale fusion method is introduced to enrich the se-
mantic relationship among various scales. Approximate scale fusion involves combining
the current scale with the approximate scale post operator up-sampling. The resulting
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fused features will serve as current features, facilitating the incorporation of information
from various scales. The module structure is shown in Figure 4.

F = ReLU(X + Upsample(Y)) (4)

In Eqution (4), Y is the current scale feature, and X is the neighbouring scale feature. The
final feature map F is obtained by weighting and summing the current feature Y, which has
been sampled through the custom up-sampling module, with the neighbouring features.

Content-aware reorganization of features (Carafe) proposed by Wang et al. [27] is
a generic, lightweight, and efficient component. Carafe reassembles features in a pre-
defined region centered on each location by weighted combinations, where the weights
are generated in a content-aware manner. In addition, each location has multiple sets of
such up-sampling weights, and then feature up-sampling is achieved by rearranging the
generated features as a spatial block. The advantages of Carafe are as follows:

• Large sensory field: Unlike previous approaches, such as bilinear interpolation, Carafe
can aggregate contextual information within a large receptive field.

• Content-aware: Instead of using a fixed kernel for all samples, Carafe supports instance-
specific content-aware processing and can dynamically generate adaptive kernels.

• Lightweight and fast: Carafe has low computational overhead and can be easily
integrated into existing framework networks.

Dysample is another ultra-lightweight, efficient dynamic up-sampler. Unlike CARAFE,
Dysample bypasses dynamic convolution and specifies up-sampling from a point-sampling
point of view, which is more resource efficient. Dysample does not require custom CUDA
packages and has fewer parameters, FLOPs, GPU memory, and latency.

ConvCBAM FasterNet

FasterNet

FasterNet

Upsamp
le

Upsamp
le

Upsamp
le

Figure 4. Approaching up-sampling fusion, the blue and green colors represent the feature maps,
and the purple colors represent the Block Convolution operation.

4. Results

In this study, we conducted experimental evaluations utilizing the extensive KITTI
dataset, which is publicly available. The dataset comprises 7481 training samples and 7518
test samples captured from autonomous driving scenarios. We partitioned the training
data into a training set of 3712 frames and a validation set of 3796 frames using the
PointPillars algorithm. The training set was utilized for testing, while the validation set
was utilized for experimental studies. The KITTI dataset encompasses three classifications:
car, cyclist, and pedestrian are each classified into three levels of difficulty: easy, medium,
and hard, which are determined by various factors such as 3D object size, occlusion level,
and truncation level [28].
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The experimental environment used in this study comprises Ubuntu 18.04 LTS, CUDA
11.4, Python 3.8, and pytorch 1.13.1. To achieve end-to-end training, the Adam optimizer
was applied, with a batch size of 8, a maximum of 100 iterations, and no ground truth
frame. In the experiments, each Pillar was set to a size of [0.16, 0.16] in the X–Y dimensions,
the maximum number of columns was 12,000, and the global point cloud was randomly
scaled in the range of [0.95, 1.05].

4.1. Experimental Results and Analysis

The algorithms in this paper were tested on the KITTI dataset and evaluated for
accuracy using 40 predefined locations from the official KITTI test. The IOU (Intersection
over Union, one of the evaluation indicators) threshold was set at 0.7 for cars and 0.5 for
pedestrians and cyclists.

Tables 2–4 compare the results of this paper with those of the PointPillars algorithm
on the KITTI dataset for the car, pedestrian, and cyclist categories. This paper analyzes
the detection effect. This paper examines the topic from three different perspectives: BEV
(accuracy of detection frames in BEV view), 3D (accuracy of 3D inspection frames), and AOS
(accuracy of detecting target rotation angle).

Table 2. Results on the KITTI test BEV detection benchmark.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

MV3D 86.02 76,88 68.59 N/A N/A N/A N/A N/A N/A

VoxelNet 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

SECOND 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars 90.74 86.57 84.05 55.89 48.86 44.42 81.44 63.63 59.29

PP Carafe 91.55 87.76 85.04 58.97 51.88 48.47 85.64 66.15 61.59

PP Dysample 91.78 87.79 85.08 59.28 51.76 47.28 84.74 66.01 61.79

PP Carafe stands for down-sampling using carafe. PP Dysample stands for down-sampling using dysample,
as do the tables that follow.

