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Abstract: Due to the inherent challenges in meeting the comprehensive training requirements of
combat scenarios within a digital environment, this paper proposes innovative solutions. Firstly, a
parametric scene training method is introduced, aiming to enhance the adaptability of the training
process. Secondly, the utilization of the digital environment as a test environment is suggested,
which can significantly improve the efficiency of iterative virtual-to-real conversion. Additionally,
employing digital simulation as a pre-test environment for the physical setting can effectively reduce
deployment costs and enhance the safety of virtual reality migration experiments. The proposed
approach involves constructing a training model based on the parameterized environment and
implementing a feedback loop utilizing the digital environment agent model. This framework enables
continuous verification of the environment’s parameters, ensuring the accuracy of decision-making

strategies and evaluating the transferability of the decision-making model.

Keywords: transfer learning method; parameterizing scene to physical scene; agent model;
game theory

1. Introduction

The general method of virtual and real transmission is to train in a digital environment
and deploy directly in physical scenes. The disadvantages of this migration are high deploy-
ment costs and low iteration speed. In traditional experiments of virtual-real conversion,
there is no test environment, only a training environment and model deployment. The
training environment is usually a digital environment, not a parametric environment.

The ultimate goal of controlling unmanned platforms is to train strategies that can com-
plete operational tasks in real-world physical environments. However, training dynamic
sampling directly from the real world is costly, time-consuming, and insecure. Virtual
game theory is a model of learning through self-game. In each iteration, the player chooses
the best response strategy of his opponent’s average strategy to act. In some types of
games, the player’s average strategy can converge to Nash equilibrium. For example, a
two-person zero-sum game and multi-person potential game. Traditional virtual games are
usually limited to regular games, and the efficiency of virtual games in extended games
declines exponentially. Over the past few decades, Nash games have been widely applied
in various fields such as enterprise management [1], supply chain management [2], control
theory [3,4], economics [5], and engineering optimization [6-9].

Yu et al. proposed applying Nash games to market strategies between manufacturers
and retailers, and they developed a strategy for finding Nash equilibrium using analytical
methods, iterative methods, and genetic algorithms [2]. Hou et al. introduced the concept
of group decision equilibrium and studied the relationship between group decision theory
and game theory. They described experts’ preferences using preference sequence vectors
and used them to solve for Nash equilibrium [10]. Oliveira et al. proposed a Nash
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equilibrium solution strategy based on a fuzzy adaptive simulated annealing algorithm.
They demonstrated that the game problem could be transformed into a constrained global
optimization problem and proved its effectiveness through three examples [11]. Tang et al.
proposed a gradient-free Nash equilibrium solution strategy based on the elite information
exchange method and combined it with a global search algorithm to develop an iterative
approach. They proved that the obtained result is indeed Nash equilibrium based on the
fixed-point theorem [6,7].

Traditional fictitious play (FP) needs to calculate all game states during each iteration,
which easily leads to dimension disaster in the case of large-scale game. The generalized
weakening of virtual matching ensures convergence similar to that of traditional virtual
matching and allows the approximate optimal response strategies and disturbance average
strategy to be updated. Among them, strategy learning based on behavior strategies can be
applied to extended games, and the linear time and space complexity of strategy solving
can be guaranteed.

Fictitious self-play (FSP) calculates the optimal response strategy and updates the
average strategy through reinforcement learning and supervised learning, respectively.
FSP generates empirical datasets through self-game, and game intelligence stores quads in
the experience pool for reinforcement learning training to calculate the optimal response
strategy. The behavior tuples of agents themselves are stored in the experience buffer
pool, which is used to supervise the learning and update the average strategy. Self-game
constructs the reinforcement of learning memory of the subject by sampling, which is equiv-
alent to the empirical data of Markov decision processes (MDPs), whose opponent adopts
the average strategy. Therefore, the approximate optimal response strategy can be solved
by a reinforcement learning algorithm to solve MDPs. Similarly, the agent’s supervised
learning memory can be used to approximate the agent’s own average strategy experience
data, and then the strategy can be solved through a supervised classification algorithm.

Neural fictitious self-play (NFSP) is a kind of neural network virtual self-game, which
combines virtual self-game and deep reinforcement learning. It does not need prior knowl-
edge My and solves Mg approximate Nash equilibrium strategies of incomplete infor-
mation game problems in a scalable end-to-end manner. In NFESP, each iteration is mainly
composed of three steps. Firstly, agents take actions to interact with other agents according
to the strategy and store the sample data in the reinforcement learning experience buffer
pool and the supervision learning experience buffer pool. Then, a reinforcement learning
algorithm is used to update the optimal response strategy, and supervised learning memory
is used to update the average strategy.

Su et al. proposed a new approach to approach phase-biased proportional navigation
guidance law considering fuel consumption, effectively avoiding dangerous areas while
consuming less fuel compared to traditional algorithms [12]. Zhang et al. augmented the
traditional guidance law with collision detection and maneuvering correction instructions,
ensuring the safety of unmanned aerial vehicles (UAVs) in collision avoidance scenarios [13].
Although these methods have low computational complexity, they tend to encounter
local minima and result in infeasible solutions in complex scenarios with multiple types,
quantities, and distributions of obstacles and threats. Additionally, it is challenging to
obtain globally optimal solutions that satisfy mission requirements. It is worth mentioning
that the Virtual-agent Artificial Potential Function constructed by Qian et al. improved
the issue of local minima while reducing computation time, but such methods still lack
long-term and global optimization capabilities [14].

