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Abstract: Cultural heritages are invaluable and non-renewable resources. Existing warning mecha-
nisms usually rely on degradation analysis to assess environmental risk factors. However, they have
limitations such as complex research, poor generalization, and inadequate warnings. To address
these issues, we propose a hybrid model that combines the long short-term memory network (LSTM)
and attention mechanisms with environmental factors to detect anomalies in cultural heritage. The
attention mechanism extracts temporal dependencies, while LSTM captures global long-term patterns,
enhancing the reconstruction capability. Additionally, we introduce the seasonal, trend, shapelet,
and mixed anomalies to enrich the positive and negative samples and propose a novel threshold
extraction method to reduce the reliance on prior knowledge. Extensive experiments demonstrate
that LSTM-Attention outperforms previous methods, with a root mean square error (RMSE) of 34.328,
mean absolute error (MAE) of 27.060, and the largest area under the receiver operating characteristic
curve (AUC) value, highlighting the superiority and effectiveness of our method. The ablation
study proves the contribution of the attention mechanism, and the reconstruction step can be flexibly
adjusted according to practical needs. Finally, the algorithm has been successfully implemented in
engineering and employed in practice, providing valuable guidelines for the preservation of ancient
buildings worldwide.

Keywords: cultural heritage; anomaly warning; LSTM; attention mechanism; timber structure

1. Introduction

Cultural heritage represents a profound embodiment of human civilization, holding
significant artistic and scientific value [1]. Yet, ancient buildings face numerous influences,
including the passage of time, environmental fluctuations, and human activities. Con-
sequently, these structures often contend with underlying challenges, such as structural
fissures, erosion, and morphological distortions. These issues not only endanger the struc-
tural integrity of ancient buildings but also cast a shadow over the historic preservation
and cultural legacy. Current preventive strategies primarily revolve around a meticulous
analysis of the root causes of degradation. This involves the construction of finite element
stress analysis models grounded in the building’s framework and executing simulation
experiments to validate and refine these models [2,3]. Subsequently, warning thresholds
were derived from the model analysis results. Despite these assiduous endeavors, estab-
lishing an efficacious early warning system for heritage monitoring remains a formidable
challenge, given the limited comprehension of the intricacies underpinning degradation
mechanisms. Furthermore, the copious stream of monitoring data available is inadequate
in furnishing timely guidance and support for contemporary heritage conservation un-
dertakings. Thus, a pressing and compelling need exists in heritage conservation that
transcends the constraints inherent in traditional methodologies.

Electronics 2024, 13, 1254. https://doi.org/10.3390/electronics13071254 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071254
https://doi.org/10.3390/electronics13071254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0345-6324
https://orcid.org/0000-0003-2356-5875
https://orcid.org/0000-0003-4492-7994
https://orcid.org/0009-0007-0860-6380
https://doi.org/10.3390/electronics13071254
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071254?type=check_update&version=1


Electronics 2024, 13, 1254 2 of 21

Early anomaly detection is crucial for safeguarding cultural heritages against the
insidious threat of deterioration [4–6]. Traditionally, previous studies have been conducted
in cultural heritage conservation utilizing the degradation causation analysis [7–9]. This
method involves meticulously examining the deterioration mechanisms inherent to her-
itage materials. Through extensive simulation experiments, researchers delve into the
degradation process of heritage materials under specific conditions, aiming to identify fac-
tors that can mitigate deterioration challenges while establishing corresponding threshold
values. For instance, Liu et al. [10] elucidated the microbial degradation process concerning
stone monuments and structures, providing a detailed account of biofilms’ progression
and succession on cultural heritage surfaces. Similarly, Qu et al. [1] probed the effect of
freeze–thaw cycles and wind erosion on earthen sites in northwestern China, systematically
exploring the relationship between soil wind erosion strength, freeze–thaw cycle frequency,
water content, and moisture levels by carefully designed simulated trials. Their findings
yielded valuable insights into reinforcement materials capable of regulating freeze-thaw
cycles and moisture levels, enhancing the resistance of soil sites against wind erosion.
Riccardo Fanti et al. [11] harnessed three-dimensional models attained via terrestrial laser
scanning. They executed structural force analyses grounded in these models, predicted
outcomes through simulated experiments, leveraged these predictions as benchmarks,
and employed ground-penetrating radar to detect anomalies deviating from the projected
outcomes. However, despite the invaluable insights gained from early warnings based on
degradation causation analysis, it is imperative to acknowledge the inherent limitations of
this approach, including its complexity and limited generalizability. Typically conducted in
controlled laboratory settings, this method presents a significant disconnect between labora-
tory conditions and real-world field settings, resulting in substantial disparities that impact
the reliability of inferences drawn from experimental results. Additionally, it necessitates
extensive simulations under precisely defined conditions to establish anomaly thresholds,
which places resource-intensive demands and results in poor generalization performance.
Consequently, setting early warning thresholds based on deterioration mechanisms proves
challenging, impeding the effective utilization of monitoring data to detect anomalies in
ancient buildings early. Furthermore, the feasibility of implementing this approach on a
per-artifact basis is curtailed due to the diverse and distinctive attributes encompassing
material composition, temporal aging, and environmental context. This, in turn, limits its
broader applicability and generalizability.

