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Abstract: The demand for encrypted communication is increasing with the continuous development
of secure and trustworthy networks. In edge computing scenarios, the requirement for data processing
security is becoming increasingly high. Therefore, the accurate identification of encrypted traffic
has become a prerequisite to ensure edge intelligent device security. Currently, encrypted network
traffic classification relies on single-feature extraction methods. These methods have simple feature
extraction, making distinguishing encrypted network data flows and designing compelling manual
features challenging. This leads to low accuracy in multi-classification tasks involving encrypted
network traffic. This paper proposes a hybrid deep learning model for multi-classification tasks
to address this issue based on the synergy of dilated convolution and gating unit mechanisms.
The model comprises a Gated Dilated Convolution (GDC) module and a CA-LSTM module. The
GDC module completes the spatial feature extraction of encrypted network traffic through dilated
convolution and gating unit mechanisms. In contrast, the CA-LSTM module focuses on extracting
temporal network traffic features. By employing a collaborative approach to extract spatio-temporal
features, the model ensures feature extraction diversity, guarantees robustness, and effectively
enhances the feature extraction rate. We evaluate our multi-classification model using the ISCX
VPN-nonVPN public dataset. Experimental results show that the proposed method achieves an
accuracy rate of over 95% and a recall rate of over 90%, significantly outperforming existing methods.

Keywords: edge computing; encrypted traffic classification; deep learning; intelligent network

1. Introduction

With the continuous development of secure and reliable networks, Internet technology
has permeated every aspect of human life. The diversity and quantity of network traffic
data have significantly increased. In network security, there is a rising trend towards
encrypting network traffic. Against this backdrop, network traffic classification [1] has
become a key research focus in edge intelligent network management. Network traffic
classification is the process of categorizing traffic according to different requirements, and
is essential in enhancing network security, optimizing network resource management,
and improving network service quality [2,3]. Therefore, the effectiveness and accuracy of
network traffic classification are crucial for maintaining network service quality and detect-
ing the early signs of potential abnormal network activities, making it a highly significant
topic. The complexity of network traffic feature distribution poses challenges for traditional
methods which require manual feature extraction, often necessitating prolonged traffic
collection and consuming substantial amounts of cache and storage resources. In contrast,
deep learning-based methods for encrypted network traffic classification no longer rely
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on manual feature design, effectively identifying encrypted and anonymous traffic and
providing a more granular traffic identification mechanism.

As an emerging computing paradigm, edge computing has become a research hotspot
due to its computing advantages close to data sources at the network’s edge, data privacy
and security protection, and the efficient response to and processing of data locally [4].
For example, intelligent terminals provide users with a more stable service experience
with proximity, real-time security, and quick response processing [5]. How to combine
network traffic classification with the real-time processing capabilities of edge computing
to promote the development of edge intelligence. As a critical component of edge com-
puting architecture, edge intelligent gateways facilitate data processing, decision support,
and thoughtful service deployment at the network’s edge [6], improving user-perceivable
network service quality.

In network security, deep learning technologies [7] have shown initial advancements in
classifying network traffic, yet existing methodologies have the potential for enhancement.
For example, considering an entire network flow as a sequence of either traffic bytes or
network packets allows the application of Long Short-Term Memory (LSTM) networks to
extract temporal characteristics [8]. Conversely, interpreting a network flow as a traffic
image composed of bytes enables Convolutional Neural Networks (CNNs) to discern
spatial features [9]. Thus, CNNs and LSTMs, as the predominant techniques in deep
learning, are apt for varied scenarios, with their feature learning capabilities being optimally
leveraged according to the specific objectives of the application [10]. Nonetheless, these
approaches are generally confined to extracting solely temporal or spatial features. A more
sophisticated approach involving a hybrid structure integrating spatial and temporal
feature extraction can produce markedly superior performance outcomes.

Different types of encrypted traffic exhibit distinct temporal and spatial characteristics.
Temporal features are often reflected in attributes such as packet arrival order, inter-arrival
time intervals of flows, and flow duration. There are significant differences in the temporal
characteristics of encrypted traffic among various service types, including packet arrival
order, inter-arrival time intervals of flows, and flow duration. Therefore, utilizing neural
networks to extract the temporal characteristics of encrypted traffic enables the accurate
and efficient classification of encrypted traffic. As for spatial features, different services
employ distinct communication patterns and encryption algorithms, such as packet sizes
and flow sizes. Hence, leveraging neural networks to extract the spatial characteristics of
encrypted traffic facilitates precise and efficient classification of encrypted traffic.