Strategy learning in multi-agent games is inherently more complex than in single-agent
games, as agents not only need to interact with the environment but also with dynamically
changing strategies of other agents. The non-stationary characteristics of a multi-agent
game will lead to the failure of most single-agent reinforcement learning algorithms. These
algorithms do not consider the impact of the behavior of other agents, which will lead to the
invalidity of the Markov property of MDPs. In addition, there are many problems in multi-
agent games, such as dimensional disasters, credit allocation, and global exploration [15].
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Currently, research on multi-agent reinforcement learning can be primarily categorized into
four areas: analysis of emergency behavior, learning communication, learning cooperation,
and agent modeling agents.

Credit allocation, sparse rewards, and sample efficiency are common issues in rein-
forcement learning algorithms. The traditional methods for solving sparse rewards include
reward shaping, hierarchical reinforcement learning, and hindsight experience replay. Re-
ward shaping usually involves modifying the reward function to provide denser reward
signals to optimize the learning process. Layered reinforcement learning is the process of
abstracting learning objectives into multi-layer objectives and then solving sparse reward
problems by exploring high-level objectives. Post-experience replay is achieved by updat-
ing the target with previously sampled data in order to reuse failed explorations. This paper
utilizes pre training of the strategy network to alleviate the problem of sparse rewards.
There are two main ideas for pre training, one is to use Raw Self-Play to train strategies,
the other is to use expert agent data for imitative learning. This project mainly uses Raw
Self-Play for pre training. Both approaches aim to quickly learn a strategy network with a
certain level, alleviate the problem of sparse rewards in the early stages of NFSP training
and achieve warm start of NFSP. The Raw Self-Play method is simpler and more direct
in strategy learning than NFSP. NFSP requires each agent to learn two strategies, namely
the optimal response strategy and the average strategy, and select strategies based on
probability in each action. However, in the Raw Self-Play method, each agent only needs to
learn the optimal response strategy. In each game, it only needs to act directly based on
the optimal response strategy. Although the convergence of global optima may not be as
good as NFSP, the Raw Self-Play method can learn an initialization strategy with certain
game capabilities faster than NFSP. Then, by utilizing NFSP for continued training, the
advantages of each of the two self-play methods can be utilized while alleviating the sparse
reward problem.

This study focuses on constructing a training model based on a parametric environ-
ment and implementing a feedback loop using a digital environment evaluation model.
The objective is to continuously verify the accuracy of decision-making strategies in the
parametric environment and assess the transferability of the decision-making model’s
strategies. The project acknowledges the challenges of utilizing digital environments to
meet the training requirements for generalized battle scenes. To address this, the project
proposes two innovative approaches. Firstly, it introduces a parametric scene training
method. Secondly, it advocates for the utilization of a digital environment as a testing
ground to enhance the efficiency of virtual-to-real conversion. Additionally, leveraging
digital simulations as pre testing environments for physical settings can lead to reduced
deployment costs and improved security in virtual-real migration experiments.

2. Materials and Methods
2.1. Algorithms Migration Task

This study uses a parameterized environment to reduce deployment costs and improve
the security of virtual reality migration experiments. This method is easier to sample and
train approximate strategies and can be expressed mathematically.

P(stylst,ar) = p*(si41lst, ar) ¢y

where p* represents strategies in a real environment; p represents a policy in a virtual
environment; s; represents information state of t; a; represents action sequence of t.
However, due to modeling or dynamic changes in the environment, directly assigning
strategies that have been successfully trained p(s;11|s¢, 4, A) in a non virtual environment
to a p, real environment often leads to failed results. For example, many strategies
trained in deep reinforcement learning usually lead to behaviors that cannot happen in
real environments. We introduce a set of parameters A, which parameterize the motion
control model in a parameterized environment, and its strategy can be expressed as follows.
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Therefore, we can further adjust the training objectives in the virtual environment to
maximize the expected return of training in the motion control model:

T-1
AEP/\[ETN;J(TVI,/\) [EO r(st,ar)]] 2

The final control strategy can be better extended to the real world by training strategies
to adapt to the dynamic changes of the environment.

2.2. Self-Game Training and Group Training

In this project, the labor unit is a local unit. If the human unit uses a single rule
strategy, it is difficult for the intelligent experience to train a robust strategy because the
object of confrontation has not changed during training [16]. The design of a rich and
reasonable behavior decision tree involves a lot of work, which is not the key point of this
work. At the same time, the strategic strength of the behavior tree is hard to guarantee
because of artificial design. At the same time, the human strategy itself is also very rich and
complicated. Therefore, in this study, we used the method of self-play to learn people’s
strategies and fight against our team.

In addition, the idea of league training was used during the training process to store
the latest strategies of some people and cars, avoiding the catastrophic forgetting problem
of intelligent agents, which is the appearance of “dog biting tail” strategy distribution. The
result of strategy optimization is not just to defeat the current enemy strategy but to gain
advantages in the face of different types of enemy strategies in the training history. The
same is true for the optimization of the enemy’s strategies.

2.3. Virtual Self Game

The key point is that the convex combination of the standard regular form strategy
can be modified to the convex combination with probability correlation, as shown below:

o(s,a) < Mxp, (s)m1(s,a) + Apxy, (s)1a(s,a) Vs, a (©)]

where A1x7, (s) + A2x g, (s) is a normalized constant on the information sets. The above
(s¢,a¢) formula Mgy not only defines the player’s full-range average strategy update
(st,at, 7141, St41) in Mgy behavioral strategies but also specifies the data sampling method
of this convex strategy combination.