The evolution of monitoring technologies has yielded a substantial influx of data,
and various industries capitalize on data analysis to achieve effective outcomes. This
advancement trajectory offers a salient proposition for the surveillance and preserva-
tion of historical edifices. This momentum has, in turn, paved the way for the advent
of early warning paradigms underpinned by statistical analysis, correlation evaluation,
and machine learning techniques. These approaches have found application across var-
ious contexts, as evidenced by numerous studies. For instance, Milan Holický et al. [12]
conducted a statistical analysis of the Vltava River’s annual maximum flow monitoring
data in Prague. They employed normal distributions and Pearson fitting, utilizing mo-
ment and maximum likelihood estimations to derive probability distributions. Dennis M.
Staley et al. [13] leveraged rainfall, hydrologic response, and geospatial data to devise a
predictive model for debris flow hazard thresholds, hinging on rainfall intensity, duration,
and probability. Other investigations employed machine learning strategies, including
differential autoregressive moving average algorithms, Long Short-Term Memory (LSTM)
networks, and backpropagation neural networks (BPNN). Liang et al. [14] implemented
differential autoregressive moving average models to anticipate oil pressures and establish
pressures within the confines of industry-specific thresholds for an early warning frame-
work. Giovanni Gigli et al. [15] formulated a landslide early warning model by analyzing
monitoring data preceding a landslide event. Xie et al. [16] utilized LSTM networks to
predict the cyclical component of landslides, considering geological conditions, rainfall
intensity, and human activities. Their monitoring outcomes exhibited robust consistency,
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addressing the multifaceted influences on landslide displacement and providing guidance
for early warnings. Fan et al. [17] employed a BPNN to predict failures in smart grid
equipment. The network assimilated monitoring data from diverse influencing factors
of the equipment in question to predict the probability of equipment failure. Moreover,
other inquiries embraced some other anomaly detection methods. Zhu et al. [18] applied
K-means clustering to scrutinize rockburst monitoring data and offered tiered warnings
based on clustering results. Chen et al. [19] introduced a novel multivariate time series
anomaly detection framework that introduced graph convolution for detecting anoma-
lous information flow between IoT device nodes. In the industrial IoT context, Gauri
Shah et al. [20] employed diverse machine-learning techniques to model data anomalies.
Collectively, these above studies manifest continuous endeavors to enhance early warning
techniques, contributing substantial insights to heritage preservation.

Nevertheless, previous studies have focused on identifying and categorizing damage
to ancient buildings. They do not adequately address the issue of incorporating anomaly
data into the dataset, which is essential for practical building preservation. Anomalies
detection of ancient buildings is a multifaceted endeavor that encompasses various scales
and degrees of characterization. Anomalies in such structures can manifest in specific
areas, ranging from structurally fragile parts to historically significant zones. The afore-
mentioned methods may not effectively cover the intricate interrelationships inherent in
these features. In contrast, the incorporation of attention mechanisms offers a promising
approach to address these complexities. Attention mechanisms allow models to discern
significant attributes across diverse scenarios, allowing them to capture anomalous sub-
tleties and features skillfully. The ability of the mechanisms to focus on critical regions
enables the model to understand the nuances associated with specific anomalies and to
adapt to different anomaly patterns. Furthermore, temperature and humidity may impact
the material properties and structural behavior of buildings over time. For instance, tem-
perature variations may cause the expansion or contraction of building materials, while
humidity changes can lead to swelling or warping. The relationship between the building
structure and the environment is subject to change due to anomalies. The incorporation of
temperature and humidity as external influence features into the model can enhance the
accuracy of anomaly detection for ancient buildings. As a result, they improve the accuracy,
adaptability, and generalizability of the model’s anomaly detection process.

Thus, in this study, our objective is to enhance anomaly detection accuracy. First,
we introduce an anomaly data augmentation strategy, which includes seasonal, trend,
shapelet, and mixed anomalies to enrich our dataset with positive and negative samples.
Subsequently, we integrate the attention mechanism with LSTM to build an LSTM-Attention
model. In addition, we propose a novel threshold extraction method based on extreme
value theory and recurrence interval calculation. The experimental results demonstrate that
our algorithm can effectively detect anomalies in ancient buildings, making it a practical
and effective solution for preventing potential damages. To be specific, the contributions
are as follows:

(1) We propose a novel algorithm for early warning of anomalies in ancient buildings
by combining environmental factors with the building structure to improve predic-
tion accuracy.

(2) We introduce the seasonal, trend, shapelet, and mixed anomalies to increase the
positive and negative samples of the datasets.

(3) We incorporate the attention mechanism into the domain of ancient buildings and
combine it with LSTM architecture to more effectively extract the inherent charac-
teristics of monitoring data, particularly temporal dependencies, enhancing model
prediction accuracy. To our knowledge, this investigation is one of the initial endeav-
ors that delve into the augmentation of anomaly data and the application of attention
mechanisms in the context of anomaly warning tasks for ancient buildings.
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(4) We propose a novel threshold extraction method based on extreme value theory and
recurrence interval calculation, which reduces reliance on prior knowledge and allows
for the extraction of different warning threshold intervals automatically.

(5) We implement and deploy the anomaly warning program, making it applicable and
providing guidelines for conserving cultural heritages in other locations.

2. Materials and Methods
2.1. Experimental Data Acquisition
2.1.1. Experimental Data

The dataset utilized in this study is from Baoguo Temple, located in Ningbo, Zhejiang
Province, and involves horizontal displacements of tenons in an ancient building structure.
These data come from an Internet of Things (IoT) monitoring system specifically designed to
monitor anomalies in ancient buildings. Figure 1 intuitively shows the exact location of the
tenon displacement sensor, which is used to track the displacement of the tenons in wooden
structures. Adjacent to the tenon displacement sensor, humidity and temperature sensors
were strategically deployed to complement the measurement framework. Furthermore,
other installation locations in the figure were carefully selected to collect monitoring data
from artifacts in different building areas.