Researchers are exploring using multiple neural networks to comprehensively analyze
heterogeneous feature information in network traffic, a task traditionally performed by a sin-
gle neural network for feature extraction in deep learning tasks. Reference [11] introduces
a hybrid deep learning model that leverages an autoencoder (an unsupervised learning
algorithm) and bidirectional extended short-term memory networks (BLSTM, a type of
recurrent neural network suitable for sequence data) to reduce the feature dimensionality
of large-scale Internet of Things (IoT) network traffic data, thereby enhancing network
traffic classification. However, this approach must account for the increasing complexity
of large-scale Internet of Things (IoT) network traffic data. Solely focusing on temporal
features may hinder achieving accurate and efficient classification. Reference [12] combines
recurrent neural networks (RNNs, specialized neural networks for handling sequence data)
and convolutional neural networks (CNNs, neural networks used for tasks like image
recognition) to produce outstanding detection results, surpassing other algorithms without
the need for any feature engineering. However, this method needs to be further improved
when more complex and long-term dependent sequence data need to be processed in the
natural network environment, especially when the sequence data are very long or contain
complex context information. Reference [13] proposes a TSCRNN model aimed at learning
the spatiotemporal features of network traffic data, providing a finer mechanism for traffic
representation to support advancements in core industrial IoT technologies. The model’s
potential requirement to model traffic data over long periods and consider the complex
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relationships of spatiotemporal features necessitate more computational resources and time
for training and inference, limiting its scalability and practicality in real-world applications.

To address the above-mentioned challenges, we propose a hybrid deep learning
model for encrypted network traffic classification, capitalizing on the spatio-temporal
characteristics of encrypted network traffic. This model leverages dilated convolution [14]
for extracting spatial features from network flows, and Long Short-Term Memory networks
for mining the temporal characteristics of network flows. Additionally, it employs a channel
attention mechanism [15] to filter out irrelevant and unnecessary noise that is not pertinent
to the task. The primary contributions of this work are as follows:

• We introduce a novel method for spatiotemporal feature extraction that integrates
dilated convolution with a gating mechanism. This method initially employs dilated
convolution [14] and the gating mechanism for preliminary feature extraction from
network flows, followed by a secondary extraction and learning of features using Long
Short-Term Memory networks. Incorporating a channel attention mechanism serves
to avoid irrelevant noise, thereby effectively integrating spatio-temporal features. This
approach provides a new perspective for efficiently processing and analyzing complex
network traffic data.

• Our model adopts an innovative, collaborative processing mechanism compared to
traditional network traffic classification methods. Conventional approaches typically
focus on a single aspect of temporal or spatial features, neglecting other network
flow dimensions. Our process, by extracting features from multiple sizes, ensures a
more comprehensive data analysis, thereby enhancing the accuracy and efficiency
of classification.

• To ascertain the efficacy of our proposed model, we conducted experiments on the
ISCX VPN-nonVPN [16] public dataset, comparing our approach against several exist-
ing methodologies. The experimental results demonstrate that the method proposed
in this paper achieves an accuracy rate of over 95% and a recall rate of over 90%,
significantly superior to other existing methods. However, in the experiments, the im-
balanced distribution of categories in the dataset resulted in differences between the
overall experimental results of accuracy, precision, recall, and F1 score. The results
highlight the superiority of our model in network traffic classification, demonstrating
higher accuracy and performance compared to other methods, thereby affirming its
effectiveness and distinction.

2. Related Works
2.1. Network Traffic Classification Methods

Since the development of the Internet, a large amount of research has been conducted
on network traffic classification methods in academia and industry [17], and considerable
progress has been made. According to the different technologies used, general network
traffic classification methods can be divided into four categories: traffic classification
methods based on port numbers, traffic classification methods based on payload, statistics-
based, and behavior-based.

The method of traffic classification based on port numbers involves identifying the
type of service or application by recognizing the port numbers in the data packets [18].
Its advantage lies in different network services and applications typically use specific
port numbers. This method does not require extensive feature extraction or complex
computations; it simply involves detecting unique port number information to accomplish
classification. However, this method of traffic identification based on port numbers is
relatively straightforward. With the increasing number of applications and the adoption
of techniques such as port obfuscation, the accuracy of this method has been affected,
compared to the early days of the Internet when applications and network services used
fixed port numbers. This method is suitable for early Internet usage and certain specialized
areas of network security.
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Traffic classification based on payload involves delving into the content of packets
by examining the entire packet content [19], including headers and payloads, to identify
specific strings or string patterns predefined within the packets. Unlike port-based meth-
ods, payload-based methods analyze particular data generated by network services or
applications that remain unaltered. Therefore, this method can provide higher accuracy
and detection robustness. However, it can only identify known non-encrypted traffic and
may struggle when different network services or application payloads are similar. This
method is suitable for simple, known network traffic identification and classification.

Statistical traffic classification relies on the statistical characteristics of network traffic
to perform classification tasks [20]. Compared to payload-based methods, this approach
quickly extracts packet length, timestamps, transmission directions, and other information
from packet headers based on statistical features of network traffic without the need for
deep packet payload analysis. Therefore, it has lower computational complexity. However,
relying solely on feature data renders this method less suitable for processing today’s vast
amount of data. This method is ideal for known, simple network traffic identification
and classification.