The idea of repeating experience is introduced, and the optimal response strategy
is solved by cement learning method of Mgy, (st at,714+1,5t+1). Specifically, during the
k-th iteration, the agent adopts a strategy to respond to the opponent’s average strategy
in order to achieve maximum returns, and agent I stores its own empirical data in the
reinforcement learning experience buffer pool, which is stored in quadruple form, the
experience pool size is set to a fixed value, and when the data volume reaches the upper
limit, the old sample is replaced with new sample data. In addition, due to the use of off
strategy reinforcement learning methods, after meeting the iterative condition, the next
strategy update does not need to collect samples from the beginning, but it can still be
updated with the data generated from the previous strategy in the experience pool, thus
improving sample efficiency and balancing exploration and utilization problems in the
optimization process of the optimal response policy. NFSP uses the self-game method to
correctly combine average strategies and optimal response strategies to more accurately
approximate the sample data distribution of the actions taken against the opponent’s
average strategy group. By strengthening the experience pool of learning, people can learn
the Q function:

Qi(s,a) ~ Egi s [Gi]st — s, A =a @)

The purpose of updating the Q function is to maximize the expected return 7w — i
when adopting the optimal response strategy B’ to the average strategy of the opponent;
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that is, the greedy strategy is obtained based on the Q function. If = € — greedy(Q) is
satisfied, the greedy strategy will take random behavior with probability ¢, otherwise, it will
maximize the Q value. The parameter € Implemented a certain exploration of intelligent
agents, avoiding the excessive utilization of the current optimal strategy. In short, solving
the optimal response strategy is achieved by solving the optimal Q function.

2.4. Multi-Agent Virtual Self-Game

The algorithm for solving the optimal strategy of NFSP in multi-agent game systems
is as follows:

T
J(7) = Y Eis, )0, [7(51,a1)] @)
t=0

Specifically, for non-stationary problem in multi-agent games, centralized training
and decentralized execution are used to solve the optimal strategy. To address the issue
of credit allocation, baseline rewards are used to measure the contribution of agents to
global rewards more accurately, simultaneously introducing the maximum entropy strategy
gradient to balance exploration and utilization during the training process and enhance the
robustness of the strategy. In addition, a pre trained average strategy network is used to
alleviate the problem of sparse rewards.

A centralized training and decentralized execution training framework is adopted
in the optimization process of the optimal strategy for multi-agent NFSP. When training
intelligent agents, the global information shared by the agents and the actions of each agent
are used as inputs, and the non-stationary nature of the game environment is eliminated by
sharing agent actions. All agents share a critical valuation network. The centralized critical
network loss function is:

N 0 2
L(0) =) Exarx |:<Qi (x,a1,...,aN) —]/l) } (6)
=

o'))] @)

where (x, a1,...,ay) represents the global information shared during intelligent agent
training and a represents the importance of the temperature coefficient used to control
strategy entropy. The global losses of all agents are accumulated, and then the global critical
network is updated through TD error. The global expected reward is used as the baseline
reward, and simultaneously, the reward for taking a certain action and the baseline reward
are used to solve the advantage function. Q represents the action return and b represents
the global baseline reward after fixing other agent actions. The advantage function A can
evaluate the actual gain brought by the agent taking a certain action on the global return.
The specific calculation process of the advantage function A is:

i =1i+ YEy () [QV (0, d}, ..., ay) — alog(m(a

A(X, ai) = Q(X/ ai) - b(x,a,,') (8)

b(x/a*i) = ]Eu,'NT[,'(X,') [Ql<x’ (ﬂi,a,i))] = Z n(a”xl) Ql (X, (ﬂ;,a,i)) (9)
ai€ Action;
Replacing the Q-value network with an advantage function for policy evaluation can
more accurately guide the gradient update of the optimal strategy. The gradient of the
policy network Actor is:

V¢i](¢)i) = EOiND/“i“’TCi [V‘Pi log 7[1‘([11‘|O,')A(X, {Ill‘)} (10)

Due to the decentralized execution of the training method, each agent has a sepa-
rate optimal policy network, and the Actor network updates independently through a
global critical.
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2.5. League Training

The gentle ague training based on multiple opponents adopts the latest neural net-
work training method, i.e., population-based training (PBT), which is an asynchronous
optimization algorithm. It simultaneously trains and optimizes the network of a group to
quickly select the best hyperparameter set and model for the task. Most importantly, this
method does not increase computational overhead. It can maximize performance and is
easily integrated into existing machine learning processes.

From Go to Atari games to image recognition and language translation, neural net-
works have achieved tremendous success in various fields. However, it is often overlooked
that the success of neural networks in a specific application often depends on a series of
choices made at the beginning of the study, including the type of network and the data
and methods used for training [17]. At present, these choices (called hyperparameters) are
realized through experience, random search, or calculation-intensive search process.

The experimenter can quickly select the best hyperparameter set and model for the task.
This technology is called population-based training (PBT), which simultaneously trains
and optimizes a series of networks to find the optimal settings quickly. Most importantly,
this method does not increase computational overhead, can be completed quickly like
traditional technologies, and is easily integrated into existing machine learning processes.

This technique is a combination of the two most-used hyperparameter optimization
methods: random search and manual tuning. In random search, the neural network
population (cluster) is independently trained in parallel. At the end of the training, the
model with the best performance is selected. Usually, this means that only a small part of
the population will receive good hyperparameter training, and more parts will receive bad
hyperparameter training, wasting computing resources.

With manual tuning, researchers must guess what the optimal hyperparameters are,
train the model with them, and then evaluate the performance, as shown in Figure 1. This
process is repeated until the researchers are satisfied with the performance of the network.
Although this may lead to better performance, the disadvantage is that it takes a long
time, sometimes weeks or even months, to find the perfect setting. Although there are
some methods to automate this process, such as Bayesian optimization, it still takes a long
time and requires a lot of continuous training to find the best hyperparameter. Manual
tuning and Bayesian optimization methods change hyperparameters by observing many
continuous running trainings, which makes these methods slow.

Performance
— o | = —

Hyperparameters O O O

Figure 1. Hyperparameters random search.

PBT, like random search, starts by training many neural networks in parallel with
random hyperparameters. However, these networks are not independent but use infor-
mation from the rest of the group (cluster) to tune hyperparameters and guide computing
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resources to promising models. This is inspired by genetic algorithms, in which every
member of the cluster (called agent) can use other people’s information. For example, an
agent can copy model parameters from a better-performing agent. It can also explore new
hyperparameters by randomly changing the current value.