To evaluate the effectiveness of our anomaly warning algorithm, a specific period from
5 August 2019, to 12 June 2020, was chosen for analysis using displacement data, with all
sampling intervals of 2 h and 4217 cumulative data. For validation, part of the original data
corresponding to 10 October 2019, was selected and is presented in Table 1.

Figure 1. Installation point of tenon displacement sensor. The sensor mounting position is marked in
the picture with a red circle and a red box to make it clearly visible.

Table 1. Part of the original data.

Time Displacement (µm) Temperature (◦C) Humidity (%)

00:00:00 21,321.5 25.438 98.175
02:00:00 21,320 25.661 97.938
04:00:00 21,318.5 25.967 97.228
06:00:00 21,316.75 26.282 96.248

...
...

...
...

20:00:00 21,311.5 23.173 96.108
22:00:00 21,308.25 22.870 95.871

2.1.2. Anomalous Data Synthesis

The ancient architectural artifacts typically exhibit a high degree of stability in their
day-to-day conditions, it is true that the anomalous data is pretty limited. However, it is
precisely because of this stability that anomalies, when they do occur, may signify critical
deviations from the norm and potentially indicate underlying issues that require immediate
attention. Thus, additional anomalies were introduced to augment the dataset and evaluate
the model’s robustness and generalization ability becomes essential for training anomaly
detection models effectively, including seasonal, trend, shapelet, and mixed anomalies [21] ,
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which can better enhance its overall performance and ensure the robustness of the anomaly
detection system in safeguarding cultural heritage assets. The relevant parameters for the
synthesis process are presented in Table 2. In the case of mixed anomalies, the parameters
α and β were reduced by half of their original values to avoid excessive prominence when
superimposed. Part of the resulting dataset is signified in Figure 2.

(1) Add seasonal anomalies. As shown in Equations (1) and (2), the seasonal anomaly is
introduced by adding the original series to the series of other periods.

S̄seasonal = S + α · ρseasonal (ω̂I) · g(I) + ε (1)

g(x) =

{
x
a x ≤ a
1 x > a

(2)

where S ∈ Rl×d1 is the original building sequence. I = {1, 2, · · · , l} ∈ Rl×1 is the
incremental sequence. l is the sequence length, and ω̂ is the anomaly period. ρseasonal
is the sine function; g is the transition function to model the process of sequence
correlation change caused by adding anomalies, and a is half of l. α is used to adjust
the effect of anomalies on the original sequence, and ε is random noise.

(2) Add trend anomalies. The trend anomaly is applied by summing the original series
with a monotonically increasing or decreasing series, as shown in Equation (3).

S̄trend = S + β · I · g(I) + ε (3)

where β is used to moderate the effect of the outliers.
(3) Add shapelet anomalies. The shapelet anomaly is introduced by adding the original

sequence to another sequence with the same period, as shown in Equation (4).

S̄shapelet = S + γ · ρshapelet (ω̂I) · g(I) + ε (4)

where ρshapelet is a sine function, γ is the period of the original sequence. is used to
regulate the effect of shapelet anomaly on the original series.

(4) Add mixed anomalies. The mixture of seasonal, trend, and shapelet anomalies is
introduced simultaneously, as shown in Equation (5).

S̄mix = S + S̄seasonal + S̄trend + S̄shapelet (5)

Table 2. Parameters related to anomalies.

Parameter Value

α 0.2
β 0.005
γ 0.2
ω 24
ω̂ 48

Figure 2. Data synthesis.
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To balance the number of positive and negative samples in the test set after introducing
synthesized anomalies, we adopt the alternating introduction method for each anomaly
class. Assuming that the original test set contains n normal samples, numbered 1, 2, ·····, n,
then for sample number i, the following rules are used to introduce anomalies:

(1) For the sample with code i mod 4==0, a shapelet anomaly is introduced.
(2) For the sample with code i mod 4==1, a seasonal anomaly is introduced.
(3) For samples with code i mod 4==2, a trend anomaly is introduced.
(4) For the sample with code i mod 4==3, a mixed anomaly is introduced.

This method ensures an equal number of positive and negative samples in the synthe-
sized anomaly dataset.

2.2. The Attention Mechanism

Inspired by the human brain’s attention mechanism, the attention mechanism selec-
tively weighs critical information from a large amount of data to enhance neural network
efficiency. This mechanism has found extensive applications in various domains, including
sentiment analysis [22,23], image segmentation [24,25], intelligent recommendation [26,27]
and time series forecasting [28–30]. The self-attention mechanism, a prominent component
of the transformer model developed by the Google team [31], is a variant of the attention
mechanism. The attention mechanism reduces the dependence on external information and
excels at capturing internal data relationships. For anomaly detection tasks, it possesses
the capability to autonomously learn and assign weights to features based on their intrinsic
relevance within the data, focusing on those essential features to improve the accuracy of
anomaly detection. Moreover, it facilitates the capture of contextual information present in
the data while effectively mitigating the interference caused by noise and anomalous data
points, boosting model performance and robustness significantly. As displayed in Figure 3,
input data is typically described in terms of Query, Key, and Value, and the computation
process can be outlined as follows.

1. Data input. A linear transformation can map the input sequence to Query, Key,
and Value.

2. Calculate the correlation. The correlation between the Key and Query is calculated
and normalized, and the attention distribution of critical values is obtained using the
softmax function.

3. Weighted summation. According to the attention distribution calculated in step 2,
the corresponding Value is weighted and summed to obtain the output.

The calculation of the self-attention is similar to the traditional attention mechanism;
the difference is that in step 1, the Query, Key, and Value of the self-attention come from
the same input sequence, which is a linear transformation of its input. Generally speaking,
self-attention uses the scaled dot product for correlation calculation, and the self-attention
equation is shown as follows.