Traffic classification based on host behavior analyzes host behavior patterns at the
transport layer to perform traffic classification [21]. Its advantage lies in identifying tasks
by the communication protocols, port numbers used by the host, and the unique behavior
patterns of different applications. Consequently, it can reveal deeper characteristics of
host communication behavior, enabling more precise traffic classification. However, this
approach is challenging to adapt to the heterogeneous network environment brought about
by the explosive growth of mobile terminals and IoT devices. It is suitable for early and
specific network traffic identification and classification task scenarios.

2.2. Network Traffic Classification Method Based on Deep Learning

Deep learning is a machine learning technique based on the concept of representation
learning, typically implemented through deep neural networks [22]. Its core lies in the
ability to learn multi-level features progressively from raw data, thereby obtaining high-
level feature representations, which can subsequently be utilized for complex tasks such
as classification. A key advantage of deep learning is its end-to-end application approach,
eliminating the need for manual feature design and extraction. Neural networks can
autonomously learn and output high-level features directly from raw data. This advantage
has led to the widespread application of deep learning in domains where feature design is
particularly challenging, achieving remarkable results.

With advanced deep learning technology, various models have demonstrated signifi-
cant performance improvements in network traffic classification. Specifically, the “Deep
Packet” model proposed by Lotfollahi et al. [23] effectively handles network traffic classi-
fication and identifies user applications, making it the first traffic classification system to
utilize deep learning algorithms. However, this method has limitations as it fails to explore
the deep-level network traffic features. Wang et al. [24] introduced an end-to-end encrypted
traffic classification method based on 1D-CNN, achieving an accuracy of 86.6% on the
ISCX-VPN dataset. Nevertheless, this approach relies solely on capturing byte features for
automatic traffic feature extraction, overlooking the importance of temporal features in
network traffic. The Flowpic model proposed by Shapira et al. [25] converts primary traffic
data into images and employs CNN for image classification. However, Flowpic requires
prolonged traffic capture, making it less suitable for scenarios with limited computational
resources and time-sensitive requirements. Tong et al. [26] employed LSTM for encrypted
traffic classification, achieving a 91% accuracy rate in classification tasks based on the
ISCX-VPN dataset. However, this method does not consider utilizing spatial features and
solely focuses on temporal features.
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2.3. Network Traffic Classification in Edge Intelligence

With the continuous increase in the number of Internet of Things (IoT) and mobile
devices, the capability for immediate data processing has become a crucial need. Edge
computing enhances the efficiency and speed of data processing by shifting tasks from the
central nodes of a network to edge nodes closer to the data sources [27]. This transition
significantly reduces data transmission latency, as user data no longer need to travel long
distances to remote servers, enabling real-time local data analysis.

Edge intelligent gateways are vital in optimizing data flow and service transmission.
They manage data streams from the cloud center to devices and handle information flow
from devices back to the cloud center. These gateways reduce reliance on network central
nodes through localized data processing, making data analysis and services more efficient.
Additionally, edge intelligent gateways can directly control terminal nodes connected to
them, such as smart home devices, industrial sensors, or vehicular systems [28]. However,
due to edge nodes’ distributed and dynamic nature, network conditions can vary depending
on location, time, device type, or user behavior. Therefore, edge gateways must possess
high adaptability and intelligent decision-making capabilities to adjust real-time network
configurations to accommodate these fluctuations [29].

As network security threats rise, the classification and analysis of encrypted network
traffic in edge intelligence become particularly crucial. Encryption protocols, while securing
data and user privacy, also challenge network monitoring and encrypted traffic detection.
Traditional content-based detection methods are ineffective on encrypted traffic, so traffic
classification in edge computing environments must employ more advanced techniques.
These methods need not only to respond more quickly to security threats but also to identify
potential attacks in the early stages of data processing, further reducing the protection
needs of network central nodes.

The uniqueness of edge computing compared to other networks lies in several aspects.
In edge computing scenarios, edge gateways typically require frequent communication
requests and lengthy model-building times for encrypted traffic detection. This poses
challenges for resource-constrained edge intelligent gateways. Therefore, edge intelligence
technology addresses this issue by coordinating between terminal devices and edge servers,
integrating the advantages of local computation and high computation, thus reducing
the energy consumption of deep learning model establishment and inference in edge
computing environments. This, in turn, resolves the problem of inefficient classification
and accurate identification of encrypted traffic on the edge.

The encrypted traffic detection model based on edge intelligence is illustrated in
Figure 1. Edge intelligence network devices receive heterogeneous traffic from the network,
and then high-performance aggregation nodes (LOT gateways) are used to capture essential
information from the encrypted network traffic data to update and aggregate the model.
Each IoT gateway independently constructs its local machine-learning model. The global
model can rapidly adapt to new data and environmental changes through this real-time,
dynamic parameter-sharing mechanism.

