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Abstract: The precise extraction of displacement time series for complex landslides poses significant
challenges, and conventional landslide prediction models often overlook the deformation impacts of
displacement triggers. To address this, we introduce a novel composite model tailored for predicting
landslide displacement. This model employs Variational Mode Decomposition (VMD) to isolate each
displacement component, with optimization achieved through the groupwise coupling algorithm.
Subsequently, Grey correlation analysis (GRA) is applied to quantitatively assess the dynamic cor-
relations between various triggering factors and landslide displacement. This analysis informs the
construction of a feature set predicated on these correlation factors. Integrating the time-series VMD
module into the standard Transformer architecture facilitates the prediction of landslide displace-
ment. This integration allows for the extraction of critical time-evolution features associated with
the displacement components. Ultimately, the predicted displacements are aggregated and recon-
structed. We validate our model using the Bazimen landslide case study, analyzing displacement
monitoring data from 1 January 2007, to 31 December 2012. The values of the root mean square
error and the mean absolute percentage error were 1.86 and 4.85, respectively. This model offers a
more nuanced understanding of the multifaceted causes and evolutionary dynamics underpinning
landslide displacement and deformation, thereby markedly enhancing prediction accuracy.

Keywords: variational mode decomposition; landslide displacement prediction; impact factor database;
intelligent swarm optimization algorithm; grey relational degree analysis; TemporVar-Transformer

1. Introduction

Being one of the primary geological disasters in China, landslides present a substantial
scale and potential harm. A landslide refers to a geological disaster where soil, rock, or
a mixture of soil and rock on the ground or slope is displaced due to factors such as the
force of gravity and internal earth forces, moving downwards or laterally along a certain
sliding surface or zone. The disasters caused by landslides are extremely severe, and once
they occur, they can result in mass casualties, property damage, ecological environmental
destruction, and other dire consequences. Accurate prediction of landslides has become
crucial for timely response to dynamic situations and ensuring the safety of people’s lives
and property. Accurate displacement prediction can issue early warnings hours or even
days in advance, providing valuable time for evacuation and thus reducing casualties.
For critical infrastructure such as dams, bridges, nuclear power plants, etc., precise dis-
placement prediction can guide necessary reinforcement and maintenance to ensure their
stability during disasters, avoiding catastrophic outcomes. Accurate prediction results
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can also provide a scientific basis for emergency management departments, optimizing
resource allocation and rescue plans, and improving the efficiency and success rate of
rescue operations. Information about displacement gathered during the evolutionary pro-
cess of a landslide provides direct insights into the mechanisms and dynamic laws that
govern such phenomena. As a result, the prediction of landslide displacement has become
a pivotal research focus within the field of disaster prevention and reduction. Accurate
displacement prediction can significantly enhance our ability to anticipate and mitigate
the risks associated with landslides, thereby saving lives and reducing economic losses in
susceptible areas [1–5].

Models for predicting landslide displacement are typically categorized into two main
groups: physical models and data-driven models. Physical models incorporate physical
mechanisms to predict landslide occurrences through a comprehensive analysis of the phys-
ical attributes of the landslide body. However, the generalization ability of physical models
is limited, and their effectiveness in long time series predictions does not match that of
data-driven models. In recent years, there has been a surge of interest in hybrid prediction
models that integrate time series analysis and deep learning techniques. These models have
attracted significant attention due to their improved prediction accuracy and generalization
capabilities in landslide displacement prediction, surpassing the performance of traditional
models. Many intelligent, data-driven, nonlinear models have been utilized in predicting
landslide displacement [6,7]. Concurrently, researchers have demonstrated the superiority
of the “decomposition–reconstruction–prediction” model approach compared to single
prediction models in examining landslide displacement prediction [8]. For instance, Yang.
(2022), Guo et al. (2020), and Y. Xing et al. (2019) [9–11] utilized a time series analysis
method and a variational mode decomposition algorithm (VMD) to decompose cumulative
landslide displacement, thereby addressing the issues of incomplete or excessive decom-
position when deciphering landslide displacement data. Finally, all projected values are
combined to form the predicted cumulative displacement based on the time series model.

Although the composite model above has achieved notable results, there is still room
for improvement and some limitations. Considering displacement sequence decomposition,
it is worth noting that while the VMD method can perform adaptive decomposition based
on data scale and yield highly reliable decomposed slope deformation data, the quality
and effectiveness of decomposed data depend on parameter selection [12]. To optimize
the precision, robustness, and physical meaning of VMD [13], the VMD method adapts its
decomposition approach based on data scale. S. Guan et al. have demonstrated that the
EMD-PSO-ELM model can effectively measure landslide displacement [14]. In this study,
both the genetic algorithm (GA) [15] and the locust optimization algorithm (GOA) [16] are
utilized to automatically optimize VMD hyper-parameters. This serves to eliminate the
influence of human factors and improve the efficiency of decomposition.

The development of a prediction model is a significant factor influencing the efficacy of
landslide displacement prediction [17–19]. Time series analysis can be applied to landslide
displacement data due to the substantial correlation between past and future data [20,21].
Therefore, incorporating a time series research technique based on deep learning into
the prediction of landslide displacement can utilize the temporal correlation between
data at different time points, comprehensively understand the evolution mechanism of
deformation in landslides, and enhance the accuracy and dependability of forecasts.

Liu et al. (2023) [22] proposed a reliable prediction of reservoir landslides based on an
SVR model that responds to triggering factors. Li et al. (2021) [23] proposed a landslide
displacement dynamic prediction model based on singular Spectrum Analysis (SSA) and
a stacked Long Short Term memory (SLSTM) network. It makes up for the dynamic
characteristics of landslide evolution and the shortcomings of traditional static prediction
models, and the prediction accuracy is improved. Meng et al. (2023) [24] used a dynamic
hybrid model of gated recurrent unit (GRU) and error correction for landslide displacement
prediction. It can not only better capture the local change of the accelerated deformation
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state, but also effectively reduce the extended error in the displacement prediction of long
time series.

