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Abstract: We propose a method for recognizing fragment objects to model the detailed tearing of
elastic objects like human organs. Traditional methods require high-performance GPUs for real-time
calculations to accurately simulate the detailed fragmentation of rapidly deforming objects or create
random fragments to improve visual effects with minimal computation. The proposed method
utilizes a deep neural network (DNN) to produce physically accurate results without requiring
high-performance GPUs. Physically parameterized material point method (MPM) simulation data
were used to learn small-scale detailed fragments. The tearing process is segmented and learned
based on various training data from different spaces and external forces. The inference algorithm
classifies the fragments from the training data and modifies the deformation gradient using a modifier.
An experiment was conducted to compare the proposed method and the traditional MPM in the
same environment. As a result, it was confirmed that visual fidelity for the tearing of elastic objects
has been improved. This supports the simulation of various incision types in a virtual surgery.

Keywords: elastic object; virtual surgery; material point method; neural network

1. Introduction

Virtual reality (VR) technology is emerging as a solution for training medical profes-
sionals and providing alternative psychological treatments. Virtual surgery, one of the VR
medical technologies, is widely employed as an auxiliary tool for doctors, a learning aid
for medical students, and a training or simulation tool for healthcare professionals. To
deliver virtual surgery experiences that are as realistic as possible, various interdisciplinary
technologies are utilized to accurately depict surgical environments and their intricacies.
Creating a realistic surgical training experience necessitates providing tactile feedback,
resistance, viscosity, and other physical properties of the virtual body. Numerous methods
have been studied to realistically simulate the tearing or deformation processes of complex
elastic objects, including virtual bodies.

To express the realistic deformation and tearing of an elastic object, the mass–spring
method, the linear elasticity-based FEM, and the MPM method were used. The mass–
spring system is one approach to implementing a continuous physical model using discrete
points with mass and virtual springs connecting them [1]. This method can accurately
and quickly represent continuous models unless precise scientific calculations are required.
Mass–spring systems have been employed to simulate one-dimensional or two-dimensional
structures, such as hair [2], cloth [3], and rigid bodies [4], with a limited degree of elasticity.
However, the mass–spring system introduces artificial anisotropy depending on mesh
selection, making it challenging to simulate soft tissue deformation properties accurately.
Additionally, relating spring stability to material properties like Young’s modulus is chal-
lenging. The linear elasticity-based Finite Element Method (FEM) is a simulation technique
for deforming objects based on the assumption of small displacements [5]. While this
method assumes linear deformation, real-world objects become nonlinear as deformations
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increase. Therefore, when large deformations occur or nonlinear transformations like
rotation are applied, this approach yields inaccurate results. To address this, a method was
proposed to modify the precomputed stiffness matrix encompassing an object’s geometric
and physical specifications rather than recalculating the entire matrix [6]. This approach
only updates matrices affecting the object’s deformation, improving efficiency. Felippa
introduced the co-rotational method to enhance deformation results based on the second
issue of linear elasticity-based methods, which assumes small displacements [7]. This
method separates object displacements into rigid body and strained parts, calculating
internal forces using only the strained parts for a more accurate computation of nonlinear
variations, such as rotation. Another method for real-time deformable model representa-
tion is using FEM to compute variations based on an explicit integration scheme [8]. The
advantage of this approach is its reliance on mass matrices for deformation calculations.
Mass lumping can simplify mass matrices into diagonal matrices [9]. Consequently, each
degree of freedom can be independently solved by decomposing the equations of motion,
allowing for an intuitive parallelization and faster equation solving [10]. The explicit inte-
gration method is suitable for real-time simulations involving complex movements, such
as brain deformations, as it can artificially increase mass to simulate different materials [11].
MPM is a hybrid Lagrangian–Eulerian discretization technique for solid mechanics and a
generalization of the FLIP [12] method, and it is commonly used in fluid animation [13].
MPM has found applications in various computer graphics domains, including snow [14],
sand [15,16], foam [17,18], fabrics [19], and solid–fluid mixtures [20,21]. In particular,
Daviet et al. [15] proposed a semi-implicit frictional boundary condition to combine MPM
with rigid bodies. However, separating continuous materials in MPM remains challenging
when using a single deformation gradient field. Wretborn et al. [22] animated MPM crack
propagation [23] by incorporating multiple grids and assuming pre-existing cracks and
pure elastic materials. In the engineering literature, material heterogeneity in MPM is some-
times achieved through explicit front tracking [24], which involves multiple ray-crossing
tests per particle using an explicit mesh. Other approaches use deformation regularization
or material damage [25], similarly to element removal in FEM [26], which can result in
mesh-dependent volume loss and unwanted fragmentation. Gao et al. [27] developed
a spatially adaptive MPM, resolving thin features by locally refining the computational
grid and particles. Moutsanidis et al. [28] modeled strong heterogeneity via the MPM
using a single deformation gradient field, modifying the interpolation function locally
near heterogeneity. An approach tailored to higher-order MPMs was proposed to create a
more accurate and smooth approximation for the MPM. Moustsanidis et al. [29] introduced
the IGA-MPM method, incorporating isogeometric analysis (IGA) into MPM. IGA-MPM
leverages the concept of IGA, based on Non-Uniform Rational B-Splines (NURBS), to
achieve a more precise and smooth approximation for MPM. Additionally, the Barrier
Finite Element Point (BFEMP) method [30] aims to combine MPM and FEM through barrier
energy-based particle–network friction contact using variable timestep formulas. The MPM
has the advantage of simulating tearing, deformations, and collisions in detail but incurs
a high computational cost. A method has been proposed to enhance the visual reality of
basic simulations using additional representations inspired by physics or heuristics. While
a relatively small number of particles can provide the realistic tearing or deformation of a
simple elastic object, there are limitations to simulating objects with complex shapes.