In summary, manually extracting features for encrypted network traffic classification
methods poses numerous challenges in specific scenarios, including complex traffic feature
distributions, lengthy traffic collection times, and the significant consumption of cache and
storage resources. Additionally, using single-feature extraction methods based solely on
temporal or spatial features makes it difficult to fully extract network traffic characteristics
and adapt to the current complex network environment. In contrast, encrypted network
traffic classification methods based on deep learning and employing hybrid feature extrac-
tion no longer rely on manual feature design. They can effectively identify encrypted and
anonymous traffic, providing a more granular traffic identification mechanism. The applica-
tion of edge computing further enhances its advantages by reducing reliance on centralized
clouds, decreasing latency, and improving responsiveness and data processing efficiency.
Additionally, local processing better protects privacy since sensitive data does not need to
leave the local network.
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Figure 1. Traffic Classification Schemes in Edge Smart Gateways.

3. Model, Design, and Implementation
Model Building

To address the complex spatio-temporal characteristics of encrypted network traffic,
we have designed a deep learning model architecture, as depicted in Figure 2, which
consists of four key components. Algorithm 1 outlines the entire structure. (1) Prepro-
cessing Stage: This stage involves transforming the raw network traffic data into a format
that the model can process at any time. (2) Spatial Feature Extraction Stage: Preliminary
screening and extraction of spatio-temporal feature information are performed through
dilated convolution and gating mechanisms. This structural design lets the model focus
on more important features, accurately capturing spatio-temporal characteristics. (3) Tem-
poral Feature Extraction Stage: Further feature extraction and learning enhancement is
achieved through CA-LSTM, effectively integrating temporal attributes. (4) Classification
Stage: the model utilizes fully connected layers and a softmax layer to achieve the final
classification results.

Algorithm 1 The flow of the algorithm framework.
Input: Raw traffic data Dt, total number of epochs t, total number of batch m.
Output: Predicted category Ŷ of traffic flows.

1: procedure DATA_PREPROCESSING(Dt)
2: Traffic data cleansing and conversion to IDX format files.
3: The extraction of spatio-temporal features is accomplished through the GDC module.
4: V ← Obtain the vector containing the features.
5: return V.
6: end procedure
7: procedure CA-LSTM MODEL(V)
8: for epoch← i to t do
9: for batch← j to m do

10: Transfer the vector V obtained from the GDC module to the CA-LSTM.
11: At each time step t, receive the current input vector Vt.
12: Update the hidden state and cell state.
13: Calculate and minimize loss function.
14: Update all the parameters.
15: end for
16: end for
17: return Ŷ.
18: end procedure
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Figure 2. Module System Architecture.

Spatial Feature Extraction: Spatial feature extraction in traditional Convolutional
Neural Networks (CNN) [30] typically relies on stacking convolutional layers. For deep
neural networks, an intuitive method to enhance model performance is to increase the
network’s depth (i.e., the number of layers) and width (i.e., the number of neurons per
layer). However, this approach rapidly increases the number of model parameters, which
can cause overfitting and significantly raise computational complexity. Additionally, CNNs
need a small receptive field during feature extraction, which limits the range of features
the model can capture in each operation. Although increasing the convolutional layers can
expand the receptive field, it also adds to the network’s depth, potentially leading to the
problem of vanishing gradients during backpropagation.

The Inception module [31] offers an innovative solution to address these challenges,
as depicted in Figure 3. Unlike traditional CNN architectures, the Inception module
incorporates multiple parallel paths, each capable of performing different operations
(e.g., convolution operations of varying sizes). By utilizing filters of multiple sizes in paral-
lel within the same layer, the Inception module is designed to provide multiple receptive
field sizes at the same layer, facilitating feature extraction at different levels. An Inception
module employs 1 × 1, 3 × 3, and 5 × 5 convolutional operations, allowing each module
to capture information at different scales and offer a richer feature representation. We
illustrate the above advantages through 1 × 1, 3 × 3, and 5 × 5 convolution operations.
For a given input image X, the convolution operation can be expressed as Equation (1).

F1×1(X) = X ∗W1×1 + b1×1

F3×3(X) = X ∗W3×3 + b3×3

F5×5(X) = X ∗W5×5 + b5×5

(1)

Among them, ∗ represents the convolution operation, W1×1,W3×3, and W5×5 represent
the weights of the 1 × 1, 3 × 3, and 5 × 5 convolution kernels, respectively. b1×1, b3×3,
and b5×5 are the bias terms corresponding to the 1 × 1, 3 × 3, and 5 × 5 convolution
operations, respectively.

Figure 3. Inception Module.
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The Inception architecture extracts features from different levels, allowing the net-
work to capture a broader range of features. Additionally, using 1 × 1 convolutional
kernels reduces the number of parameters in the network, thereby enhancing computa-
tional efficiency. This approach can reduce computational costs without sacrificing model
performance, making deploying the network in resource-constrained environments easier.
In summary, employing the Inception architecture enhances the model’s symbolic power,
better capturing complex structures and patterns in network data.