Attention(Q, K, V) = So f tmax(
QKT
√

dk
) (6)

where dk represents the dimension of the input data.

2.3. Long Short-Term Memory Network (LSTM)

LSTM is a variant of the traditional recurrent neural network (RNN) that can effectively
learn long-term dependencies and achieve better results in time series forecasting [32].
Nowadays, LSTM has been applied in many fields, such as language modeling [33,34], time
series forecasting [35,36], and automatic speech recognition [37,38]. The primary structure
of the LSTM cell is shown in Figure 4.
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Figure 3. Attention.

LSTM regulates the information flow by introducing gate mechanisms as internal
gating units, including input gates it, forget gates ft, output gates ot, and state vector Ct,
which can achieve the long-term memory and solve the gradient disappearance and gradi-
ent explosion problems. The forget gate ft determines the information to be remembered
and discarded in Ct−1 by using the previous cell output vector ht−1 and the current input
vector xt. Additionally, the input gate it controls what information is updated to the new
cell state Ct. Finally, combine Ct with ot to determine the final output [39]. The LSTM is
formulated as

ft = σ(W f xxt + W f hht−1 + b f ) (7)

it = σ(Witxt + Wihht−1 + bi) (8)

µt = tanh(Wµxxt + Wµhht−1 + bµ) (9)

Ct = ftCt−1 + itµt (10)

ot = σ(Woxxt + Wohht−1 + bo) (11)

ht = ottanh(Ct) (12)

In the formulas, xt is the input vector, ht is the memory cell output, σ, and tanh
are activation functions. W and b represent the weight and bias of the neural network,
respectively.

Figure 4. The basic LSTM cell.

2.4. The LSTM-Attention Framework

The attention mechanism was proposed to allow the model to focus on specific in-
put parts. It was used to enhance LSTM performance in many applications by assigning
attention scores for LSTM hidden states to determine the importance of each state in the
final prediction [40,41]. Attention mechanisms can be more effective with long sequences,
and they can improve the interpretability of the model. The network structure of the LSTM-
Attention model proposed in this paper is schematically shown in Figure 5. The figure
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contains four parts: (1) cutting displacement and environment data, (2) extracting global
temporal features in the window, (3) extracting time series dependencies, and (4) recon-
structing the recent displacement data.

Figure 5. The LSTM-Attention model.

1. Cut the displacement and environmental data. In this paper, the displacement and
the environmental data are cut to the same size as the sliding window. As shown in
the blue dashed box part of the figure, the different colored origin points represent
different time series. The sliding window size is W × D, W is the period of the sliding
window, and D is the time series dimension. The sliding window moves along the
time axis, and the data set in the red box part is obtained after cutting. The small black
box is the recent displacement data used as the training set label.

2. Extract global time features. LSTM has an excellent performance in long sequence
tasks, which is well-suited for cultural heritage where data often exhibits temporal
dependencies. This paper uses LSTM to extract the time series features in the window,
capture and learn from the temporal patterns, and output the hidden state values
to prepare for the subsequent calculation of the weights of each hidden in the self-
attention layer, enabling it to discern anomalous behavior over time.

3. Extract dependencies of time series. The attention mechanism enhances the LSTM
model’s ability to focus on relevant information within the input sequences. This
is particularly beneficial for anomaly detection tasks where subtle deviations from
normal behavior need to be identified. Reasonable allocation of attention weights
can effectively improve the reconstruction ability of the model. The self-attention
allocates more weight to the key parts that affect the output more, which can improve
the model’s interpretability. The sequence of hidden state values in LSTM contains
the environment sequence and the ancient building sequence. Actually, calculating
the weight matrix is extracting the dependencies between the time sequences, thereby
improving the accuracy of anomaly detection.
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4. Reconstruct the recent displacement data. Extract the association between features
and map them to the output, which will reconstruct the recent displacement data.

We combine LSTM with the attention mechanism to effectively leverage the temporal
dynamics of the data while attending to salient features, enhancing its capability for detect-
ing anomalies in cultural heritage. The LSTM-Attention model leverages the next period’s
environmental data to constrain the reconstruction of the next period’s displacement data.
It offers flexibility in adjusting reconstruction intervals within a single iteration to align with
practical requirements. However, it is crucial to emphasize that despite the LSTM-Attention
possessing the capability to handle extended reconstructions by manipulating input-output
dimensions, it often encounters prolonged convergence time and reduced precision during
the reconstruction process. To mitigate these challenges, this paper introduces a multi-step
reconstruction approach. Initially, it involves reconstructing a period of displacement
data. Subsequently, this reconstructed displacement data is employed as historical input,
combined with subsequent environmental data as inputs. The model then reconstructs the
displacement for the next period. The effectiveness of this approach critically hinges on the
regulation of the time window and the reconstruction steps, which ensures the model’s
competence in executing protracted reconstructions effectively.

2.5. Model Anomaly Threshold Extraction

An anomaly threshold extraction algorithm based on extreme value theory (EVT) and
recurrence interval calculation (RIC) is proposed. The pseudocode is shown in Algorithm 1.
EVT is commonly used to predict the probability of extreme events, and one important tool
is the generalized extreme value distribution. It extensively involves hydrology [42,43],
meteorology [44], finance [45,46], and is calculated through Equation (13).

Gγ(x) =

 exp
(
−
(

1 + γ
x−µ

σ

)− 1
γ

)
, γ ̸= 0

exp
(
− exp

(
− x−µ

σ

))
, γ = 0

, γ ∈ R, 1 + γ
x − µ

σ
> 0 (13)

where µ is the position, σ is the scale, γ is the shape.
RIC refers to the average interval between extreme events, which occurs once in N

years, playing a vital role in determining the extreme event probability α for threshold
extraction calculated by Equations (14). RIC measures the danger level of extreme events.
In general, larger N corresponds to smaller α, resulting in higher danger levels. Thus,
adjusting N allows for the anomaly threshold extraction at different danger levels.