Traditional high-resolution simulation methods demand significant computational
resources, with the most time-consuming and challenging aspect being pressure calculation.
Linear systems, despite the symmetric and positive semidefinite nature of the Laplacian
matrix, typically contain numerous free parameters. As a result, standard iterative solvers
must perform a large number of iterations to minimize errors, with the iteration count
heavily dependent on the data size. With rapid advancements in neural network inference
performance, data-driven models have emerged as a promising alternative. Researchers like
Tang et al. [31] have utilized fully connected networks to regress Green’s function solutions
for 2D Laplacian systems, while Yang et al. [32] employed fully connected networks to
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accelerate 3D smoke simulation by replacing local PCG solutions. These approaches have
achieved impressive speedups in pressure calculation, surpassing traditional methods by
more than tenfold without the need for multithreaded computation. Furthermore, Gao
et al. [33] enhanced these methods for liquid simulations, incorporating properties like
liquid level sets and velocity into their networks to account for differences between smoke
and liquids. Xiao et al. [34] applied CNNs to solve the pressure Poisson equation globally,
making it suitable for large-scale scenes, while Tompson et al. [35] used CNNs to replace
Euler pressure projection by predicting velocity gradients, achieving faster runtimes and
superior accuracy compared to Jacobi’s method and performances that are comparable
to PCG. Kim et al. [36] introduced a novel generative network to accelerate synthetic
fluid simulation using reduced parameters. Wiewel et al. [37] divided input velocity and
density matrices into latent spatial domains, leveraging a subdivided encoder and LSTM
for time predictions in smoke simulations, resulting in significant speed improvements
over traditional solvers. Instead of numerical acceleration, another avenue to enhance
modeling efficiency and accuracy is detail enhancement. Um et al. [38] achieved substantial
reductions in numerical errors in PDE solvers by training artificial neural networks and
differentiable physics solvers. Chu et al. [39] employed twin CNNs to determine whether
high- and low-resolution patches in the database belong to the same part of the fluid.
They then synthesized high-resolution patches into low-resolution images to enhance the
resolution. Xie et al. [40] pioneered the use of GANs for four-dimensional functions to train
mapping relationships from low resolutions to high resolutions, improving the overall
resolution. Xiao et al. [41] presented a fast CNN-based shape correction method that
enables low-resolution previews while maintaining high-resolution fluid shapes. However,
these methods, relying on local information as the network input, may not guarantee
divergence-free conditions. To address this concern, Li et al. [42] proposed an innovative
CNN-based regression model to estimate the physical parameters of Eulerian gas. The
learned parameters guide high-resolution simulations by combining CNN-based velocity
regression. In conclusion, recent years have seen the emergence of many state-of-the-art
data-driven approaches for particle simulation, yielding convincing performances.