Based on the abovementioned content, we propose the Gated Inception Dilated Convo-
lution (GDC) module for spatial feature extraction. This module replaces the conventional
convolutional layers (Conv) with dilated convolutions within the Inception architecture. It
achieves receptive fields of varying sizes by setting different dilation rates, thereby captur-
ing multi-scale information and effectively supplementing global information, as shown in
Figure 4. We will control the spatial range the convolution kernel covers by adjusting the
expansion rate (Dilation Rate). Suppose there is a two-dimensional convolution operation
whose input is X, the convolution kernel is W, and the expansion rate is r. Then, the
expansion convolution completes the operation through Equation (2).

F(X) = (X ∗r W)(i, j) = ∑
m

∑
n

X(i + r ·m, j + r · n) ·W(m, n) (2)

Among them, ∗r represents the dilation convolution operation, (i, j) represents the
position of the output feature map, (m, n) represents the position within the convolution
kernel, and r is the expansion rate, which determines the interval between the convolution
kernel values. Increasing the dilation rate allows the convolution kernel to cover a larger
input area, thus increasing the receptive field. For example, using a convolution kernel
of size 3 × 3, a dilated convolution with a dilation rate of 2 will cover an input area of
size 5 × 5, but the number of parameters of the convolution kernel remains unchanged.
Inception’s parallel structure helps prevent issues related to gradient vanishing or explosion.
Recognizing that not all information in network flows is relevant for feature extraction, we
integrate a gating mechanism within the GDC module to perform weighted information
filtering. The GDC module employs a dual-branch structure. One branch processes input
through an activation function to serve as part of the input for the subsequent stage, while
the other branch inputs the processed data into a gating unit to generate a weight between 0
and 1. The filtered information from both branches is merged to serve as the input for the
next phase.

Figure 4. Dilated convolution diagram.

Gate units utilize gating mechanisms to selectively remember and forget information,
enabling better capture of long-term dependencies within sequences. Their design is
more flexible, accommodating sequences of varying lengths and structures while reducing
the number of model parameters. This is highly advantageous for completing tasks in
resource-constrained computational environments.

Initially, the Inception Dilated Conv architecture reads network traffic image data of
size 28 × 28 × 1 from IDX files, with the images undergoing normalization, where pixel
values are scaled from the original range of [0, 255] to [0, 1]. As shown in Equation (3).

Pnorm(i, j) =
Porig(i, j)−min(Porig)

max(Porig)−min(Porig)
(3)
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For a general grayscale image, we set min(Porig) to 0 and max(Porig) to 255. Porig(i, j)
is the pixel value located in row i and column j, and Pnorm(i, j) is the normalized pixel
value. We can simplify the above process as shown in Equation (4).

Pnorm(i, j) =
Porig(i, j)

255
(4)

Subsequently, the model input is processed in parallel across multiple convolutional
branches, each utilizing convolutional kernels of different sizes to capture feature informa-
tion at various levels. After processing through two Inception Dilated Conv modules and
a gating mechanism, the resulting features are transformed by a flattening layer, which
unfolds the two-dimensional feature maps into a one-dimensional vector. Finally, the model
outputs a one-dimensional vector V with 1240 elements, which contains the information
after feature extraction and fusion.

Temporal Feature Extraction: Network traffic data exhibit distinct structured character-
istics, with hierarchically organized elements such as bytes, packets, and flows. Within this
structure, there is a significant difference between the correlations among bytes within and
across packets. Adequate packets often represent a complete data exchange between the
sender and receiver, and their temporal correlations should be extracted and analyzed sepa-
rately. However, not all features are relevant and valuable for a specific task; some irrelevant
features may introduce unnecessary noise, interfering with the model’s judgment.

Long Short-Term Memory Networks (LSTMs), a particular Recurrent Neural Network
(RNN), effectively address the vanishing and exploding gradients that traditional RNNs
face when processing long sequence data. With their unique gating mechanisms, LSTMs
can capture long-term dependencies in sequence data, making them particularly suitable
for processing network traffic data with significant temporal characteristics. The Attention
Mechanism offers an effective solution for unnecessary noise. It allows the model to
dynamically allocate different attention weights to different parts of the input data, thereby
highlighting more critical and relevant information and enhancing the model’s accuracy
without significantly increasing computational and storage burdens.