As shown in Figure 2, as the training of the neural network cluster continues, this
process of development and exploration is also carried out periodically to ensure that
all agents in the cluster have a good basic performance level and have been constantly
exploring new hyperparameters. This means that PBT can quickly use good hyperparame-
ters, allocate more training time to promising models, and, most importantly, adjust the
hyperparameter value during the whole training process, thus automatically learn the
optimal configuration.

Performance ( \
—  o— E— ==

Hyperparameters O O ' O O

Model D ..... - D A [:] i |

e
D ..... . LD/ D DD

Figure 2. Population-based neural network training.

As illustrated in Figure 2, swarm-based neural network training is initially like ran-
dom search but allows agents to use part of the results of other agents and explore new
hyperparameters in the training process.

All stages of population-based neural network training are shown in Figure 3.

(a) Sequential Optimisation

Performance
— = —3 | s B — | —=.
o Hypenaranetes O~ Q). 00 @
Weights
(b) Parallel Random/Grid Search (¢) Population Based Training
— == = == Pert —
O @] O-. O = = = =D
U 'D L ‘D L ‘D Hyperparalxmtezso O O O
Weights D .............. .,[] N ,D ,U
— | o = ==
O O -, O O 1 exploit
U .............. D D D _ | o
— — = = O " O O_‘E"Pl‘m"‘o- O
o. 0 . O 0100 00
R R . -

Figure 3. All stages of population-based neural network training.

3. Results

In this study, the method of course learning was adopted to gradually improve the
ability of intelligent agents:
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(1) Mini Map — Medium Map — Large Map

The final intelligent agent needs to complete the adversarial task on a 2 km x 2 km
map, which has a large range and is difficult for the agent to explore from scratch. Therefore,
this study uses the idea of course learning to cut out small maps from the large map, train
the agent from 0 on the small map, and gradually increase the map range to train on the
entire map after the performance stabilizes. The task design from easy to difficult simplifies
the learning difficulty of intelligent agents and also reduces the time required for training.

(2) Avoiding obstacles and moving — Discovering and safely approaching competitors
— Encircling and blocking to defeat competitors

Because the research scene itself is a large and complex task, involving motion plan-
ning, exploration, tactical decision-making and other aspects, the learning difficulty of these
aspects is often inconsistent, and high-level tasks often rely on the learning of low-level
tasks, so we separately design rewards for different tasks. At the initial stage of training,
agents move randomly and are prone to encounter obstacles, so obstacle avoidance rewards
can effectively assist the intelligent agent in learning obstacle avoidance behavior in the
early stages of training [18]. After achieving good obstacle avoidance behavior, randomly
encountering some enemy units will also trigger rewards. At this point, the learning goal
of the intelligent agent will shift to discovering and safely approaching the enemy. Without
touching obstacles, when safely approaching the enemy, choosing attack commands will
further earn higher rewards. At this point, the intelligent agent learns how to kill more
enemies based on such reward signals. This process involves disassembling the imple-
mentation process of the entire composite task and implementing the design of reward
functions step by step, which can help the intelligent agent effectively smooth the learning
curve and obtain effective reward signals for strategy optimization throughout the entire
training process.

3.1. Qverall Architecture

The agent training cloud platform is a basic platform supporting agent training, pro-
viding core functions such as large-scale heterogeneous computing resource scheduling
management, distributed intelligent training engine, deep reinforcement algorithm support,
and agent design and training and can be used to train and generate reinforcement learning
agents controlled by unmanned equipment. The platform adopts a large-scale distributed
architecture to achieve real-time data generation and model training and inference, consist-
ing of five layers: hardware computing power layer, computing platform layer, intelligent
engine layer, algorithm training layer and user layer. The detailed architecture diagram is
shown in the following figure.

3.2. Platform Features
3.2.1. Hardware Computing Power Layer

The hardware computing power layer mainly includes a hardware server cluster
composed of a central processing unit (CPU), a graphics processing unit (GPU), storage,
and other resources, as well as corresponding 10 Gigabit networks, to meet the needs of
large-scale operations in game confrontation decision making.

For hardware server clusters, the intelligent agent training cloud platform effectively
organizes and manages the hardware server clusters by controlling the servers, achieving
the implementation of various layer functions in the training platform. The control server
consists of one main control device, one cloud management device, and two training
management devices [19]. The system can connect to the client computer provided by the
user, and the device connection method is shown in the following figure.

The deployment of components or modules at each layer of the intelligent agent
training cloud platform in the hardware environment is shown in the Table 1.
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Table 1. Component and model algorithm library deployment.

Serial Number Hardware Devices Software or Algorithm Library
1 Intelligent agent development IDE components
2 Algorithm secondary development SDK components
Master control equipment 8 Y P P
3 Simulation environment integration SDK components
4 Platform management WEB interface components
5 Container management components
6 . Heterogeneous resource scheduling component
Cloud management equipment
7 Distributed components
8 Virtual network management components
9 Large-scale data generation engine components
10 Distributed continuous learning engine components
11 o . High-performance prediction inference engine components
Training and management equipment
12 Core algorithm library
13 Network model library
14 Training method library
15 Simulation and deduction environment
16 Large-scale data generation engine components
Hardware server cluster
17 Distributed continuous learning engine components
18 High-performance prediction inference engine components

Main control equipment: deploy intelligent agent development IDE components,
algorithm secondary development SDK components, simulation environment integration
SDK components, platform management WEB interface components, support external
computers to access the system through WEB browsers, and support users to complete
input and output operations.