Our paper proposes a high-quality tearing simulation with lower computational cost
compared to the traditional MPM. Using physically parameterized MPM simulation data,
we trained a DNN to learn small-scale detailed fragments that tear under external forces.
The trained results are then applied to low-cost GPUs experiencing similar forces, enabling
the generation of physically accurate results without requiring high-performance GPUs.
This enhances the realism of elastic object tearing in virtual environments. A fragment is
defined as a separated region of material that exceeds its elastic limit due to external forces.
Generating sufficient fragments is crucial for enhancing the realism of tearing simulations.
However, due to the complexity of small-scale surface geometry and mechanics, accurate
dispersion from the original object is required for those fragments. We utilize NN to
represent the accurate generation and movement of fragments without requiring high
computational costs. Small-scale fragment formation is learned from physically accurate
simulations to generate realistic fragments even in low-resolution simulations. NN is used
to learn from the parameterized simulations of highly elastic object tearing, and statistical
inference is used to determine whether the result is a fragment. When the fragments are
confirmed, the value of the deformation gradient, which is the main factor in determining
material changes, is obtained through a loss function based on the mean and variance
functions. The determination of fragment existence and the modified deformation gradient
are then integrated into the traditional MPM simulation. The proposed method is tested by
comparing it with the traditional MPM using a model, which is subjected to force on elastic
objects, resulting in fragment generation and movement. Compared to the traditional
MPM, which exhibits fragments with abnormal velocity and rotation due to strong forces
that occur in a short period of time, the proposed method confirms that the speed and
direction of the fragments are stable. As a result, it is determined that the proposed
method successfully recognizes crucial mechanisms related to fragment generation from
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precomputed data, resulting in improved fragments. The proposed method asserts that
this approach provides a solid foundation for learning various real-world physical effects
in virtual environments.

The contributions of this paper are as follows:

• To accurately simulate the tearing process of a force-impacted elastic object, we uti-
lize a hybrid approach using both particles and a grid-based method known as the
MPM technique.

• We propose a DL-based fracture generation method that learns the fractures occurring
during elastic object tearing. This approach allows for the effective simulation of the
destruction process even at low resolutions.

Section 2 describes the fragment determination algorithm and learning process for
generating accurate fragments. To evaluate the effectiveness of the proposed method,
comparative experiments were conducted under conditions similar to the traditional MPM.
Finally, the conclusion is summarized.

2. Materials and Methods

This section describes a data-driven approach to creating realistic fragments of elastic
objects. The main idea is to infer statistics about fragment generation based on data
from parameterized simulations that capture the process of fragment creation in elastic
objects in nature. Our method does not require additional mathematically formulated
parameters, such as a deformation gradient or curvature threshold, to represent the regions
of the destroyed elastic object. It consists of two components, fragment classification and
deformation gradient modification, based on the statistical model and data extracted from
a series of highly detailed and precomputed simulations. Based on features composed
of localized information flow, the classifier predicts whether a specific volume of elastic
objects will be destroyed under force within a given duration. For the classified tearing,
the modifier predicts the future deformation gradient based on the probability distribution
of deformation gradient modifications. It uses NN to represent both components, and the
following section describes the statistical model and its NN approach.