Building on the discussion above, we introduce Channel Attention, also known as
Squeeze-and-Excitation networks. Its primary function is to adaptively learn the impor-
tance of each feature channel and accordingly weigh the features, enabling the model to
focus on more crucial information. By integrating the Long Short-Term Memory (LSTM)
network, which extracts temporal features, with the attention mechanism that avoids ir-
relevant noise, we propose the CA-LSTM module. LSTM specially designed three gate
mechanisms: input, forget, and output. These gates work together to determine how the
cell state is updated and how the unit output is calculated. Specifically, the input gate regu-
lates the reception of new information, the forgetting gate determines which information in
the cell state should be discarded, and the output gate controls the flow of information from
the cell state to the unit output. The introduction of this gate control mechanism not only
gives the LSTM network the ability to maintain stability when processing long sequence
data but also makes it excellent at capturing long-term dependencies in sequence data, and
is especially suitable for network traffic with time series characteristics data analysis.

We transfer the vector V obtained through the GDC module to the CA-LSTM. At each
time step t, we receive the current input vector Vt and update the hidden and unit states.

Forget gate: The first step is to decide what information we want to discard from the
cell state. The calculation of the forget gate is completed by Equation (5):

ft = σ(W f · [ht−1, Vt] + b f ) (5)

Among them, σ represents the sigmoid function, W f represents the weight matrix of
the forgetting gate, b f is the bias term, ht−1 is the hidden state of the previous time step,
and xt is the input of the current time step.
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Input gate: The second step determines what information we want to store in the
cell state, and it consists of two parts: a σ layer that determines which values we will
update and a tanh layer that creates a new candidate value vector, specifically through
Equations (6) and (7):

it = σ(Wi · [ht−1, Vt] + bi) (6)

C̃t = tanh(WC · [ht−1, Vt] + bC) (7)

Then, the cell state needs to be updated, and the previous state, Ct−1 is updated to Ct.
Specifically, the new state is to pass the old state through the forgetting gate to complete
the forgetting of part of the information and then add the new information stored in the
input gate, specifically through Equations (8) :

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

Output gate: Finally, the output value is determined through the output gate. The sigma
layer is used to determine which parts of the cell state will be output. Then, the cell
state is passed through tanh (obtaining a value between −1 and 1) and multiplied by
the output of the sigma gate, and then the output is completed, specifically through
Equations (9) and (10):

ot = σ(Wo · [ht−1, Vt] + bo) (9)

ht = ot ∗ tanh(Ct) (10)

The channel attention mechanism [32] is divided into two core steps: Squeeze and
Excitation. The main goal of the compression step is to aggregate the global information of
the input features to reduce the computational complexity while retaining critical informa-
tion. The subsequent excitation step performs feature learning in the channel dimension.
The learned weights emphasize essential channels’ features and suppress unimportant
ones. This can effectively assign different weights to the features of different channels,
allowing the model to focus on more informative features, as illustrated in Figure 5.

Figure 5. Diagram of the SENet module.

Let F ∈ RC×H×W be the output feature map of lstm, where C is the number of channels,
and H and W are the height and width of the feature map, respectively. First, calculate
the statistical characteristics of each channel through global average pooling, specifically
through Equations (11):

Fc =
1

H ×W

H

∑
i=1

W

∑
j=1

F(c, i, j) (11)
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where F(c, i, j) represents the feature value of the c channel at position (i, j), and Fc is the
average pooling result of the c channel. The weight of each channel is obtained through
Equation (12).

Wc = σ(g(Fc)) = σ(WU · δ(WD · Fc)) (12)

We multiply the learned channel weight Wc with the original feature map F to obtain
the weighted feature map F̃, as shown in Equation (13).

F̃(c, i, j) = Wc · F(c, i, j) (13)

Finally, we use the softmax layer to complete traffic classification.
The distribution of network traffic features is complex, especially in edge computing

scenarios where storage and computational resources are limited. To better adapt to this
environment, we employ the Inception structure for spatial feature extraction, which
reduces the number of parameters in the network and improves computational efficiency.
This approach lowers computational costs without sacrificing model performance, making
deploying the network in resource-constrained environments easier. To filter out adequate
information from network traffic, we introduce a gated units mechanism that better controls
the flow of information, thereby reducing the unnecessary consumption of computational
and storage resources. We utilize the LSTM structure and a channel attention mechanism
for temporal feature extraction. This mechanism allows the attention mechanism to select
important information from a large amount of data, assigning different weights to different
parts of the input, mainly focusing on the temporal features of encrypted network traffic.
In summary, employing the above structures can address the shortcomings of current
methods and better adapt to various resource constraints in edge computing environments.

4. Evaluation

In this study, we conducted several multi-classification experiments on the ISCX VPN-
nonVPN dataset to prevent the effects caused by chance. The results of the experiments,
which are the averages of several runs, are used to evaluate the performance of the proposed
model, and the experimental results are analyzed in depth.