α =
1

365 · N
(14)

Algorithm 1: Threshold extraction.
Input: Errnormal: Prediction error set N: Recurrence period G: Extreme value
distribution function
1. ρ1 = KSTest(Errnormal, Gumbel) // Test Gumbel extreme value distribution
2. ρ2 = KSTest(Enormal, Weibull) // Test Weibull extreme value distribution
3. ρ3 = KSTest(Errnormal, Frechet) // Test Frechet extreme value distribution
4. G = selectG(ρ1, ρ2, ρ3) // Select the distribution function based on the p
5. (γ, µ, σ) = fit(G, Enormal) // Fitting the distribution
6. cd f (x) =

∫ x
−∞ G(x, γ, µ, σ), dx // Calculate the cumulative probability density

distribution
7. α = 1

365·N // Calculate the probability of the extreme events
8. τ = cd f−1(1 − α) // Calculate the threshold value based on the inverse
function of cd f ()
9. return τ
Output: τ
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2.6. Model Performance Criteria

To further compare the model’s performance in this paper with other models, two
criteria are selected: root mean square error (RMSE) and mean absolute error (MAE).

The expression for RMSE is shown below:

RMSE(X, h) =

√
1
m

m

∑
i=1

(
h
(
x(i)

)
− y(i)

)2 (15)

The expression for MAE is shown below:

MAE(X, h) =
1
m

m

∑
i=1

∣∣∣h(x(i)
)
− y(i)

∣∣∣ (16)

where m is the total number of test sets, h(x) is the reconstructed value, and y is the actual
value. A lower the RMSE and MAE indicate a more accurate model.

The ROC curve is used to verify the ability of the model to detect anomalies. TPR is
the ratio of positive cases, and FPR is the ratio of negative cases. The calculations are in
Equations (17) and (18), where the meanings of TP, FP, FN, and TN are shown in Table 3.

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)

Table 3. ROC definition table.

Reference

Positive Negative

Prediction Positive TP (True Positive) FP (False Positive)
Negative FN (False Negative) TN (True Negative)

The lower half area of the ROC is the AUC value. The larger the AUC value, the better
the anomaly detection effect.

3. Results
3.1. Risk Source Selection

This paper uses scatter plots to select the critical factors for risk sources. From Figure 6,
it can be seen that there is a specific linear relationship between humidity and tenon
displacement. In contrast, the relationship between temperature and tenon displacement is
not apparent.

Moreover, we employed the Spearman correlation coefficient to discern the envi-
ronmental data points whose correlation values with tenon displacement fell from −0.5
to 0.5. Notably, the correlation coefficient between humidity and tenon displacement
was computed to be −0.75, while the correlation coefficient between temperature and
tenon displacement stood at 0.23. Humidity exhibited a more pronounced correlation with
tenon displacement. To visualize the correlation between the tenon displacement and the
humidity, the monitoring data was preprocessed in the experiments, including filtering
to eliminate some noise effects and inverse operation on the humidity. As depicted in
Figure 7, the robustness of the correlation between humidity and displacement is evident,
accentuated by a discernible hysteresis effect in the influence of humidity on displacement.
Therefore, we selected humidity as a significant influencing factor, with ensuing discus-
sions aimed at elucidating the hysteresis phenomenon exhibited by humidity’s impact
on displacement.
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Figure 6. Scatter plots between two environmental factors and the tenon displacement.

Figure 7. Preprocessing data results.

3.2. Hysteresis Analysis

Hysteresis manifests in the relationship between humidity and tenon displacement,
thereby necessitating the determination of an optimal lag time denoted as ’d’ to capture
this effect.

The outcomes of the lag analysis are depicted in Figure 8. In this representation, ’d’
denotes the lag time, while ’a’ signifies the magnitude of humidity’s influence on tenon
displacement. Within the hysteresis interval [1,25], with the progression of lag time ’d’,
the factor ’a’ initially ascends before subsequently descending. Simultaneously, the MAE
follows a trajectory of decline followed by ascent. Remarkably, when the lag time ’d’
equals 13, the factor ’a’ attains its zenith while the MAE reaches its nadir. Given the two-
hour sampling interval, the lag time range associated with humidity’s impact on tenon
displacement spans approximately 26 h (about one day). This interval is a pivotal reference
in determining the temporal window length for the LSTM-Attention model.

Figure 8. Influence coefficient a and MAE corresponding to different lag time d.
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3.3. Parameter Sensitivity Analysis
3.3.1. Parameter Sensitivity of Time Window and Reconstruction Step

The LSTM-Attention model’s training process involves a batch size of 64 and is trained
over 100 epochs using the Adam optimizer. The model also requires two key parameters:
the time window and the reconstruction step. These parameters are selected through a
comparative analysis of multiple experiments. In this study, the time window length was
investigated within the range of [6,20], and the reconstruction step was explored within the
range of [1,20]. The subsequent figures illustrate the correlation between the time window,
the reconstruction step, and the model’s evaluation metrics.

As inferred from Figure 9, the time window lengths exert a palpable influence on
the reconstruction accuracy. Both reconstruction evaluation indices exhibit a trend of
initial decrease, followed by an increase as the time window length escalates. Notably,
the reconstruction errors reach their nadir when the time window length is 14, thereby
leading us to fix the time window length at 14. On the other hand, the depiction in Figure 10
reveals a consistent trend across the two reconstruction evaluation indices, demonstrating
a linearly increasing pattern. This implies that setting a longer reconstruction step for a
given iteration results in an enlarged reconstruction error for the LSTM-Attention model.
Consequently, the reconstruction step is optimally positioned to 1.