2.1. Elastic Object Simulation Based on Constraints Using MPM

Figure 1 describes the overall workflow of the MPM simulation with NN in the
proposed method. The P2G stage involves transforming particles into grids, while the
G2P stage involves transforming grids back into particles. As the simulation proceeds
with the basic MPM structure, we learn the data of grid i, which is adjacent to particle p
in the P2G stage. The proposed model is designed to infer whether a particle will change
into a damaged state by providing particle information as feature descriptor x ∈ A{f,m}. A
represents the area of the grid where the particle was placed, f is the deformation gradient
that describes the particle’s change, and m is the particle’s mass. The model is trained on a
given dataset composed of particle data X = {x1, x2, ··· xN} and damage determination values
Q = {q1, q2, ····, qN}. The goal of the classifier is to infer the probability Pd that a specific
vector xi belongs to the class represented by qi based on the trained results. Considering
the probability distribution function followed by Pd, the function is approximated from the
given data. The probability distribution yd(xi,wd) is a target function represented by the
weight wd. Weight wd is a degree of freedom value that can be adjusted according to the
data during the learning phase. Pd can be expressed in the form of yd as follows:

Pd(qi|xi) ≈ Pd(qi|yd(xi, wd)) (1)
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Figure 1. The overall workflow of the proposed MPM simulation with NN, which is a process of
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The probability of damage occurring for a given vector can be expressed using the
maximum likelihood equation (MLE) as follows:

Ld(Q|X) =
N

∏
i

Pd(qi|yd(xi, wd)) (2)

To maximize this likelihood, a well-established softmax function was used for the loss
of the classification network. After successfully encoding the given dataset and training
the model, the flow’s positions can be evaluated with new shape vectors, enabling the
prediction of whether the area will be damaged within the given frame.

Based on the inferred data about the damage status, the change in the deformation
gradient of both the original elastic object and the fragments was predicted. ∆f is the
deformation gradient of a damaged elastic object’s particle. This value is modified based
on the particle’s deformation gradient learned from the simulation data. Similarly to the
classifier, the proposed method infers the deformation gradient modification set ∆F = {∆f 1,
∆f 2, ···, ∆fN} based on the feature X. From the training data’s statistics, it was found that
it is reasonable to assume that the deformation gradient modifications follow a normal
distribution relative to the average flow direction. Therefore, the modifier is modeled as
a modification function M(∆fi|xi), which follows a normal distribution with mean µ and
variance σ2.

M(∆ fi|xi) =
e−(∆ fi−µi)

2/2σ2
i

√
2πσ2

(3)

Additionally, the loss function equation for the corresponding deformation gradient
can be expressed as follows:

L(∆F|X) =
∑N

i ∑d
j
(
∆ fi,j − µi

)2/σ2
i + lnσ2

i,j

2
(4)



Electronics 2024, 13, 1340 6 of 11

Equation (4) is based on the mean variance estimation (MVE) formula [43,44]. The
MVE formula estimates the mean and variance, assuming that the error follows a normal
distribution around the mean, instead of directly estimating the target’s mean. µ(xi, wµ)
and σ2(xi, wσ

2) are the target functions approximated by each weight wµ and wσ
2, respec-

tively. The proposed mean and variance functions approximate the two sets of weights by
estimating them to minimize the loss function L for the given data, {X, ∆F}.

The proposed NN model learns about two individual components: classifier and
modifier. While sharing the input data x, the two components learn based on separate
double layers. The output size of the first layer was 1.5 times the input vector, and the
result was connected to the output layer. All outputs of each layer were activated using
a hyperbolic tangent function. To train the NN, a large dataset with target outputs is
needed. The model consists of classification results q, which indicate whether fragments are
formed, and a deformation gradient ∆f, which predicts the trajectory of the fragments. The
number, position, mass, and deformation gradient of particles forming the elastic object as
initial conditions were used to generate training data in the tearing simulation. Then, each
condition’s range was selected to ensure sufficient data generation variability.