The aforementioned deep learning network notably improved the accuracy of predic-
tion, but practical application and promotion have limitations. These methods primarily
concentrate on “deformation information + an inducing factor” [25] and exclude the ap-
praisal of the physical connotation of each displacement component, the feature data of the
triggering factor subsequence, and the interdependence between displacement components
and the influencing factor. To address this issue and enhance the comprehensibility of
the nonlinear model [26], the proposed solution in this study is to link the major scientific
challenge of landslide prediction with a time series network. This involves examining
the multivariate time series data to analyze the values of several variables at a given
time step and the values of a single variable over multiple time steps. By doing so, the
physical interpretability of the model can be improved. Thus, the correlation between
factors and the correlation across time intervals can be extracted. The intricate dependence
relationship between the landslide displacement input prediction model and the group of
feature vectors composed of influencing factors can be analyzed, subsequently improving
prediction accuracy.

Utilizing the Bazimen landslide dataset from Yichang, Hubei Province, as a case study,
this research introduces a composite forecasting framework for analyzing time series data of
landslide displacement. The framework begins by decomposing the landslide displacement
time series into components with distinct physical meanings and scale characteristics. This
decomposition is achieved through the application of time series analysis methods and
Variational Mode Decomposition (VMD), which is fine-tuned using a swarm intelligence
coupling algorithm. Following the decomposition, a response analysis is conducted to
identify the most relevant factors influencing each displacement component. Feature vector
groups of various scales are then constructed, reflecting the relationships between the
displacement components and their corresponding inducing factors. These groups serve
as inputs for the subsequent prediction model. The study proposes a Transformer-based
prediction model, enhanced with a time series variability analysis module (TempoVar-
Transformer), designed to extract multi-scale information from landslide sequences and
integrate it to predict the displacement components with accuracy. The model reconstructs
the cumulative displacements of trend, periodic, and random components, and the predic-
tion results are thoroughly evaluated and analyzed to validate the framework’s efficacy.

2. Algorithm in This Paper

The composite model in this paper consists of three modules: the variational mode
decomposition module, optimized by the crowd intelligence coupling algorithm; the
mechanism factor database construction module; and the TempoVar-Transformer landslide
displacement prediction module. Please refer to Figure 1 for a detailed visual representation
of the process.
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3. Variational Mode Decomposition Optimized by the Coupled Crowd
Intelligence Algorithm
3.1. Time Series Additive Model

The evolution of landslide surface displacement deformation over time is a com-
plex outcome influenced by multiple internal and external factors, superimposed on each
other [27]. Exploring the dynamic relationships among various influencing factors and
landslide deformation in intricate displacement sequence data is a challenging task [28].
Because landslide displacement is influenced by various triggering factors, resulting in a
step-type data distribution with nonlinear and non-smooth characteristics, this irregularly
varying displacement sequence complicates the fitting of prediction models. To introduce
regularity to the input data and enhance the description of the physical significance of
landslides, this study preprocesses the time series of landslide displacement. The data are
decomposed into trend term displacement affected by internal factors, periodic displace-
ment influenced by external fixed factors, and stochastic displacement impacted by sudden
external changes. The displacement time series data are decomposed as follows:

X(t) = A(t) + B(t) + C(t) (1)

where: X(t) is the observed value of landslide displacement at time t; A(t) is the trend
displacement of landslide under the influence of internal factors (material composition,
geological structure, topography, etc.) of landslide at time t; B(t) is the cyclic displacement
of landslide caused by external influences (seasonal rainfall, change of reservoir level, etc.)
of landslide at time t; and C(t) is the stochastic displacement of landslide at time t due to
the environmental mutation and error.

3.2. Principle of Variational Mode Decomposition Algorithm

Variational Mode decomposition (VMD) [29] is a new fully adaptive signal decompo-
sition algorithm, which can efficiently decompose nonlinear and non-stationary signals like
landslide displacement curve [30]. With a preset number of modes, the input dislocation
time series is decomposed into several meaningful components (IMF). The key idea is to
create and solve a variational constraint model.

Creating a variational constraint model: The optimization objective is to minimize
the sum of the estimated bandwidths of the components. The corresponding constrained
variational expression is as follows:

min
{uk},{ωk}

{
K
∑

k=1
∥ δt

[(
σ(t) + j

πt

)
uk(t)

]
e−jωtt ∥

2

2

}
s.t.

K
∑

k=1
uk = f (t)

 (2)

where, { uk} = {u1, . . . , uk } is all modal components obtained after decomposition; { ωk} =
{ω1, . . . , ωk } is the set of its corresponding center frequencies; δt is Dirac delta function; * is
the convolution operation.

Solving the variational constraint model: Equation (2) is transformed into an uncon-
strained expression to enhance the saddle point of the Lagrangian function as follows:

L({uk}, {ωk}, λ) =

αΣ ∥ ∂t

[(
σ(t) + j

πt

)
uk(t)

]
e−jωkt ∥2

2 +

∥ f (t)− ∑
k

uk(t) ∥2
2 +

∣∣∣∣λ(t), f (t)− ∑
k

uk(t)
∣∣∣∣ (3)

where, λ represents the Lagrange multiplier and α represents the penalty parameter.
Finally, the input sequence is decomposed into K components by iteratively updat-

ing each modal component {uk} and the corresponding center frequency {ωk} using the
alternating direction method of multipliers until the iteration condition is satisfied.
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3.3. GOA-GA-VMD Fusion Optimization Algorithm

Following the VMD principle, physically significant time series components can be
acquired by breaking down the processed landslide displacement data using the VMD
algorithm. To ensure interpretability and enforceability, K = 3 is manually specified, which
preserves the three modes of trend, periodic, and random items without significant loss
of information. The α over-parameter penalty factor and the ascending step size τ in
the VMD algorithm strongly influence the quality and effect of the decomposed data.
However, the method of artificial determination remains uncertain. Thus, the efficient
and accurate selection of parameter combinations is crucial for effectively decomposing
landslide displacement sequences using the VMD algorithm. Therefore, this paper proposes
to use a swarm intelligence algorithm to effectively solve complex optimization problems
and optimize to determine the best parameter combination [α, τ].