Cloud management equipment: deploy the scheduling layer software at the bottom of
the software architecture, including container management components, heterogeneous
resource scheduling components, distributed storage components, and virtual network
management components to realize the creation, management, and scheduling of heteroge-
neous resources.

Training and management equipment: deploy the most important intelligent engine
layer and algorithm training layer in the cloud platform architecture, including large-
scale data generation engine components, distributed continuous learning engine com-
ponents [20], high-performance prediction and inference engine components, as well as
core algorithm libraries, network model libraries, and training method libraries, to manage
the deep reinforcement learning process and provide mature algorithm resources for user
intelligent agent development.

Hardware server cluster: deploy large-scale data generation engine components,
distributed continuous learning engine components, high-performance prediction and
inference engine components, as well as simulation and inference environments, receive
training management equipment allocation, and complete deep reinforcement learning
processes such as sample generation, feature processing, gradient descent, and network
parameter updates.

3.2.2. Computing Platform Layer

The computing platform layer abstracts heterogeneous and scattered hardware into
an integrated computing resource through comprehensive scheduling of large-scale dis-
tributed heterogeneous computing resources, flexibly distributes computing tasks to sup-
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port the operation of deep reinforcement learning algorithms, and realizes parallel comput-
ing of intelligent algorithms.

Building an application support for reinforcement learning based on the computing
platform layer, namely the reinforcement learning runtime system, to complete the deploy-
ment of reinforcement learning tasks and training calculations, specifically composed of
the following four aspects. Building a reinforcement learning task planning system based
on heterogeneous resource scheduling components for scheduling reinforcement learning
tasks, planning the distribution of each component instance in the task, and establishing
communication relationships between them.

On the basis of virtual network management components, constructing a reinforce-
ment learning sample flow and a reinforcement learning model parameter synchronization
chain for data transmission of reinforcement learning model iteration.

On the basis of distributed storage components, building a reinforcement learn-
ing application deployment system for installing user-defined functions into planned
training tasks.

Building a reinforcement learning model pool based on distributed storage compo-
nents for storing, synchronizing, and distributing reinforcement learning models.

3.2.3. Intelligent Engine Layer

The intelligent engine layer is the key to supporting the training of intelligent agents,
which achieves processes such as sample data generation, collection, feature processing,
intelligent agent training support, and intelligent agent estimation application.

The intelligent engine layer converts large-scale computing power into large-scale data
capabilities to enhance the using and learning of learning algorithms. The intelligent engine
layer consists of large-scale data generation engine components, distributed continuous
learning engine components, and high-performance prediction and inference engine com-
ponents. Among them, the large-scale data generation engine component is responsible for
producing massive amounts of data, the distributed continuous learning engine component
is responsible for consuming massive amounts of data and using relevant algorithms to
optimize intelligent agents, and the high-performance prediction and inference engine
component is used to quickly respond to and drive the simulation environment to generate
data [21].

The operating relationship of the above three main modules is as follows: Large-scale
data generation engine components interact with multiple simulation environments in
parallel. With each interaction, the simulation environment outputs the situation to the
large-scale data generation engine component, and the large-scale data generation engine
component returns instructions to the environment; the generated data will be streamed
and stored in the training data buffer pool and will be read in batches when needed by the
distributed continuous learning engine components.

Each instance of the distributed continuous learning engine component will inde-
pendently batch obtain samples from the sample pool, perform neural network forward
calculation, calculate the gradient according to the loss function defined by the reinforce-
ment learning algorithm, determine the update direction of the network parameters, and
then perform reverse calculation to update the parameters.

The new version of the model generated by the distributed continuous learning
engine component will be loaded by the high-performance prediction and inference engine
component. When the large-scale data generation engine component has interaction needs,
it will send environmental observations to the high-performance prediction and inference
engine component, perform forward calculations, and return actions to the large-scale data
generation engine component.

3.2.4. Algorithm Training Layer

The algorithm training layer consists of the core algorithm library, network model
library, and training method library.



Electronics 2024, 13, 1327

11 of 19

(1) Core algorithm library

The platform provides typical deep reinforcement learning algorithms as shown in

Table 2.

Table 2. Core algorithm library algorithm.

Serial Number

Algorithm

Referred to as

Task Category

Examples of Applicable
Scenarios

Deep Q-value Network Learning

Decision problems in

Single-agent small-scale

! Algorithm DN discrete spaces combat scenarios
Deep Dual Q-value Network Decision problems in Single-agent small-scale
2 . . DDQ . .
Learning Algorithm discrete spaces combat scenarios
3 Advantage.z Q-value .Network Dueling DQN Dec1§1on problems in Single-agent smal}—scale
Learning Algorithm discrete spaces combat scenarios
4 A Learning Algorithm for Noise Noisy DQN Dec1§1on problems in Single-agent smal?—scale
Q-value Networks discrete spaces combat scenarios
5 A Learning Algor.lth.m for Q-valued Prioritized DON Dec1§1on problems in Single-agent smau—scale
Networks with Priority Data Queues discrete spaces combat scenarios
6 Rain Bow Rainbow Dec1§1on problems in Single-agent smal?—scale
discrete spaces combat scenarios
Deep Deterministic Strategy Decision Problems in Single-agent small-scale
7 . . DDPG . .
Gradient Algorithm Continuous Spaces combat scenarios
Enhanced version of near-end Decision problems in Medlum—sF ale ’[aCthE.il
8 R . PPO . confrontation scenario
optimization algorithm mixed spaces o
with single agent
Asynchronous Near End Decision problems in Medlum-s.c ale tactlcgl
9 L . A-PPO . confrontation scenario
Optimization Algorithm mixed spaces s
with single agent
. . . . . Multi-agent small-scale
10 Gradient algorlt}.ln.l f9r multi-agent MADDPG De'c1s1on pr.oblems in tactical confrontation
deep deterministic strategy multi-agent discrete space .
scenarios
. S . . Medium-scale tactical
1 Multi Agent Near End Optimization MAPPO Decision problems in confrontation scenarios

Algorithm

multi-agent mixed space

with multi-agent systems

(2) Network Model Library

It mainly provides three types of network models: basic neural networks, composite
neural networks, and intelligent agent networks.