2.2. Fragment Detection Algorithm

To train the neural network model illustrated in Figure 1, it is imperative to establish a
dataset comprising training and validation data. This dataset should encompass various
environmental conditions, such as free fall or compression, where deformations lead to the
formation of fragments. To effectively segment these fragments, an algorithm is required.
The criterion for determining the fragments is the continuous number of particles included
in the grid. The breadth-first search (BFS) method is utilized for searching nearby grids
based on a specific grid [45]. While there are advantages to searching for fragments in
the grid in detail, the time complexity can increase up to O(N2) for a grid of size N × N.
Performing this algorithm in a GPU environment can reduce the operation per core d to
O(N2/d). However, since this method fundamentally uses a queue data structure, if the
size of the queue that each thread processes cannot be adjusted, load imbalance may occur
when using it in a GPU. The method proposed in Algorithm 1 utilizes storing the minimum
value in a hash table to enable efficient searching in a GPU environment without causing a
load [46].

Algorithm 1: Fragment detection algorithm

1: procedure searchFragmentParticles():
2: Init grid G
3: for each particle Pi:
4: Hash Table T← (Pi, G index)
5: SetGroupNumber(T)
6: if number of G includes the min fragment =< Pi < max fragment
7: Fragment = Pi
8: end for
9: end procedure

With particle Pi and its corresponding up, down, left, and right coordinates, the
minimum non-zero value of the group was stored in the grid. The grid coordinates were
shifted one by one, and when a continuous non-zero value was discovered, the value of
the continuous group was changed to the minimum value. This was repeated for all the
grids. When searching for particle Pi, if a group larger than the specified minimum area
and smaller than the maximum is found, it is considered a fragment.

3. Experimental Results
3.1. Fragment Movement during Elastic Object Tearing

In this paper, we utilized i9 CPU and RTX 3090 GPU hardware and configured the
experimental environment with 25,000 particles and a grid size of 128 × 128 using the
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Python-based Taichi library. The proposed NN-based fragment generation model easily
integrates into the traditional MPM simulation pipeline. Following the momentum update
step, classification was performed for all particles within the up, down, left, and right range,
including the reference grid. If positive results were generated, the deformation gradient
modification network was evaluated to calculate the mean and variance of the components.
Subsequently, random numbers were generated from the parameterized normal distribu-
tion and used to update the deformation gradient of the new fragments. Fragments with
the applied deformation gradient do not participate in the physical calculations of the MPM
simulation until they collide with another elastic object. As a result, our method reduces
the occurrence of unexpected velocities or rotations of fragments caused by sudden forces.
The experimental results for the mentioned content are presented in Figure 2.
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cutting progress.

Figure 2 shows the results of cutting a 3D organ model. We have observed the
fragments formed when elastic objects with varying degrees of elasticity, ranging from
rubber to gel, are torn. We hypothesized that elastic objects with internal fluids, such as
organs, could also be learned as fragments. To prove this, we created 3D elastic objects with
similar elasticity to organs and compared the results with the traditional MPM method.
(a) shows the initial state where no force is applied to the object, maintaining its shape.
(b) shows the process where cutting begins as force is applied to the object, resembling
the use of a scalpel. The internal fluid within the elastic object is expelled through the
incision. In contrast to organs like the heart, the relatively low internal pressure and the
learned outcome result in minimal ejection. Complete severance is achieved as the incision
progresses from (c) to (d). While the internal pressure remains relatively low, a significant
amount of fluid flows out as the incision widens, causing the exterior of the severed elastic
object to contract. In the case of the traditional MPM, the force applied to the particles
along the x, y, and z axes was excessively high at the moment of fragmentation, resulting in
particles bouncing in all directions despite their mass. By contrast, the proposed method
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suppressed excessive movements based on the learned data and produced the expected
results. When comparing the degree of fragment bouncing to real-life visual media, it
can be observed that the proposed method yields results similar to the traditional MPM,
confirming its superiority. However, the limitation lies in the lack of testing with a variety
of body models, and the failure to make an accurate comparison with real-life objects is
also a limitation.