Table 3. Results on the KITTI test 3D detection benchmark.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

MV3D 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A

VoxelNet 78.47 66.13 57.73 39.48 34.67 31.50 63.56 48.36 45.73

SECOND 83.69 73.98 66.67 51.88 43.65 37.29 71.15 54.58 46.90

PointPillars 85.40 75.14 72.71 48.16 41.58 37.07 76.76 59.74 55.53

PP Carafe 87.95 78.59 75.20 51.63 44.35 41.13 83.27 62.61 57.95

PP Dysample 87.89 78.13 73.44 50.62 43.28 39.01 81.69 63.46 58.96

Table 4. Results on the KITTI test AOS detection benchmark.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

SECOND 87.84 81.54 71.59 52.56 43.59 38.98 81.97 59.20 56.14

PointPillars 94.75 91.27 88.29 46.34 42.96 39.68 86.15 70.35 65.98

PP Carafe 95.57 92.03 90.56 54.73 49.20 47.73 87.65 70.22 65.58

PP Dysample 95.47 91.79 88.90 53.98 48.42 45.44 86.40 70.08 66.01
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From the data in the above table, it is evident that up-sampling in Dysample or Carafe
improves the detection of the KITTI dataset in any difficulty, although certain types of
objects are biased towards improvement. Notably, Carafe up-sampling shows a more
substantial improvement in object types. Specifically, in BEV, there is an improvement of
cyclist from 81.44 to 85.64 in easy difficulty, and in 3D mode, there is a 6.51 improvement in
easy difficulty. In AOS mode, the most significant enhancement is observed for pedestrian,
with a maximum improvement of 6.24 in medium difficulty. The improvement effect
is also more apparent in easy and hard modes. Dysample displays the most noticeable
improvement in pedestrian. On the other hand, the improvement of Dysample is less
pronounced, which could be attributed to its lack of dynamic feature extraction. Meanwhile,
the precision of this optimized algorithm has significantly increased compared to other
algorithms, such as VoxelNet, SECOND, and others.

It is apparent that the up-sampling techniques of Dysample and Carafe differ in
their effect on target feature reconstruction. If detection accuracy is a priority, Carafe up-
sampling is a suitable option. However, if detection efficiency is required, then Dysample
may be more appropriate.

4.2. Ablation Experiments

In this section, we provide the results of ablation experiments to evaluate the key
factors that affect the accuracy of the experiments.

The results of the ablation experiments, shown in Tables 5 and 6, indicate that replacing
each module separately led to an improvement beyond the set parameters. The replace-
ment of the backbone network showed the most significant improvement, with FasterNet
demonstrating the most noticeable increase in detection accuracy. The Attention Mech-
anism module showed an improvement of nearly 1 in detection at all difficulties. Both
up-sampling methods, Carafe and Dysample, demonstrated significant improvement.
However, the improvement was more pronounced for Carafe up-sampling.

Table 5. Ablation Results on the KITTI test BEV mode.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

root 90.74 86.57 84.05 55.89 48.86 44.42 81.44 63.63 59.29

Attention 91.67 87.75 85.18 56.19 49.89 46.16 85.05 65.91 61.41

FasterNet 92.63 88.32 86.91 56.19 49.95 45.82 88.09 67.98 63.46

Carafe 92.05 87.80 85.13 55.55 49.12 44.86 85.07 67.49 62.85

Dysample 91.78 87.79 85.08 59.28 51.76 47.28 84.74 66.01 61.79

Table 6. Ablation Results on the KITTI test 3D mode.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

root 85.40 75.14 72.71 48.16 41.58 37.07 76.76 59.74 55.53

Attention 86.52 76.24 73.09 49.81 43.13 39.13 79.88 60.48 56.57

FasterNet 88.73 78.76 75.58 50.69 43.98 39.25 83.41 61.94 57.69

Carafe 86.92 75.47 72.31 48.37 42.13 37.35 79.88 62.50 58.23

Dysample 87.89 78.13 73.44 50.72 43.28 39.01 81.69 63.46 58.96

4.3. Visualization Analysis

To provide evidence of the method’s effectiveness in improving detection accuracy,
this section presents visualized and analyzed results of the algorithm. Due to the use of
pure radar data in the algorithm, the relevant information cannot be visually represented.
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Therefore, the front-view camera image is referred to as a comparison for the radar detection
results in the BEV view.