(3) Basic neural network
It provides a single scalable network structure such as full connection network MLP,

short-term memory network LSTM, convolutional neural network CNN, and cyclic neural
network RNN.
(4) Composite neural network

It provides ResNet, Transformer, Pointer Net, Multi RNN, attention mechanism, etc.
(5) Intelligent agent network

It provides a universal single agent neural network, which consists of multiple basic
neural networks and composite neural networks and supports the construction of single
decision agent models. It provides a universal multi-agent neural network, which is
composed of multiple basic and composite neural networks and supports the construction
of multi decision agent models.

It supports the adjustment of the internal structure of the intelligent agent network
model.

(6) Training Method Library
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In this project, due to the complete difference of observation space, business logic,
and strategy space of unmanned platforms, it is a typical asymmetric game problem.
Therefore, the main training method applied is large-scale asymmetric asynchronous
learning training technology. To address the issue of different evolutionary efficiency and
direction of agents in asymmetric heterogeneous adversarial game scenarios, it is necessary
to continuously and stably train agents from both sides of the adversarial game and
improve their ability level. This technology includes large-scale heterogeneous computing
resource comprehensive scheduling technology, distributed reinforcement learning engine
technology, agent multiple training and adjustment technology, and asynchronous learning
algorithm optimization technology.

(7) Comprehensive scheduling technology of large-scale heterogeneous computing re-
sources

By studying the comprehensive scheduling technology of large-scale heterogeneous
computing resources, the rapid response to the elastic computing power demand of upper
training tasks is achieved, and specific tasks are scheduled to idle computing nodes to
avoid resource use conflicts between different training tasks.

The overall design idea of large-scale heterogeneous computing resource integrated
scheduling technology is to separate the application layer’s request for resources from the
actual call logic of the underlying operating environment and provide a set of standard
resource scheduling interfaces for heterogeneous computing resources for the upper tech-
nology. Specifically, this technology takes the container technology as the core, abstracts
heterogeneous scattered hardware into an integrated computing resource for management
and scheduling, quickly stores and uses massive data, and establishes a virtual connection
between heterogeneous computing devices.

The integrated scheduling technology of large-scale heterogeneous computing re-
sources uses container technology to uniformly abstract the hardware in computing clus-
ters. Specifically, the entire cluster is divided into four types: main node, work node,
network service node, and distributed storage node. Among them, the main node is used
for managing and scheduling cluster resources, monitoring the usage of computing nodes
in real time by maintaining the cluster status database, responding to resource requests,
and deploying specific training tasks to idle computing nodes; as the provider of cluster
resources, the work node is responsible for executing upper-level training tasks based on
the tasks assigned by the main node and providing feedback on the execution status of the
training tasks to the main node; the network service node has implemented an efficient
virtual router and developed an IP routing-based data forwarding mechanism for each
working node; each distributed storage node is bound to the disk one-to-one and records the
status and configuration information of the distributed storage node through the globally
accessible persistence volume (PV), which supports access to distributed storage services
on any node.

(8) Distributed Reinforcement Learning Engine Technology

The distributed reinforcement learning engine technology adopts a three-layer archi-
tecture of sampling training predictor, which converts large-scale computing power into
large-scale data processing power, achieving efficient reinforcement learning training of
decision models under distributed computing power.

The traditional distributed reinforcement learning engine adopts a sampler-trainer
two-layer architecture. Among them, the Sampler module is responsible for continuously
generating training samples, while the Trainer module is responsible for continuously
updating decision model parameters based on the training samples. The traditional re-
inforcement learning engine’s sampling module and prediction module run on the CPU,
while the training module runs separately on the GPU, resulting in a large amount of data
communication between the CPU and GPU. Due to the bottleneck of network bandwidth,
a large amount of data transmission and parameter synchronization of neural networks
will reduce the efficiency of the engine. In addition, as the parameters of the neural net-
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work model increase, CPU used for forward inference will meet an obvious decrease in
running speed. Finally, the sampling module needs to schedule CPU resources for both
simulation and neural network inference, unable to fully improve the utilization of CPU
multithreaded resources.

Therefore, adding an additional prediction module (Predictor) using GPU resources to
improve the inference speed of the neural network effectively solves the several problems
above. Based on the newly designed three-layer architecture, the sampling module runs
batch simulation and deduction on the CPU with real-time situation and decision data
interacting with the neural network inference running on the GPU. Compared with model
data and complete batch data under traditional engine architecture, it significantly reduces
data communication traffic and effectively utilizes network bandwidth [22]. On the other
hand, the training module and prediction module run simultaneously on the GPU, fully
utilizing the high concurrency ability of the GPU, improving the speed of batch inference
of the neural network, reducing the delay of model parameter updates, and accelerating
the efficiency of model parameter synchronization.

(9) Asynchronous learning algorithm optimization technology

The design idea of asynchronous learning algorithm optimization technology is to
establish two independent data channels for two intelligent agents (submarines and anti
submarine patrol aircraft), which are, respectively, used for training sample transmission
and neural network parameter updates of a single agent. In addition, to ensure the con-
vergence ability of the agent while accelerating the efficiency of data generation and agent
parameter updates, streaming data technology and asynchronous parameter correction
technology are adopted.

Firstly, through streaming data technology, the efficiency of data generation and
intelligent agent parameter updates can be accelerated. In response to the problem of low
real-time performance in traditional database technology, streaming data technology can
effectively address the high real-time data processing needs. In addition, streaming data
technology records the production sequence of transmitted data according to the timeline
and records the timestamp of a single confrontation after each round is completed. The
optimization algorithm can quickly query corresponding data nodes based on timestamp
and data order, achieving the requirement of training data resampling.