3.2. Algorithm Execution Time Comparison

Table 1 is a comparison table between the BFS and hash table algorithms, which are
used to determine phenomena occurring in specific areas. As the size of particles and
grids increases, the BFS-based search algorithm for fragment detection takes a long time
to search the queue due to duplicate nodes, resulting in the outcome shown in Table 1.
MPM simulates the deformation of elastic objects based on the movement of individual
particles. The level of detail in animations increases as the size of particles decreases and
the number of particles increases. Since the neural networks learning the particle changes
also scale with detail, the proposed method is highly useful in content such as movies or
games where many elastic objects appear on the screen.

Table 1. Performance comparison of the BFS method and the proposed method.

Algorithm Execution Time (FPS) Training Data Generation Time (FPS)

BFS 794 8.10

Hash Table 1695 17.30

3.3. Simulation Time

Figure 3 is a graph that verifies whether the simulation of the proposed idea causes
any frame difference compared to the traditional MPM. Since the occurrence of fragments
is measured using the data learned based on NN, no additional calculations are required
in the final simulation, and it approaches a stable frame rate of 60 fps. Moreover, since
parallel operations are performed in the GPU environment, there is little change in frames
between cases with 9000 particles and 25,000 particles. When simulating the learned
results, there can sometimes be a significant difference in FPS compared to conventional
simulations due to the learning method or process. Our proposed method has conducted
FPS comparisons in extreme environments ranging from relatively few particles to many
particles, demonstrating superiority over the traditional MPM with differences within 10%.
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9000 particles (left). Comparison with 25,000 particles (right).

4. Conclusions

The method proposed in this paper allows for a more realistic representation of the
tearing of elastic objects through fragment recognition. Typically, high-performance GPUs
are required to achieve this. However, the proposed method utilizes neural networks (NNs)
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to remove movements that cannot be observed in real physical phenomena, eliminating
the need for high-performance GPUs. The proposed method combines MPM simulations
with neural networks to achieve the realistic tearing and fragmentation of elastic objects
like human organs. A key advantage is removing the need for high-performance GPUs
by utilizing efficient algorithms and neural network models. The experimental results
clearly demonstrate the effectiveness of the proposed approach. As evident from Figure 3,
when increasing the number of particles from 9000 to 25,000, the frame rate remained stable
at around 60 and 50 fps for both the traditional MPM and the proposed method. This
highlights the proposed method’s ability to handle complex, high-resolution scenarios
involving a large number of particles without introducing any significant performance
overhead compared to the traditional MPM simulation. The seamless integration of neural
networks for fragment recognition and modification does not adversely impact the real-
time performance, making the proposed technique well suited for virtual surgery and other
applications demanding high fidelity and responsiveness. Moreover, the hash table-based
fragment detection algorithm proved to be 2.14 times faster than the BFS method at gen-
erating the required training data for the neural networks. This efficient data generation
enabled the learning of fragment behaviors across a wide range of materials and conditions.
Furthermore, when an elastic object is destroyed by sudden force, the traditional MPM
expels fragments with strong force. In contrast, the proposed method allows for the control
of unnatural particle scattering and bouncing effects through learning, enabling stable and
physically plausible fragment motions. While our work presents a promising approach
for accurately simulating the tearing process of elastic objects, several limitations and
challenges should be addressed. One notable disadvantage of the proposed method is the
limited discussion of its potential limitations and areas for improvement. Although the
comparative experiments with the traditional MPM demonstrate the superiority of the
proposed method in terms of stable fragment speed and direction, further evaluations using
larger datasets or real-world scenarios would enhance the credibility and generalizability
of the findings. Additional research is also needed regarding the complexity of organ
structures. While organs’ elasticity and shape details can be simulated similarly to previous
studies through tensile experiments and adjusting the number of particles, detailed investi-
gations are required for organs with complex internal structures. For example, in the case
of the heart, there are atria and ventricles, as well as valves between them. Additionally,
pumping for blood supply must also be considered when creating the model.
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