The grasshopper optimization algorithm (GOA) simulates the predatory behavior
of grasshoppers in nature. Locusts’ biological characteristics include the ability to search
for food throughout their life cycle. Local search and global search were carried out
simultaneously by taking advantage of the slow movement of larvae and rapid movement
of adults [31]. Combining this feature, the location update model of locusts is defined
as follows.

Xi
d = c2

[
N

∑
j=1

c1
ubd − lbd

2
s

(∣∣∣xd
j − xd

i

∣∣∣ xj − xi

dij

)]
+ T̂d (4)

where, Xi
d represents the location information of individual i on dimension d, [bd, lbd]

represents the upper and lower bounds of the search within the individual dimension
d,|Xd

j − Xd
i | represents the relative distance of individual i, j in dimension d, (X j − Xj)/Xij

represents the unit vector of individual i, j, T̂d represents the optimal solution found by
the current population, C2 reduces the search trend at the optimal position, C1 to reduce
the repulsive force and attraction between locusts, and s is the population interaction force
strength function S(r), which is defined as follows:

S(r) = f e
−r
l − e−r (5)

where, f is the attraction strength, l is the attractive step size.
The genetic algorithm (GA) is a multi-point search global optimization algorithm

based on the principles of biological evolution. In this algorithm, the problem parameters
are encoded as chromosomes. The initialization coding schematic is shown in Figure 2.
Subsequently, the selection, crossover, and mutation operations are carried out iteratively
to exchange chromosome information in the population. Finally, the chromosomes aligned
with the optimization goal are generated [32]. The algorithm consists of four parts: param-
eter coding, initial population setting, fitness function design, and selection, crossover, and
mutation operation. In this paper, the fitness function is defined as the error between the
predicted value and the expected value of the VMD hyper-parameter. The algorithm can
quickly converge to the globally optimal solution.

GA is commonly employed as a global optimization algorithm, excelling in solving
global optimization problems and possessing robust global search capabilities. However,
GA is less effective in local search and is prone to converging to local optimal solutions.
Additionally, GA lacks memory ability. If the population changes during the iteration
process, the previous information will be lost [33]. In contrast, GOA possesses memory
ability. At each iteration, the population utilizes the individual extreme value and the
group extreme value to update its speed, position, and fitness value, aiding in retaining
the optimal solution. However, GOA is susceptible to premature convergence and may
lose population diversity. GA can preserve population diversity through crossover and
mutation operations [34].

The advantages of the two algorithms complement each other. Firstly, GA has the
ability to search globally, and it is utilized to select the optimal chromosome for forming
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the best population. Subsequently, GOA applies its local search ability to select the optimal
individual and, through continuous iterative updates, returns the optimal weight threshold.
This approach effectively enhances the search accuracy and convergence speed of the VMD
hyper-parameter group. The algorithm coupling process is displayed in Figure 3, while
Figure 4 illustrates the GA-GOA-VMD decomposition process.
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4. Trigger Database Construction

During the extraction of information on landslides, a significant amount of deforma-
tion data and redundant information is often present, which could impede the predictive
accuracy of the model. Failure to eliminate these superfluous details diminishes the model’s
ability to generalize, resulting in decreased prediction accuracy. To address this issue, the
current study utilizes the Grey correlation analysis (GRA) method [35] to extract poten-
tial impact factors from both periodic and random displacement components, creating a
database of trigger factors. Subsequently, the VMD algorithm is optimized to decompose
each factor sequence into high and low frequency components. The correlation coefficients
between periodic and random components, as well as the high and low frequency compo-
nents of the trigger factor, were computed. Ultimately, the most significant trigger factors
of periodic and random items were selected to create the time series feature vector group
and feed it into the prediction model.

5. Landslide Displacement Prediction
5.1. Time Series Variable Analysis Module

To fully capture the concealed information dependencies within the multivariate
Temporal feature vector group, which includes inducing factors and deformation displace-
ments, this paper introduces a temporal variable module as the input operation of the
TempoVar-transformer prediction model, as depicted in Figure 5.
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The landslide dislocation-time series X is set to have I time points, and each time
step has D features. This module uses a one-dimensional Conv neural network with a
convolution kernel size of 3 × 1 to process the information of multivariate time series into
the feature map, while keeping the spatial and temporal dimensions unchanged, as follows:

Xemb = Conv
(
Xinput

)
(6)

where, Xinput stands for Xcycle (periodic term component) or Xrandom (random term compo-
nent); Xemb is the feature vector group composed of inducing factors and displacement vectors.

In order to extract the local information in the sequence, the feature map is divided into
small blocks with specific scale by Patch (block) operation. When the length of the feature
vector of the displacement time series is not divisible by P of size Patch, zero-padding is
performed at the end of the time series, known as the Pad operation in the figure. The Patch
procedure divides the corrected time series into N = I

P blocks of size P non-overlapping
Patch. The operations are defined as follows:

Xemb = Patch(Xemb, X0, P) (7)
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where P is the length of each Patch, X0 means zero padding.