Although streaming data technology has accelerated the efficiency of data generation
and intelligent agent parameter updates, it has also caused the optimization and non-
convergence of neural networks due to outdated data. By using asynchronous parameter
correction technology to adjust and truncate the weights of training samples, the conver-
gence of the neural network during the training process is ensured. After recollecting
each training sample, the weight of each sample is adjusted and the loss function is cal-
culated according to the neural network strategy distribution that produces the current
training sample to make the generation probability of each sample close to the latest ver-
sion of the neural network strategy distribution, thus ensuring the convergence of neural
network parameters.

3.2.5. User

The user layer mainly implements intelligent agent development IDE components,
algorithm secondary development SDK components, simulation environment integration
SDK components, and platform management WEB interface components.

(1) Intelligent agent development IDE components

The intelligent agent development IDE component provides users with program-
ming interfaces and environments for intelligent agent design and development based
on algorithm training layers, provides intelligent agent training, evaluation, deployment,
and application functions based on the intelligent engine layer, and provides resource
configuration and scheduling functions for intelligent agent training tasks based on the
computing platform layer.
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(2) Algorithm secondary development SDK components

The algorithm secondary development SDK component is based on the algorithm train-
ing layer, providing a programming call interface and development environment for users to
self-developed and extended algorithm libraries. For specific interfaces, please refer to Section
Intelligent Agent Training “Agent programming development/optimization process”.

(3) Simulation Environment Integration SDK Components

The simulation environment integration SDK component provides a unified standard
programming call interface and development environment for various simulation environ-
ments, achieving dynamic parallel inference of the simulation environment, accelerating
the simulation process, data sampling, and instruction input.

(4) Platform management WEB interface components

The platform management WEB interface component provides users with a system
management operation interface for the platform, including user management interface,
task management interface, monitoring management interface, configuration management
interface, etc.

4. Simulation

There are two types of system users, namely super administrators and regular users [23].
The super administrator account has global permissions and is assigned to the league spon-
sor in this project, while the ordinary user account is assigned to each team.

The main operations of a super administrator include four categories:

Create user: create other super administrators or regular users and define user resource
usage quotas.

Resource management: add new hardware resources to the computing cluster, al-
lowing the computing platform layer to virtualize them and increase hardware comput-
ing power.

View all users: view all user accounts, resources, permissions, etc.

View the resource status of all users: view the startup task status, hardware resource
usage rate, and hardware resource usage records of all users.

The main operations of ordinary users include two types:

View the status of this user: view the status of this user account, resources, permissions,
etc.

View the user’s resource status: view the user’s startup task status, hardware resource
usage rate, and hardware resource usage records.

Intelligent Agent Training

The application of intelligent agent training cloud platform for the development of
reinforcement learning agents in two typical scenarios of this project is a typical large-
scale asymmetric asynchronous learning training process. Among them, “asymmetry”
refers to the differences in neural network structures caused by different business logic
of unmanned platforms; “asynchronous” refers to the real-time extraction of data by
distributed continuous learning engine components based on the acquisition of data in a
distributed parallel simulation environment, instead of waiting for the slowest simulation
environment data to arrive before being uniformly extracted.

Among them, the development/optimization process of intelligent agent program-
ming is mainly based on the development of IDE components by the agent, calling the
algorithm model and training methods provided by the algorithm training layer to form
the neural network structure and training methods of the agent. The scheduling process of
parallel training tasks is mainly based on the platform management of Web interface com-
ponents. Configure computing resources are needed for parallel training in the simulation
environment, such as setting a reasonable number of CPU cores and logical segmentation
of GPU, to improve the utilization of resources and form containers to push to CPU and
GPU. Scenario loading, which is based on the scenario starting situation formed according
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to specific task scenarios and task conditions, is used as the basis for subsequent parallel
deduction. The parallel sampling and intelligent agent model updating process in the
simulation environment mainly consists of large-scale data generation engine components
and high-performance prediction inference engine components, which continuously in-
teract with the simulation environment to generate large-scale training data and inject
them into the training data buffer pool [24]. At the same time, the intelligent agent neural
network model is continuously learning and updating based on the distributed continuous
learning engine component. In the iterative process of “generating data consumption data”
mentioned above, users continuously optimize based on the level of the intelligent agent
then program and adjust based on the visualization effect display, training logs, and other
functions provided by the platform management WEB interface components until they
meet the user’s adversarial strength requirements and generate intelligent agents that can
be used for actual deduction.

(1) Agent programming development/optimization process

The development/optimization process of intelligent agent programming is shown in
Figure 4.

O @ editorbaiyangtimes.com = (o]
file Edit View Run Kemel Tabs Settings Help
= + -] * ] @ Launcher X | E config.py X
m / config import logging
o Neme - Last Modified import time
from ai.constants import *
® configpy 21 days ago
i import 025T 4 ACT
@ s import *
from player.atari_player import AtariPlayer
from env.atari_env import AtariEnv

from drill.algo.gear.runner.base_runner import BaseRunner
from drill.algo.gear.data_types.action import ActionSpace

action_space_list = []
for space in action_space.values()
action_space_list.extend(space)

str_time = time.strftime('%YXd%HWXS', time.localtime())

def ith_key(key, i):
return " }.format(key, i)

ork import ActorCriticModel
torCriticModel

def delayed_optimizer()
from drill.algo.optimizer.ppo import PPO
return PPO

Figure 4. Intelligent agent programming development interface.