Figure 9. Metrics indexes under different time window lengths.

Figure 10. Metrics indexes under different reconstruction steps.

3.3.2. Parameter Sensitivity of Data Synthesis

Our research aims to develop an anomaly detection algorithm for ancient buildings
by combining LSTM modeling and anomaly data synthesis. Due to the limited historical
anomaly data of different types of ancient buildings, we synthesized a large number of
additional anomaly sequence data by processing various anomaly parameters. To ensure
the accuracy of the synthesized data, we collaborated with two well-known organizations
and formed a team of experts in the field. After conducting synthesized experiments, we
submitted the results to experts for validation. These experts used their understanding of
the structural mechanisms and anomaly data of that particular ancient building to validate
and confirm the parameter values. Subsequently, we implemented these parameter values
in an anomaly detection system with favorable results.

The parameters α, β, and γ measure the effect of seasons, trends, and shapelets on
the original sequence. We study the effect of different parameter values α, β, and γ on
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the model’s performance using time step = 400. During the analysis, we hold the other
parameters constant to understand the impact of these parameters better. By analyzing the
values of the parameters α, β, and γ, we further investigated the effect of the parameters on
the model performance. We analyzed the effect of varying values for (0.05, 0.1, 0.2, 0.3, 0.4),
(0.001, 0.005, 0.01, 0.02, 0.03), and (0.05, 0.1, 0.2, 0.3, 0.4) on the model’s performance.
The quantitative values of MAE and RMSE corresponding to different parameter values
are presented in Tables 4–6. The results show that the model performance is higher when
the α is set to 0.2. Figure 11a shows the variation of these metrics with varying α values.
The model metrics do not change much with different parameters, proving that our model
performs strongly with other parameters.

(a) α (b) β (c) γ

Figure 11. Performance comparison of LSTM-Attention with different parameters.

Table 5 provides the quantitative values, while Figure 11b visualizes the variation of
the metrics at different values of parameter β. The results show that MAE is the lowest
when β is set to 0.005, but the results are also satisfactory when β is set to 0.001, which
suggests that the model is still feasible for more minor anomalies. Similarly, the quantitative
values are presented in Table 6, and Figure 11c shows the visualization of the metrics for
different γ. The results show that MAE is the lowest when γ is set to 0.2, but the results are
also satisfactory when γ is set to 0.4, which suggests that the model is still feasible for more
prominent anomalies. The analysis shows that the model is robust to parameter variations.

Table 4. Performance comparison with different α.

Metrics 0.05 0.1 0.2 0.3 0.4

MAE 36.139 38.361 27.06 28.237 34.475
RMSE 35.549 36.134 34.328 36.497 42.573

Table 5. Performance comparison with different β.

Metrics 0.05 0.1 0.2 0.3 0.4

MAE 34.931 29.048 27.06 29.873 31.462
RMSE 39.027 40.084 34.328 41.349 32.274

Table 6. Performance comparison with different γ.

Metrics 0.001 0.005 0.01 0.02 0.03

MAE 30.478 27.06 31.578 32.862 31.847
RMSE 32.138 34.328 35.745 36.597 35.864

3.4. Validity Analysis

To validate the effectiveness of the proposed LSTM-Attention model, a test set com-
prising 300 samples was utilized. According to the parameter settings of a time window
length of 14 and reconstruction step size of 1, the reconstruction is carried out for 400 steps.

As depicted in Figure 12, the trained LSTM-Attention model successfully maintains
the reconstruction error (MAE) within 45 µm for the validation set. This outcome indicates
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that the model effectively captures the correlation between the structural elements and
the environmental conditions, enabling accurate reconstruction of the data about ancient
architectural relics based on recent environmental data. Furthermore, the stable range of
the reconstruction error allows for the extraction of anomaly warning thresholds, which
facilitates the implementation of anomaly detection and warning systems.

Figure 12. Reconstruction error of LSTM-Attention model.

3.5. Necessity Analysis of External Factors

To verify the necessity of the environmental factors, this paper removes the current
environmental data from the input data. The recent displacement data (unknown recent en-
vironmental data) is reconstructed based on the historical displacement and environmental
data. The reconstruction results are compared with the known current environmental data
for the experiment.

As observed in Figure 13, the LSTM-Attention model exhibits a significant reconstruc-
tion error when faced with unknown humidity conditions. The reconstruction error rapidly
increases within the first 15 steps before gradually converging toward the actual value.
This behavior suggests humidity plays a substantial role in the reconstruction process, par-
ticularly within the initial 15 steps. Initially, when the recent humidity remains unknown,
the LSTM-Attention model lacks the necessary contextual information to reconstruct the
data accurately, resulting in a significant reconstruction error. As the reconstruction pro-
gresses and the recent humidity becomes known, the influence of previous humidity values
diminishes, leading to a gradual reduction in the reconstruction error. This observation
underscores the criticality of the recent environmental factors for accurate displacement
reconstruction in ancient buildings.

Figure 13. Comparison of reconstruction results of the LSTM-Attention model in the case of
known/unknown humidity.