5.2. TempoVar-Transformer

In this paper, the standard Transformer [36] is improved into the TempoVar-Transformer
architecture of Figure 6 with multi-layer embedded temporal variable analysis module,
which contains multiple encoder–decoder pairs. The input at each level is the same, and
encoders at different levels learn different levels of feature representations.
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The time series variable analysis module converts the input data Xenc into a blocked
feature map representation, denoted as Xk

di, which is defined as follows:

Xk
di = TV(Xenc, Pk) (8)

where, Pk represents the specific Patch size adopted when processing the input data.
Then, a cross layer connection mechanism is introduced between different levels,

and the input Xk
di of the first level encoder is cascaded with the output Hk−1

enc of the lower
level to effectively aggregate the landslide feature information of different levels, so as to
process the spatio-temporal data of displacement sequence more effectively. The diagram
is as follows:

Xk
emb =

{
Xk

di i f k = 1
Corn

(
Concat

(
Xk

di, Hk−1
enc

))
i f k ̸= 1

(9)

where, Xk
emb is the feature information output by encoders at different levels; Concat

represents the concatenation process along the feature map dimensions; Conv means using
a 1 × 1 convolution kernel to fuse and reduce the dimension of the connected feature map.

Furthermore, since the Transformer architecture has the natural property of being
“order-independent”, this means that it does not explicitly consider the relative position of
elements in the input sequence. Therefore, to capture the temporal dependencies inside the
input sequence, we propose to add learnable position matrices Wk

pos to Xk
emb, assigning a

specific encoding vector to each time step to distinguish the temporal order of the data. The
output is the temporal relationship between the captured landslide univariate series data.

Xk
emb = Xk

emb + Wk
pos (10)

where, Wk
pos represents the encoding matrix at a specific time step.

Transformers are built on self-attention mechanisms, which allow them to inherently
extract features and capture long-term dependencies without the need for recurrent net-
works or convolutional layers. They operate by employing the query-value-key paradigm,
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where keys are compared to a query to assign attention weights to their corresponding
values. In the context of this paper, the initial sections of the model have already selected
favorable characteristics from the landslide sequence.

Hence, the paper employs the dot product attention mechanism with conventional
encoder scaling and the multi-head attention mechanism to process multivariate time series
displacement data with varying time steps. This approach enables the model to concentrate
on the information most relevant to the current position in the input sequence, while still
maintaining the ability to recognize and integrate diverse sequence characteristics. By
doing so, the model can effectively leverage the temporal dependencies and structural
features of the data, leading to more precise predictions of landslide displacement.

The input of the Decoder is a time series of the history record L time steps and the
future H time steps concatenated, denoted as Xk

dec. The output of the decoder is denoted as
Hk

dec, and the number of Patch is Nk
dec blocks. Since we mainly focus on the prediction task

of displacement time series, only feature representations at future time steps are needed,
and the number Patch of future time steps is block Nk

pred, which is defined as follows.

Nk
dec =

L + H
Pk

(11)

Nk
pred =

H
Pk

(12)

Finally, the latent representations of all levels are concatenated and the prediction
Xpred is generated using the Conv layer, as shown here:

H = Concat
(

H1
dec, . . . , Hk

dec

)
(13)

Xpred = Conv(H) (14)

The encoder–decoder structure of the TempoVar Transformer model can pay attention
to the relationship between different time steps and features at the same time, which helps
the model to gain a better understanding of the internal structure and law of the data, so as
to extract useful information and features in the time series relationship, and deal better
with the complex and variable landslide displacement prediction problem.

5.3. Model Structure

In the field of machine learning and data science, understanding the key parameters of
each algorithm is crucial to optimize the performance of the model, and it is also important
to conduct our experiments. Therefore, we comb the input, output, and hierarchical
structure of all our algorithms in Table 1.

Table 1. Hierarchical architecture diagram of all model inputs and outputs.

Model Input Output Hierarchical Structure

VMD Cumulative displacement
time series data

Various displacement time
series data

Probability distribution estimation,
variational inference

GA Constrained objective
function The global optimal solution

Population initialization, fitness
evaluation, selection,
crossover, mutation

GOA Constrained objective
function Local optimal solution Population initialization, pheromone

update, state transition rule

GRA Time series for analysis and
comparison Degree of association Data preprocessing,

correlation calculation

TempoVar-Transformer Displacement and impact
factor time series data

Time series data for
predicting displacement

Multi-head self-attention mechanism,
encoder-decoder structure,

positional·encoding
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6. Slippery Slope Analysis and Example Application of the Bazimen Landslide
6.1. Geological Profile of the Bazimen Landslide

The Bazimen landslide (110◦45′ E, 30◦58′ N) is located in Xiangxi Village, Guizhou
Town, Zigui County, Hubei Province, within the Three Gorges Reservoir area, approx-
imately 38 km from the Three Gorges Dam. Located on the right bank of the Xiangxi
River, 0.8 km from its confluence with the Yangtze River, the slope morphology resembles
an irregular fan. Homologous alluvial gullies develop on both sides of the boundaries,
forming a circular trailing edge and a water facing leading edge. The longitudinal length
of the landslide is 550 m, with a narrow top and a wide bottom, covering a total area of
13.5 × 104 m2. The average thickness of the landslide body is around 30 m, with a total
volume of approximately 400 × 104 m3. The slope ranges from 40◦ to 60◦, and the land-
slide body mainly consists of a yellowish-brown, purplish-red, and dark grey fragmented
stone soil layer, composed of blocks, gravels, and pulverized clay. The structure of the
landslide body is loosely accumulated, and unfavorable factors such as rainfall and upper
catchment water scouring can impact the stability of the entire landslide area, making it
prone to overall instability-induced landslides. The Bazimen landslides are located in a
subtropical monsoon climate, experiencing year-round rainy weather, with rainfall being
a significant factor influencing landslide displacement. The Bazimen landslide entered
its initial resurrection stage during the Gezhouba dam water storage in 1981. Since 2003,
with the Three Gorges Dam water storage, Bazimen landslides have exhibited noticeable
deformation. During the rainy season from May to July 2004, coupled with a drop in the
Three Gorges reservoir level, shear cracks formed in the middle and upper parts of the
landslide. The landslides are frequently active during the annual rainy season, primarily
located in the middle and at the back edge, significantly affecting the normal life and access
of neighboring areas. The satellite map of the Bazimen landslide is shown in Figure 7, and
its planar contour map is shown in Figure 8.
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6.2. Characterization of Landslide Deformation Based on Monitoring Data