4.1. Dataset

Many studies on encrypted traffic classification depend on traffic data collected by
security firms or private traffic data, which can impact the general trustworthiness of the
research outcomes. At present, there is a relative scarcity of publicly available encrypted
traffic datasets [33], and these datasets usually offer manually designed feature data rather
than raw traffic data, with a limited range of categories covered. Considering our research
task requires engaging with current mainstream applications. It demands a diverse and
representative dataset from the real world, so we turned our attention to the ISCX VPN 2016
dataset [16] produced by the Canadian Institute for Cybersecurity. To generate a dataset
representative of real-world traffic, they used real accounts to capture regular and VPN
sessions through applications like Skype and Facebook, resulting in 14 traffic categories:
VOIP, VPN-VOIP, P2P, VPN-P2P, etc. The dataset contains 14 types of encrypted traffic,
with seven being regular encrypted traffic and the other seven being protocol-encapsulated
traffic. This dataset includes the temporal flow feature data used in their research and
provides raw traffic data (in Pcap format).

In the ISCX VPN-nonVPN dataset, the flow feature data are categorized into
14 classification labels. We also observed that the original traffic data did not come with
labels, and there were ambiguities in the classification of some file types. For instance, cer-
tain file types could be categorized as ’Browser’ or ’Streaming’. In light of this, we decided
not to add additional annotations for files with ambiguous classifications. Following this
revision, the variety of raw traffic data in the dataset was reduced to 12 types, including
six types of regular encrypted traffic and six types of VPN protocol-encapsulated traffic.
Table 1 describes what the dataset contains. The dataset shows that there is class imbalance
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and potential influence from minority class data. Therefore, even if the model achieves
a high level of accuracy, relying solely on accuracy can lead to misleading conclusions.
In this scenario, precision, recall, and F1 score become particularly important for result
analysis and discussion as they provide a more comprehensive reflection of the model’s
predictive ability for minority classes. In this context, “Traffic Type” is used to denote the
service type of network traffic, “Applications” refers to the application type of network
traffic, and “Percentage” indicates the proportion of the dataset.

Table 1. Dataset Categories and Contents.

ISCX VPN-NonVPN Dataset

Traffic Type Applications Percentage

Chat ICQ, AIM, Skype, Facebook, Hangouts 3.94%
Email SMPT, POP3, IMAP 2.66%
FTP Skype, FTPS, SFTP 25.24%

Streaming Viemo, Youtube, Netfilx, Spotify 0.68%
VoIP Facebook, Skype, Hangouts, Voipbuster 60.59%
P2P Torrent 0.15%

VpnChat ICQ, AIM, Skype, Facebook, Hangouts 1.47%
VpnEmail SMPT, POP3, IMAP 0.11%
VpnFTP Skype, FTPS, SFTP 0.37%

VpnStreaming Viemo, Youtube, Netfilx, Spotify 0.24%
VpnVoIP Facebook, Skype, Hangouts, Voipbuster 4.37%
VpnP2P Bittorrent 0.17%

TOTAL 100%

4.2. Data Preprocessing

The dataset requires preprocessing of the captured raw network traffic data in PCAP
format to create a standardized dataset suitable for model input. The preprocessing process
involves the following steps: traffic segmentation, traffic cleaning, packet truncation,
and padding, vectorization, and normalization.

Traffic Segmentation: This step involves dividing the original network traffic data
into multiple independent traffic flows. It segments the original traffic into individual flows
by analyzing five-tuple information (source IP address, destination IP address, protocol
type, source port number, and destination port number), saving each flow as a separate
PCAP file.

Traffic Cleaning: Filter out empty and duplicate files from the segmented PCAP files
to eliminate irrelevant noise. To prevent model overfitting, replace the MAC addresses in
the data link layer and the IP addresses in the network layer with newly generated random
addresses, as this information, dependent on the specific data collection environment, could
interfere with the classification results. Subsequently, randomly allocate the data to the
training and test sets in an 8:2 ratio.

Packet Truncation and Padding: Deep learning models usually require fixed-sized
inputs. Therefore, this step processes each file to a fixed length of 784 bytes. It truncates
files exceeding this length and pads files shorter than this length with zeros to reach the
required fixed size.

Conversion to IDX: The images are transformed into IDX format files, which are
commonly used in the field of deep learning.

4.3. Experimental Setup

In order to ensure the reproducibility and validity of the experimental results, a stan-
dardized experimental setup was established; the hardware platform utilized for the
experiments was equipped with a 12th generation Intel® Core™ i5-12500 processor with
a base frequency of 3.00 GHz, an NVIDIA GeForce GTX 1060-6GB GPU, 16 GB of RAM,
and was operating on Windows 11 OS. The model training used the Python program-
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ming language and the PyTorch deep learning framework. The detailed experimental
environment is shown in Table 2.

Table 2. Detailed Experimental Environment.

Category Parameters

GPU Nvidia GPU
(GeForce GTX 1060-6 GB)

Deep Learning Platform Pytorch 1.10.2
CUDA Version 10.2
CuDNN Version 7.6.5

The main parameters of the model are as follows: the batch size is set to 500, and the
number of epochs is fixed at 40. The Adam optimizer is selected with a learning rate (lr)
of 0.00025.