3.6. Ablation Study

Ablation experiments were conducted to assess the impact of the self-attention mech-
anism in the LSTM-Attention model on reconstruction performance. Multiple ablation
experiments were conducted under the parameter settings of a time window length of 14



Electronics 2024, 13, 1254 15 of 21

and a reconstruction step of 1. We conducted three experiments on both without attention
mechanism and with attention mechanism. As presented in Table 7, when there is no atten-
tion mechanism, the MAE is 39.570, 37.391, 39.114, and RMSE is 52.530, 46.472, and 49.668,
respectively. However, when there is an attention mechanism in the model, the MAE is
27.023, 27.293, and 26 863, RMSE is 37.239, 34.933, 35.287. This clearly shows that the
performance of the model with an attention mechanism can be significantly improved,
with an average improvement of 30.1% in MAE and 27.6% in RMSE. The results indicate
that when the self-attention mechanism is absent in the LSTM network, the error is higher
than when it is included. This finding suggests that the self-attention mechanism can help
the model focus on more useful and critical information, effectively enhances the accuracy
of the reconstruction, resulting in an average improvement of 15%. Therefore, the self-
attention mechanism is deemed necessary and highly beneficial for anomaly detection in
ancient buildings.

Table 7. Results of ablation experiments.

Evaluation Metrics Without Attention
Mechanism With Attention Mechanism

MAE
39.570 27.023
37.391 27.293
39.114 26.863

RMSE
52.530 37.239
46.472 34.933
49.668 35.287

3.7. Model Comparison

In machine learning, Vector Autoregression (VAR) [47] is a multi-variable time series
prediction model that can assess the long-term lagged effects of environmental factors
on ancient buildings. In prediction and anomaly detection tasks, VAR describes a linear
relationship between variables, while LSTM, as a deep learning model, describes a nonlinear
relationship between variables. Therefore, we represent VAR as a traditional method
and LSTM-Attention as a deep learning approach and analyze them in detail. Figure 14
illustrates the reconstruction results of both models for a tenon displacement in the test set,
indicating that both models can effectively reconstruct the tenon displacement when the
humidity is known.

Figure 14. Comparison of reconstruction results of the LSTM-Attention model in the case of
known/unknown humidity.

Performance metrics were computed across various reconstruction steps to facilitate
a more intuitive comparison of the reconstruction capabilities between the two models.
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As illustrated in Figure 15, both MAE and RMSE exhibit an upward trend with increasing
reconstruction steps. However, our framework consistently demonstrates lower values in
these two metrics than in VAR. Even when reaching 400 reconstruction steps, the MAE
and RMSE for our model remain confined within a specific range, typically below 30 µm
and 40 µm, respectively. In contrast, VAR’s MAE and RMSE values are within a higher
range, generally between 40 µm and 50 µm. This observation underscores the superior
performance of our model over VAR. Furthermore, it is worth noting that while the number
of reconstruction steps influences reconstruction error, its impact can still be effectively con-
trolled within specific limits, primarily attributed to incorporating environmental factors.

Figure 15. Comparison of VAR and LSTM-Attention under different reconstruction steps.

Furthermore, a comparison was conducted to assess the performance of our proposed
framework against several well-established baseline models, including the Autoregres-
sive Integrated Moving Average Model (ARIMA) [48], Convolutional Neural Network
(CNN) [49], and LSTM. The results of this comparison are summarized in Table 8, demon-
strating the superior performance of our proposed model. Specifically, the MAE of ARIMA,
VAR, CNN, and LSTM are 56.182, 38.950, 51.337, and 38.692, while the MAE of our model is
27.060. Compared to these alternative models, our proposed framework achieved remark-
able MAE reductions of 51.9%, 30.5%, 47.3%, and 30.1%, respectively. The RMSE of ARIMA,
VAR, CNN, LSTM, and our framework are 62.056, 44.721, 57.865, 47.751, and 34.328, and
the RMSE of our model outperforms other baselines by 44.7%, 23.2%, 40.7%, and 28.1%,
respectively.

Table 8. Performance comparison of five models (400 steps).

Model MAE RMSE

ARIMA 56.182 62.056
VAR 38.950 44.721
CNN 51.337 57.865
LSTM 38.692 47.751

LSTM-Attention 27.060 34.328

Figure 16 visually represents the Receiver Operating Characteristic (ROC) curves of the
models, with the corresponding Area Under the Curve (AUC) values marked in the figure.
The larger the AUC value, the better the model performance. Notably, all AUC values
of the five models exceed 0.5, signifying the models’ competence in anomaly detection.
However, it is conspicuous that the AUC value for the LSTM-Attention model surpasses
the rest of the four baseline models, asserting its prominence. Our model’s performance
is also improved when compared with these baseline models, with AUC improvement
of 15.4%, 3.8%, 3.6%, and 2.3%, which highlights the effectiveness of our model. Thus,
our framework exhibits the most robust anomaly detection capability and higher accuracy,
which means it excels in efficiently detecting anomalies within ancient buildings, thereby
delivering heightened practical value.
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Figure 16. ROC curves for anomaly detection.

3.8. Analysis of Anomaly Warning Indicators

This paper utilizes the probability distribution of reconstruction errors to establish
abnormal warning thresholds, which serve as warning indicators for different recurrence
periods. Initially, probability statistics are conducted on the model’s reconstruction errors.
Figure 17 illustrates the distribution probabilities of MAE, which predominantly cluster
within the range of µm. Subsequently, a cumulative probability model is fitted to the data.
Finally, anomaly warning thresholds are derived from the probabilistic model based on
extreme recurrence intervals. Table 9 presents the anomaly warning thresholds of the
LSTM-Attention model for 400 reconstruction steps, considering recurrence intervals of
one and five years. Suppose the discrepancy between the reconstructed displacement and
the actual value exceeds the anomaly warning threshold during monitoring. In that case,
it indicates that the building has recently developed anomalous conditions and requires
some protective measures.