Two GPS deformation monitoring points (ZG111, ZG110) were strategically placed in
the landslide area, and data were obtained from the National Field Scientific Observation
and Research Station of the Three Gorges Landslide of the Yangtze River in Hubei Province.
The dataset initiation coincided with the impoundment of the water level in front of the
Three Gorges Dam to 135 m in mid-June 2003. Subsequent monitoring took place monthly.
The timeline of the Bazimen Landslide Displacement Monitoring Points is illustrated
in Figure 9, depicting the cumulative displacement-reservoir level-rainfall curve at the
Bazimen landslide displacement monitoring point. The utilized data cover the period
from January 2007 to December 2012. Analysis of the monitoring data reveals that during
periods of low rainfall each year (January 2007 to March 2007, October 2007 to March
2008, November 2008 to March 2009, October 2009 to April 2010, November 2010 to April
2011, December 2011 to April 2012, October 2012 to December 2012), the time accumulated
displacement-reservoir level-displacement curves at the Bazimen landslide monitoring site
are delineated. In contrast, during periods of elevated and concentrated rainfall (April to
July 2007, July to August 2008, May to June 2009, May to August 2010, June to August
2011), the cumulative displacement exhibited rapid, step like increments. Notably, the “step
period” and concentrated rainfall periods each year did not precisely align. A time lag
between the “step period” and concentrated rainfall period is evident, signifying that the
landslide displacement “step” occurs subsequent to continuous or heavy rainfall—a pattern
observed consistently. During “step” periods, significant changes in the reservoir water
level were also noted. For instance, from April 2008 to September 2008, the reservoir water
level experienced a decline, followed by an increase from September 2008 to November
2008. In this period, from April 2008 to November 2008, the cumulative displacement of the
landslide exhibited a sudden increasing trend. Similar patterns were observed in other time
periods. It is evident that the primary factors influencing Bazimen landslide displacement
are rainfall and reservoir water level.
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6.3. Analysis of Influencing Factors

Choosing appropriate triggering factors for landslides is crucial for the accuracy of
predictions, especially for predicting periodic components. Studies have shown that rainfall
and reservoir water level are the main triggering factors for landslides in the Three Gorges
Reservoir area [37,38], and Bazimen landslide is located in this area. Rainfall increases soil
pore water pressure, thereby reducing the effective stress of the soil. When the effective
stress of the soil decreases to a certain extent, the shear strength of the soil mass also
decreases, making it prone to landslide occurrence. Additionally, rainfall saturates the
soil, increasing its weight, which in turn increases the downslope force, further promoting
landslide occurrence. Changes in reservoir water level can cause changes in groundwater
levels, further affecting soil pore water pressure and effective stress. By comparing the
changes in landslide displacement deformation with rainfall and reservoir water level
changes, it can be seen that months with concentrated rainfall and stages with significant
changes in reservoir water level can lead to larger deformations of landslides.

Landslides are complex natural phenomena that are undoubtedly caused by a com-
bination of multiple factors, such as soil, geological structure, groundwater, and human
activities, among others. However, this study did not consider other factors for several
reasons. Firstly, the changes in other factors are more random and difficult to capture
regular patterns, and their general impact is smaller. Secondly, our composite model, when
using rainfall and reservoir water level as the dominant triggering factors, decomposes the
displacement into three components: trend term, periodic term, and random term. The
periodic term displacement is key and depends on the dominant factor, while the random
term displacement includes not only some noise errors but also other small influencing
factors from the perspective of landslide mechanisms. Finally, by reconstructing all terms,
we obtain the total predicted displacement, which also shows that our model has a high
degree of tolerance and robustness, with practical significance.

6.4. Evaluation Index

In order to accurately evaluate the prediction effect of our designed model, the evalu-
ation metrics are Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
( MAPE),which are defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
d̂t − dt

)2
(15)
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MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣ d̂t − dt

dt

∣∣∣∣∣ (16)

where, N is the size of the predicted sample, dt is the actual value at time t, dt is the
predicted value at time t, and dt is the arithmetic mean of all the actual values.

The range of RMSE is [0,+∞], the smaller the value, the stronger the model fitting
ability; The range of MAPE is [0,+∞], where an MAPE of 0% indicates a perfect model,
and an MAPE greater than 100% suggests a poor-quality model. When both RMSE and
MAPE are sufficiently small, it indicates that the predictive model has a good forecast-
ing performance.

6.5. Assumptions and Limitations

This section discusses the assumptions and limitations of the research presented in this
paper. We aim to provide readers with a transparent and comprehensive understanding of
our research methodology, and to assist them in evaluating the applicability and credibility
of our research results in real-world applications.

6.5.1. Assumptions

We assume that the displacement of landslides is primarily influenced by the selected
input variables (rainfall, reservoir water level, past displacement). Although these variables
have been widely recognized as key factors affecting landslide displacement, other relevant
factors may not be included in the model.

Our model assumes that the quality and integrity of the data are sufficiently high to
enable effective training and prediction. However, in reality, the data may contain noise,
outliers, or missing values, which could potentially affect the model’s performance.

We assume that the physical processes of landslides remain consistent throughout
the study period. This means that we have not considered possible geological changes or
long-term impacts of external factors on slope stability.

6.5.2. Limitations

Deep learning models typically require a large amount of data for training, but high-
quality long-term time series data may be difficult to obtain in the field of landslide
prediction. Consequently, our model may not fully utilize all the information in the data.