4.4. Evaluation Metrics

Commonly used indicators in encrypted traffic classification include accuracy rate,
precision rate, recall rate, and F1 score. The calculation is shown in Equations (14)–(17).
To train and test the model, 80% of the preprocessed traffic data is randomly selected
as the training set and 20% as the test set. In the experimental evaluation, the model’s
performance is evaluated using the above key performance metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1-Score = 2× Precision× Recall
Precision + Recall

(17)

True Positive (TP) represents the number of target traffic correctly identified, False
Positive (FP) represents the number of target traffic incorrectly identified, True Negative
(TN) represents the number of other traffic correctly identified, and False Negative (FN)
represents the number of target traffic that was missed.

4.5. Analysis of Results

We conducted multiple classification experiments using the ISCX VPN-nonVPN
dataset according to service programs (ISCX VPN-Service) and applications (ISCX VPN-
App). The resulting confusion matrix of the classification is shown in Figure 6. As indicated
by Figure 6a,b, most of the values are concentrated along the diagonal of the confusion
matrix, which suggests that the model’s overall classification performance is high.

The two datasets’ overall accuracy, recall, precision, and F1 scores are shown in
Figure 7, which provides a comprehensive view of the model’s integrated performance.
The illustration shows that the model exceeds 90% accuracy, recall, precision, and F1 scores
on both datasets, with a false positive rate of less than 0.01%. This indicates that the model
has good classification performance, achieving high accuracy while effectively addressing
the issue of a high false alarm rate. At the same time, we observe some discrepancies
between the overall experimental results of accuracy and the experimental results of
accuracy, recall, precision, and F1 scores. By analyzing the confusion matrix, we attribute
these discrepancies to the influence of the minority classes in the dataset, especially in
datasets with an unbalanced class distribution, where relying solely on accuracy can be
misleading. This is because even if the model only predicts the main class, it can still obtain
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a very high accuracy rate. At this point, precision, recall, and F1 scores become particularly
important because they better reflect the model’s predictive ability for minority classes.

(a) ISCX-VPN-Service (b) ISCX-VPN-App

Figure 6. Multi-class confusion matrix results.

Figure 7. Experimental Performance.

Through the analysis above, the proposed model accomplishes identifying and classi-
fying encrypted network traffic by extracting spatiotemporal features, making it adaptable
to the current diverse encrypted and anonymous traffic. In contrast to conventional meth-
ods, our model achieves end-to-end automatic feature extraction, eliminating the reliance
on traditional manual design. This enhances efficiency and enables adaptation to more
complex network environments. Compared to other deep learning approaches, our model
realizes encrypted network traffic classification through spatiotemporal feature extraction,
eliminating the dependence on single time or space feature extraction. This enables more
thorough feature extraction, thus improving the model’s robustness.

4.6. Comparison with Existing Research

To validate the effectiveness of the proposed model in this paper, we utilized the same
ISCX VPN-nonVPN dataset and compared it with recent deep-learning models. As shown
in Figure 8, our model outperforms other models by more than 2% in terms of accuracy,
precision, recall, and F1 scores. It is noteworthy that in the multi-class experiments for the
two categories, the classification performance of the hybrid model surpasses that of the indi-
vidual models. This indicates that deep learning models considering temporal and spatial
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feature extraction have a more decisive advantage in extracting heterogeneous encrypted
network traffic features. This aligns with the research findings we mentioned earlier.

(a) ISCX-VPN-Service (b) ISCX-VPN-App

Figure 8. Compared to other DL Models.

5. Discussion

This paper proposes a model for encrypted network traffic classification. Our model
also has some limitations. First, we should have considered the computational overhead
and resource consumption caused by adding additional models. Secondly, the processing
speed issue when receiving the impact of real-time network data needs to be considered.
In the future, we will optimize the parameters in the model to reduce additional comput-
ing overhead and resource issues and try to add more network traffic classifications to
test performance.

6. Conclusions

This paper presents a novel model for classifying encrypted network traffic to en-
hance traffic classification performance. We introduce an extraction module, Gated Dilated
Convolution (GDC), which collaborates with dilated convolution and gating mechanisms
to address the feature loss issue caused by previous single-feature extraction methods.
Subsequently, we employ the CA-LSTM module to achieve secondary enhancement of
features, thereby improving the detection efficiency and accuracy. We conduct two multi-
classification experiments based on the ISCX-VPN dataset to validate the model’s perfor-
mance. Experimental results demonstrate that the proposed method achieves an accuracy
rate of over 95% and a recall rate of over 90%, significantly outperforming existing methods,
thus significantly enhancing the model’s performance.

As network environments become increasingly complex in future work, we plan to
improve the model’s performance further, enhance its performance on imbalanced category
distribution datasets, and apply it to network traffic classification tasks in more scenarios
to improve the model’s identification accuracy and robustness.
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