Developing IDE components based on intelligent agents allows users to develop in-
telligent agents for specific scenarios in this project. By calling the core algorithm library,
network model library, and training method library, users can form neural network struc-
ture design and define loss function of neural network optimization and training methods
(asymmetric asynchronous learning training in this project) for agents. In addition, SDK
components based on algorithmic secondary development can be integrated with user-
defined reinforcement learning algorithms. After completing the development of intelligent
agent programming, the intelligent agent will pack to form containers based on large-scale
data generation engine components, distributed continuous learning engine components,
and high-performance prediction and inference engine components.

After completing the development of the intelligent agent, during the subsequent
parallel sampling and updating of the intelligent agent model in the simulation environment
(see details in the following text), based on the generated data, the platform manages the
WEB interface components to help users optimize the intelligent agent through visual
effects display, training logs, and other means (Figure 5).
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Figure 5. Visual display of training effects.

Based on platform management of WEB interface components, users can configure the
number of CPUs and GPUs required during parallel training. The heterogeneous resource
scheduling component pushes tasks to the CPU and GPU while using container manage-
ment components to pull packaged containers, achieving containerized deployment of
intelligent agent models in large-scale data generation engine components, distributed
continuous learning engine components, and high-performance prediction inference en-
gine components, serving the subsequent parallel sampling and intelligent agent model
update processes.

(2) Scenario loading process

Load scenario scenarios and task conditions are specified by users to form scenario
scenarios and load configuration files containing the aforementioned scenario scenarios to
form the initial training state of the simulation environment and intelligent agent training
cloud platform, which serves as the basis for subsequent parallel deduction.

(38) Parallel Sampling and Agent Model Updating Process in Simulation Environment

The large-scale data generation engine components running in parallel interact with
multiple simulation environments, and high-speed network transmission is achieved
through virtual network management components to obtain simulation situation infor-
mation. After completing the format style conversion from simulation environment data
to input data of the intelligent neural network (including useless data reduction, data
normalization, one hot encoding, etc.), the neural network features are input to the high-
performance prediction and inference engine component, which calculates and outputs
the neural network decision output [25]. After completing the mapping of neural network
decision output to simulation environment instructions, the large-scale data generation
engine component sends specific instructions to the simulation environment. The training
data formed during this process, namely the <State, Action, Reward> triplet data stream,
are input into the training data buffer pool for use by subsequent distributed continuous
learning engine components.

After the formation of training data, the distributed continuous learning engine com-
ponent asynchronously reads the training data buffer pool, where “asynchrony” refers to
the container deployed distributed continuous learning engine component reading data
in real time, rather than waiting for the slowest of training data to arrive and uniformly
read it. The distributed continuous learning engine component calls the reinforcement
learning algorithm, calculates the gradient through the loss function, determines the up-
date direction of the agent neural network, and carries out gradient back propagation
and updates the neural network parameters [26]. During the parameter update process of
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the neural network model, a Ring-All Reduce method is used based on virtual network
management components. After the update is completed, synchronize the neural network
model parameters with the high-performance prediction inference engine component.

During the training process, certain agents, namely the process versions of neural
network models, are stored based on distributed storage components. These intelligent
agent models mainly include three categories:

Main Agent: Refers to the intelligent agent that the user ultimately applies. In this
project, it is a submarine/anti submarine patrol aircraft intelligent agent.

Adversarial Agent: Adversarial agent is the opponent of the main agent, which
enhances the intelligence level of the main agent through self-game. In this project, subma-
rine/anti submarine patrol aircraft are the adversarial agents of each other.

Frozen Agent: Including historical versions of main agents, adversarial agents, and
rule agents provided by users.

The internal interface transmission content during parallel sampling and agent model
updating in the simulation environment is shown in Table 3.

Table 3. Table of internal interface transmission content.

Serial Number

Sender Receiving End Transferring Content

Real-time situational data in simulation

1 Simulation environment Situation input module .
environment
e . . . C d data of intelligent ts i
2 Situation input module Simulation environment ommand cata of Tte gent agents i
simulation environments
3 Situation input module Decision result generation module  Acceptable state information of neural networks
. . e Acceptable instruction formats for simulation
4 Decision result generation module Situation input module P .
environments
<State, Action, Reward> State is the simulation
Large-scale data generation .. environments, action is the training data buffer
5 . Training data buffer pool . . .
engine components pool, reward is the distributed continuous
learning engine components reward
<State, Action, Reward> State is the simulation
.. Distributed continuous learning environments, action is the training data buffer
6 Training data buffer pool . . _ .
engine components pool, reward is the distributed continuous
learning engine components reward
- . . - . . Decision result generation module neural
Distributed continuous learning Distributed continuous learning . .
7 engine components engine components network parameters, updated using Ring-All
8 P 8 P Reduce method
—_ . . High-performance prediction . .
8 Distributed continuous learning &P in ferencep Decision result generation module neural
engine components . network parameters
engine components
- . . - Decision result generation module neural
Distributed continuous learning Distributed storage component
9 network parameters, phased neural network

engine components

(agent model)

model: intelligent agent

5. Conclusions

Given the limitations of digital environments in meeting the generalized training
requirements of combat scenarios, this paper proposes an innovative parametric scenario
training approach and draws the following conclusions.

(1) The training model is designed based on a parameterized environment and incorpo-
rates a feedback loop utilizing a digital environment evaluation model. This allows
for continuous verification of decision-making strategies and assessment of their
transferability.

(2) Experimental tests were conducted to investigate the transfer learning approach from
parametric scenes to physical scenes. This research draws upon foundational theories
such as algorithm migration tasks, virtual self-play, multi-agent virtual self-games,
and league training.
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(3) An internal interface transmission content model was established to facilitate the
transfer of information between different components of the training model.

(4) Utilizing a digital environment as a testing ground significantly enhances the iterative
efficiency of virtual-to-real conversion. Moreover, it offers benefits such as reduced
deployment costs and improved security in virtual-real migration experiments.
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