Our model does not account for the spatial and temporal variability of landslide
displacement. Landslide events may exhibit different characteristics in different regions,
which could limit the generalizability of the model.

6.6. Experimental Analysis and Model Comparison
6.6.1. Data Selection

In order to enhance the training of the prediction model in this paper, the selected
monitoring point is ZG111, situated in the middle and rear part of the landslide body. This
location provides ample data on displacement and deformation, precipitation, reservoir
level, and frequent deformation. The research and analysis focus on the data collected
during the monitoring period from January 2007 to December 2012. The experimental data
are measured in monthly units, with a total of 70 months considered. The first 50 months’
data are designated as the training set for model training and parameter adjustment, while
the remaining 20 months’ data serve as the test set for assessing the model’s accuracy. Due
to the scarcity of data, we employed a cross-validation approach to evaluate the model’s
generalization capability and to avoid overfitting. This method allows us to make the
most of the limited data available and provides a more robust assessment of the model’s
performance without the need for a separate validation set.
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6.6.2. Parameter Optimization

Before performing the optimization, the optimization range of the penalty factor
for the hyper-parameter combination of VMD decomposition is set to [1000, 3000]; the
optimization range of the rise time step is set to [0, 1]; the population size in the GOA
algorithm is set to 100; and the maximum number of iterations is set to 100. The hyper-
parameter combination obtained from the final optimization is shown in Table 2:

Table 2. Optimization results of the Smart Group algorithm for VMD parameters.

Modal Preset Optimal Parameter Combination

Number of modes Penalty factor α Rise time step λ Fitness value
3 1858 0.365 0.2785

6.6.3. Results of Displacement Sequence Decomposition

The VMD algorithm, with hyper-parameters obtained through the crowd-wise coupled
optimization algorithm in the preceding subsection, is utilized to successively decompose
the original cumulative displacement into trend, periodic, and random terms. The total ob-
served displacement is depicted in Figure 10, and the decomposition results are illustrated
in Figures 11–13, respectively.
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6.6.4. Comparative Experimental Analysis of Coupled Optimal Decomposition Algorithms

To verify that the coupled optimization algorithm proposed in this paper produces
better decomposition effect and fidelity for VMD decomposition than traditional opti-
mization algorithms, the following particle swarm optimization algorithm (PSO), genetic
algorithm (GA), and locust optimization algorithm (GOA) are selected for comparison with
the method of this paper, as shown in Table 3 and Figure 14:

Table 3. Comparison of the effect of VMD combined with other optimization algorithms.

Decomposition Model Number of Decomposed Modes α Decomposition Loss\MW

Original VMD 3 1000 21.85
PSO-VMD 3 1412 14.34
GA-VMD 3 1678 13.98

GOA-VMD 3 2157 10.25
GA-GOA-VMD 3 1858 3.59

The comparative results indicate that the combined GOA-GA optimization algorithm
minimizes the VMD decomposition loss, ensuring both effective decomposition and fidelity.
It can be inferred that the decomposition achieved using either the GOA or GA algorithm
alone is less effective than the fusion optimization of the two. This supports the effectiveness
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of the combined optimization algorithms presented in this paper. Table 4 shows the results
of the sensitivity analysis performed on each optimization algorithm.
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Figure 14. The Impact of Parameters Optimized by Different Optimization Algorithms on the
Decomposition Effect. The blue bars represent the optimized parameter values of the optimization
algorithm, corresponding to the left y-axis; the green bars represent the decomposition loss of the
hyperparameters obtained by the optimization algorithm for VMD.

Table 4. Sensitivity analysis of α optimized by the optimization algorithm.

Optimization
Algorithm

Reference
Value

Range of
Variation

Minimum
Value

Maximum
Value

Sensitivity
Ranking

PSO 2000 −39.6%~+6.4% 1209 1872 4
GA 2000 −22.5%~+5.9% 1550 2117 2

GOA 2000 −15.6%~+30.9% 1689 2619 3
GA-GOA 2000 −11.7%~+4% 1766 2080 1

Through sensitivity analysis of the hyperparameters optimized by various optimiza-
tion algorithms for VMD, it can be observed that the hyperparameters optimized by GOA
and PSO have a wide range of variations, which makes VMD prone to mode aliasing and
feature loss. This also indicates the superiority of the GA-GOA joint optimization algorithm.

6.6.5. Quantitative Analysis of the Association Degree between Landslide Displacements
and Influencing Factors

Utilizing the rainfall and reservoir level data recorded during the same period, the
influencing factors underwent Grey correlation analysis with the displacement data. The
results are depicted in Figure 15.

From the confusion matrix in Figure 16, it is evident that the correlation between
displacement and rainfall, as well as the reservoir level at monitoring point ZG111 of
the Bazimen landslide, are 0.75 and 0.79, respectively. The correlation values exceed
0.7, indicating a strong correlation between landslide changes and rainfall as well as the
reservoir level. Consequently, to achieve accurate displacement prediction, these impactful
factors cannot be disregarded. Additionally, a correlation of 0.7 is observed between rainfall
and reservoir water level, suggesting a relationship between the two. Upon analyzing
the evolution process of the landslide, it is evident that rainfall generates surface runoff
on the landslide body’s surface. Through infiltration, it elevates the groundwater level,
resulting in increased pressure between rock layers. Simultaneously, the rise in reservoir
water level amplifies buoyancy forces in the base–cover interface, inducing significant
landslide deformation and decreasing stability. As the reservoir water level decreases, the
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landslide loses the groundwater buoyancy effect, and deformation automatically halts to
some extent, leading to increased stability. After substantial rainfall, landslide displacement
continues to rise because the groundwater is not entirely evaporated, and the landslide
remains in an unbalanced environmental state, as depicted in Figure 9. When the reservoir
water level drops to its lowest point, the rate of landslide displacement rise increases.
These observations reveal a certain lag in the impact of rainfall and reservoir water level
on landslides. Rainfall increases both surface and underground runoff, contributing to
reservoir area infiltration, leading to a subsequent rise in reservoir water, exhibiting a
hysteresis effect [39].
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In most cases, the abrupt change of landslide displacement is directly caused by the
abrupt change of inducing factors [40]. Considering the action process of the inducing
factors can effectively improve the reliability of the displacement prediction model.