After analyzing the four scenes in Figure 5, it is evident that the PointPillars network
misidentifies point cloud shapes reflected from objects such as tree trunks and line poles
as cars or pedestrians. However, the model with the improved backbone network has a
significantly lower misdetection and error detection rate. The improved backbone network
strengthens the features of the point cloud pseudo-images, while the lightweight network
and proximity scale sampling method retain more semantic information and improve the
module’s ability to extract features. As a result, the improved PointPillars outperform
the pre-improved version by reducing misdetection and omission, ultimately improving
network detection performance.

• In the initial scene, PointPillars identifies the far-off iron house as a vehicle, which the
algorithm in the optimization is able to avoid. Additionally, there are more trees on
the left side, and PointPillars recognizes the number as people, which is significantly
reduced compared to PointPillars in the optimized algorithm, although there is also a
misdetection.

• In the second scenario, PointPillars made a mistake during multi-check by identifying
the iron ladder near the car as a car. This error was avoided in the optimized scenario.
Multi-checks occurred near the point in PointPillars and PP Carafe, mistaking the road
sign for a person. The optimized scheme shows the direction of the two cars in the
upper left at a more accurate angle. The three scenarios resulted in a false pickup on
the right against the red streetlight army.

• The third scenario is straightforward. All three scenarios detected the bicycle following
the car. PointPillars produced one multi-detection (a lateral car) for the car directly in
front and none in the optimized scenario. PointPillars is especially problematic for the
false detection of trees on the left side. In the optimized scenario, PP Carafe produces
only one multidetection, and PP Dysample identifies the number on the left side intact.

• The fourth scenario is complex, involving multiple object types. PointPillars still expe-
riences significant multi-detection issues on the left side. In all three scenarios, there
are missed detections directly in front. PP Dysample has more severe detection errors
on the left side, and one vehicle lacks direction discrimination. For the nearby vehicles,
the optimized scheme improves the vehicle facing angle significantly, resulting in
much better direction prediction than PointPillars.

Figure 5. Cont.
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Figure 5. Visualize the results. Different rows represent different scenarios. The columns represent
the front camera, PointPillars results, PP Carafe up-sampling results, and PP Dysample results one
at a time. Red boxes represent misdetections, purple boxes represent omissions, and pink boxes
represent positional orientation.

In summary, this paper’s optimization scheme produces a superior visualization effect
compared to PointPillars. However, the scheme does have some limitations. For instance,
it enhances near objects more than distant targets, possibly due to the limited number of
point clouds for distant objects, resulting in errors. To address this, we suggest exploring
the use of a multi-frame aggregation method to increase the number of radar point clouds
for distant objects. The optimization scheme for enhancing small targets still has certain
defects. After processing the point cloud into an image, it may ignore the connection
between different voxels, resulting in a loss of contextual information. The next step of this
paper will focus on studying point cloud coding.

5. Conclusions

In this paper, we present a 3D target detection algorithm with an enhanced backbone
network based on PointPillars for object detection. Initially, we generate a point cloud
pseudo-image and subsequently employ channel spatial attention to consolidate contex-
tual information, optimize image features, and establish connections across channels and
locations. Additionally, a modified lightweight network, FasterNet, and proximity scale
up-sampling have been implemented to enhance the feature extraction capabilities of the
convolutional neural network and maintain the integrity of deep point cloud features.
The outcome shows significant improvement in comparison to the PointPillars algorithm.
The comparison of the algorithm highlights that by introducing the attention mechanism,
replacing the feature extraction network, and utilizing a new up-sampling method, target
detection accuracy can be significantly enhanced.

However, this experiment has a slight limitation. Despite the improved detection
accuracy, it is unable to differentiate false detections and omissions at a glance. Additionally,
in the presence of numerous pedestrians or bicycles, it may cause interference, which can
influence the results of the detection.
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