This paper eventually deploys the anomaly warning for ancient buildings based on
environmental constraints to practical engineering applications. Based on the probability
distribution of the reconstruction error, the warning threshold under different recurrence
intervals can be derived and used as the warning indicator. In Figure 12, it is demonstrated
that the MAE of the 400-step reconstruction of the test set by the LSTM-Attention model
can be stabilized within a certain range. The early warning indicator calculation process is
divided into two steps:

1. Probabilistic statistics on MAE. The distribution probability of the error of the test set
can be seen in Figure 17, which mainly focuses on the range of 25–30 µm, for which a
cumulative probability model is fitted.

2. Extract the anomaly warning threshold from the probabilistic model based on the
extreme recurrence intervals. Table 9 presents the anomaly warning thresholds of the
LSTM-Attention model for 400 steps of reconstruction errors, considering recurrence
intervals of one and five years.
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Figure 17. MAE probability distribution graph.

Table 9. Anomaly warning thresholds at different recurrence intervals.

Recurrence Interval MAE

One year 70.3789
Five years 75.1033

4. Discussion

Our work is one of the few attempts to apply AI methods to ancient architecture
conservation, tackling the anomaly detection challenge in ancient buildings. Historically,
safeguarding ancient structures depended on analyzing deterioration causes, but this
approach had limitations regarding research complexity and generalizability. Moreover,
establishing early warning thresholds based on deterioration mechanisms was challenging,
hampering the effective utilization of monitoring data for early anomaly detection in
ancient buildings. To overcome these limitations, this paper introduces the application of
artificial intelligence techniques, specifically the LSTM-Attention model, to offer real-time
anomaly warnings for ancient buildings while considering environmental factors.

We did several experiments to analyze our model and compared with other common
four models, when time step = 400, the MAE and RMSE are 27.060 and 34.328, respectively,
which shows a large performance improvement compared with ARIMA, VAR, CNN,
and LSTM, and the MAE is improved by 51.9%, 30.5%, 47.3%, and 30.1%, respectively.
RMSE exceeds by 44.7%, 23.2%, 40.7%, and 28.1%. And in ROC, we have the largest AUC
value. This suggests that our model is feasible in cultural protection anomaly detection.
Furthermore, the proposed algorithm is implemented in practical engineering applications
for the protection of real-life ancient architectural artifacts, providing valuable insights and
applications for the preservation of ancient buildings worldwide.

However, the model exhibits certain limitations. It currently considers only temper-
ature and humidity as influencing factors, overlooking crucial elements like acid rain,
chemicals, and atmospheric conditions. Factors such as acid rain, chemicals, and atmo-
spheric pollution can significantly accelerate the deterioration and destruction of ancient
buildings. We utilize and install relevant sensors to collect other environmental data, an-
alyze their impact on the structure of ancient buildings, and then model them to explore
their correlations. Furthermore, to enhance our understanding and application of advanced
algorithms for cultural artifacts, including Transformer [31], Autoformer [50], Informer [28],
we are actively engaged in ongoing research and experimental work. Additionally, the cur-
rent model lacks optimization algorithms, which can optimize the internal parameters
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of the model like the weights and thresholds, as well as external hyperparameters like
the number of neurons, learning rate, and number of network layers, presenting an op-
portunity for future improvements in performance. Subsequent research endeavors will
focus on incorporating additional influencing factors and developing suitable optimization
algorithms to enhance the accuracy of the model.

5. Conclusions

Anomaly warning is of utmost importance in the realm of cultural heritage conser-
vation. This study introduces an innovative anomaly warning methodology for ancient
buildings operating under environmental constraints. We encompass the incorporation of
seasonal, trend, shapelet, and mixed anomalies, augmenting both positive and negative
samples, which enriches the detection range and improves the quality of model train-
ing. LSTM-Attention optimally captures intrinsic sequential relationships, enhancing the
model’s capabilities. Our framework demonstrates the capability of multi-step anomaly
detection by utilizing historical environmental data, tenon displacement data, and concur-
rent environmental data to reconstruct upcoming displacements. This capability allows
flexibility in adjusting the time steps according to actual needs and helps to provide early
warning of potential threats in ancient buildings. Anomaly threshold extraction is achieved
by combining extreme value theory and recurrence interval calculation. In comparative
analyses against four baselines, ARIMA, VAR, CNN, and LSTM, the LSTM-Attention model
has higher accuracy and robustness for anomaly detection in ancient buildings. The RMSE
and MAE metrics of the LSTM-Attention model are significantly improved, and the AUC
value is the highest, which proves that the LSTM-Attention model has higher efficacy and
applicability in monitoring ancient buildings. Ablation experiments further confirmed the
contribution of the attention mechanism. Surprisingly, we have deployed several servers at
the experimental base and designed an IoT platform system; thus, the early warning algo-
rithm in this paper has achieved a smooth landing without worrying about computational
resources, and applied to real-world scenarios to satisfy the needs of non-development
enterprises, proving its universality and practicality in heritage conservation. This work is
poised to promote the development of cutting-edge technologies and methods for ancient
building conservation.

In our next work, we will focus on the following aspects: (1) In this study, our investi-
gation was confined to the influence of humidity and temperature on ancient buildings.
Therefore, an expanded exploration of other factors is necessary. (2) The anomaly warning
is based on reconstruction error, sequence difference [51] is also a commonly used method
that can be considered in the future. (3) Model performance can be further improved by
integrating optimization algorithms. For instance, the heuristic algorithms [52,53] could
facilitate the refinement of model parameters to improve reconstruction ability. (4) Notably,
this study is an initial attempt to employ deep learning techniques for anomaly detection
in cultural heritage. As the study progresses, we will explore more methods applicable to
cultural heritages.
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Niğde. Fresenius Environ. Bull. 2020, 29, 2338–2343.
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