In most cases, sudden changes in landslide displacements are directly caused by
abrupt changes in the predisposing factors. Considering the changes in triggering factors,
along with their direct influence on landslide displacements, will effectively enhance
the reliability of the displacement prediction model. Addressing the above issues, this
paper constructs a trigger factor database using precipitation, reservoir level, landslide
deformation, and other relevant data:

(1) Rainfall Factors: Cumulative rainfall for the entire 70 months (T−R1), and rainfall for
the initial 40 months (T−R2).

(2) Reservoir Level Factors: Cumulative reservoir level for the entire 70 months (T−L1),
and the average reservoir level (T−L2).
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(3) Landslide Displacement Factors: Monitoring cycle displacement (T−Y1), and average
landslide displacement (T−Y2).

In order to dig into the correlation information between the influencing factors and
landslide displacement, the trigger factor data are decomposed to obtain the high-frequency
and low-frequency components, and K = 2, α = 1858, λ = 0.2 are set. The decomposition
results are presented in Figures 16–18. Subsequently, the Grey correlation between the
high-frequency and low-frequency sequences with the components after the decomposition
of the landslide displacements is calculated, as shown in Figures 19–21, respectively.
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The optimized Variational Mode Decomposition (VMD) algorithm is utilized to decom-
pose the sequence of triggering factors into high-frequency and low-frequency components.
The low-frequency component exhibits discernible periodicity, with trend changes that
evolve gradually over time. Conversely, the high-frequency component presents a more
complex pattern, characterized by substantial and irregular fluctuations, which signify
abrupt changes in the signal. Furthermore, the Grey correlation analysis (GRA) confusion
matrix reveals a strong correlation close to 1 between the low-frequency trigger factors and
the periodic term of displacement, as well as between the high-frequency trigger factors
and the random term of displacement. This indicates that these trigger factors exhibit a
significant influence on the corresponding displacement components. Consequently, it is
essential to incorporate these highly correlated trigger factors into the prediction model
for their respective displacement components, thereby enhancing the model’s accuracy
and reliability.

6.6.6. The Displacement Prediction Result of the Trend Term

The predicted displacements of the trend term exhibit a smooth curve over time,
without considering the induced factors. The trend term displacement values of each
monitoring point in the test set are used as inputs to the model to predict the trend term
displacement values at the next time point. The results of the model prediction are depicted
in Figure 22, illustrating that the model effectively captures the trend term displacement,
and the predicted values closely align with the actual values.
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6.6.7. The Displacement Prediction Result of the Periodic Term

Based on the calculated correlation results between the cycle term displacement
components and the inducing factors, it is determined that the low-frequency component
of the first 40 months in the rainfall influencing factor of the eight gates exhibits the highest
correlation with the cycle term displacement. Similarly, the low-frequency component of the
average reservoir level in the reservoir level influencing factor has the highest correlation
with the cycle term displacement. Consequently, T−R2−low and T−L2−low are identified
as key inducing factors, forming a set of eigenvectors with the values of the cycle term
displacements. These serve as inputs for predicting the cycle term displacements, and the
prediction results are illustrated in Figure 23.
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6.6.8. The Displacement Prediction Result of the Random Term

Based on the correlation results between the random term displacement components
and the inducing factors, it is determined that the high-frequency component of the average
rainfall among the rainfall influencing factors of the Bazimen landslide exhibits the highest
correlation with the random term displacement. Similarly, the high-frequency component
of the average borehole reservoir level among the reservoir level influencing factors has the
highest correlation with the random term displacement. Consequently, T−R1−high and
T−L2−high are identified as key inducing factors, forming a set of eigenvectors with the



Electronics 2024, 13, 1271 21 of 26

values of the random term displacement as inputs to the prediction model for forecasting
the periodic term displacement. The prediction results are depicted in Figure 24.
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Figure 24. Random term displacement prediction results.

Observational analysis indicates that the prediction error for random displacement
components is notably higher than that for periodic term displacement components. This
discrepancy can be attributed to the random displacement being subject to significant
nonlinear fluctuations, which exhibit minimal regularity and present a more substantial
challenge for precise fitting. Despite this, the model exhibits improved predictability
around periods of sudden change in landslides, leading to an overall enhancement in
prediction accuracy.

6.6.9. Comparative Analysis of Total Displacement Prediction Results

Utilizing the time series addition model of Equation (1), the overall displacement
prediction is derived by superimposing the predictions of trend term, periodic term, and
random term displacements. The prediction results are illustrated in Figure 25, demon-
strating high prediction accuracy when comparing the predicted values with the actual
observed values.
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To validate that the proposed prediction model outperforms traditional methods
and to ensure the consistency of the optimized VMD decomposition method, this paper
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compares the proposed model with the time-displacement sequence prediction models
Transformer, MHA-LSTM, GRU, and SVR proposed by previous researchers. The results
of the comparative experiments are presented in Table 5, and the prediction outcomes of
various models are depicted in Figure 26, The REC curve of the TempoVar-Transformer
prediction model is shown in Figure 27.

Table 5. Comparison of the prediction errors of traditional displacement prediction models.

Prediction Model
Predictive Evaluation Value

RMSE (mm) MAPE (%)

SVR 16.72 21.67
GRU 14.07 16.92

MHA-LSTM 11.95 12.98
Transformer 6.08 6.32

TempoVar-Transformer 1.86 4.85
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Observing the displacement time curves in Figure 24, it is evident that the predicted
values obtained by the proposed model closely align with the trend and magnitude of the
actual displacement values. Additionally, as indicated in Table 3, the root-mean-square
error of the prediction model in this paper has been reduced by 69.4% compared to the
best-performing previous model, and the Mean Absolute Percentage Error has reduced by
23.3%. These enhancements underscore a substantial improvement in prediction accuracy.
In the REC curve diagram, “area” refers to the area under the curve (AUC), which is used
to measure the classifier’s ability to distinguish between positive and negative samples.
The value of “area” in the diagram (0.92) indicates that the prediction accuracy of landslide
displacement is relatively high, possessing significant practical meaning.

Simultaneously, it is found that the obvious accelerated deformation of the Bazimen
landslide usually occurs after rainfall, and the focus of the prediction model on rainfall
events is consistent with the deformation law of the landslide.

Due to the model being tested only on a specific dataset, lacking credibility and
generalization ability, this study will also compare predictions on two different monitoring
points simultaneously on the training and test sets, providing compelling data to support
the findings.

Table 6 shows that the composite prediction model proposed in this paper outper-
forms other models at both GPS monitoring points, with both groups exhibiting optimal
performance. However, due to the relatively stable landslide data at the monitoring point
ZG110 during some time periods, the change characteristics of the influencing factors
are not obvious, resulting in a larger gap between the test and training data. This ex-
periment demonstrates the model’s versatility across different locations, enhancing its
generalizability and robustness beyond the specific case studies.

Table 6. Comparison of different monitoring points.

GPS
Station Model

Training Set Testing Set

RMSE
(mm)

MAPE
(%)

RMSE
(mm)

MAPE
(%)

ZG110

SVR 7.88 6.54 20.87 25.12
GRU 3.25 5.09 19.76 17.34

MHA-LSTM 4.42 7.92 16.53 18.79
Transformer 2.89 3.34 14.32 11.92

TempoVar-Transformer 1.56 2.69 5.77 8.67

ZG111

SVR 5.93 4.59 16.72 21.67
GRU 3.91 4.32 14.07 16.92

MHA-LSTM 3.76 6.64 11.95 12.98
Transformer 2.40 2.01 6.08 6.32

TempoVar-Transformer 0.91 1.88 1.86 4.85

In summary, the proposed model excels in extracting topographic change information,
with a particular emphasis on significant events such as displacement peaks and rainfall
episodes. It adeptly captures the underlying patterns governing landslide displacement,
aligning closely with geological principles. This adherence to geological laws instills high
confidence in the model’s results, making it a robust tool for predicting and understanding
landslide dynamics.

7. Discussion and Conclusions

In this paper, we have proposed a novel composite time series displacement prediction
model, termed (GOA-GA-VMD)-GRA-(TempoVar-Transformer). This model delves into
the evolutionary mechanisms underlying the dynamic interplay between landslide triggers
and displacement. Building on the foundation of previous studies, we have improved the
accuracy of our predictions [41]. Its versatility and applicability make it a promising tool
for researchers.
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1. Our model harnesses a swarm intelligence coupling optimization algorithm to opti-
mize the hyper-parameters of Variational Mode Decomposition (VMD) automatically.
This algorithm leverages the synergistic benefits of diverse optimization methods,
ensuring a decomposition effect of higher fidelity and enhancing the efficiency of the
VMD process. This strategy not only improves the decomposition quality but also val-
idates the prediction through a layered reconstruction of landslide displacement data.

2. By analyzing the dynamic responses of landslides to various inducing factors, we
have dismantled the sequence of these factors and conducted a quantitative Grey
correlation degree evaluation. This evaluation, based on displacement components,
accurately identifies the pivotal inducing factors. Consequently, we have established
feature vector groups with varying scales as inputs for the subsequent prediction
model. This approach effectively captures a range of time evolution characteristics
and the effects of displacement deformation.

3. The TempoVar-Transformer model introduced in this paper adeptly captures the
dynamic temporal relationships between different trigger sequences within the same
time step and across different time steps for the same trigger feature. This granular
time-series modeling provides a comprehensive analysis of the evolutionary dynamics
of landslide displacement, leading to more precise and reliable displacement predictions.

4. Although the composite prediction model proposed in this paper has achieved satis-
factory results on the existing landslide data, there are some shortcomings. The factors
affecting landslides may lead to repetitions, omissions, and prediction delays. The
model only considers the influence of rainfall and reservoir water level on landslide
displacement separately, leading to repetitions in the intermediate effects. This is
because a portion of the rainfall enters the reservoir through runoff, increasing the
reservoir water level. This, in turn, results in increased errors and a lack of cohesion
with the geographical significance of the landslide. Future research can enhance the
precision of data analysis, combine geographical and physical knowledge to simulate
the direct relationship model between rainfall and reservoir water level, and then
apply it comprehensively to landslide prediction.

5. Although the model proposed in this paper has high prediction accuracy, it is large in
size, requires extensive training data, and has low computational efficiency. With the
availability of more effective long-term time series data and stronger data processing
algorithms in the future, this shortcoming can be avoided.

In conclusion, the prediction model still achieved good results. Building on the
research presented in this paper, the predictive model can be integrated into existing
landslide prediction systems to enable real-time monitoring of landslide activities. By
issuing alerts in advance of potential displacements, the model can help reduce casualties
and property damage. In urban planning and land use, the results of landslide displacement
predictions can be used to avoid constructing important infrastructure and residential areas
in high-risk zones, or to implement reinforcement measures to ensure safety. Continuous
monitoring and data collection will assist researchers in further refining and optimizing
the predictive model, enhancing its accuracy, and thereby providing more reliable support
for long-term landslide prevention and management efforts.
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