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Abstract: In this article, a fully monolithically integrated GaN power stage with a half-bridge, driver,
level shifter, dead time and voltage mode control for 48 V DC–DC converters is proposed and
analyzed. The design of the GaN IC is presented in detail, and measurements of the single function
blocks and the DC–DC converter up to 48 V are shown. Finally, considerations are given on a life cycle
assessment with regard to the GaN power integration. This GaN power IC or stage demonstrates a
higher level of integration, resulting in a reduced bill of materials and therefore lower climate impact.

Keywords: gallium nitride; power integrated circuits; monolithic integrated circuits; DC–DC converters;
life cycle assessment; environmental factors

1. Introduction

Power stages typically consist of power transistors (which form a topology like a half-
bridge), drivers, control and protection circuity that are used as highly integrated building
blocks to efficiently convert and regulate electrical power in low-voltage subsystems for
data centers, telecommunications infrastructure, automotive or industrial sector, motor or
battery-powered applications.

With the advent and ascent of gallium nitride (GaN) power transistors, these have
been increasingly used in power stages to achieve primarily higher power density and
efficiency [1,2]. In addition, the GaN technology with its lateral transistor structure (known
as high electron mobility transistors, HEMTs) enables the monolithic integration of addi-
tional functions and circuits on a chip to realize cost-effective GaN power ICs [3–6] used
in power converters with a reduced bill of material (BOM) and associated lower relative
climate impact [7].

Commercial 80 V GaN power stages from EPC are already on the market, which
integrate drivers, level shifter, logic and under-voltage lockout (UVLO) in addition to the
half-bridge on a chip [8]. EPC’s portfolio also includes standard monolithic low-voltage
half-bridges [4], and many more are published in different voltage classes (see review in [9])
or also by the authors [10,11]. Furthermore, there is some research in the area of half-bridge
driver integration including a level shifter, for example, in [12–15], and many more without
level shifters. Also, a first control in GaN of the authors in [16] was shown for a half-bridge
power stage.

In this article, a GaN power stage with an integrated half-bridge driver including a
level shifter, dead time and voltage mode control is proposed, which are fully integrated
into one die and thus can be used for highly compact DC–DC converters with reduced
component effort and complexity.

Figure 1 shows the schematic and layout of the GaN power IC. The rest of this article
is organized as follows. Section 2 describes the circuit implementation and operation
of the proposed DC–DC converter system. Section 3 presents the measurement results
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of the prototype chip, and Section 4 discusses consideration on life cycle assessments of
GaN-based power stages. Finally, Section 5 concludes this article.
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Figure 1. GaN power stage for 48 V DC–DC converters consisting of a half-bridge with driver, level
shifter, dead time control and voltage mode control. (a) Schematic and (b) chip photo.

2. Circuit Implementation

Figure 1 shows the top block diagram of the proposed GaN power IC. The power stage
consists of a 48 V half-bridge, gate driver, level shifter, dead time and voltage mode control.
The voltage mode control, in turn, consists of a PWM generator (sawtooth generator with
comparator) and an error amplifier. The ICs are fabricated in a standard p-GaN gate power
IC technology of the Fraunhofer IAF [6] with Si substrate (GaN-on-Si). In this technology,
the heterojunction layers are grown on conductive 4-inch Si carrier substrates, and the
circuits are manufactured in a III-V processing line based on optical stepper lithography.
The total chip area is 3 × 2.5 mm2. The area of the periphery is only 28.6%, while the power
stage (in this case the half-bridge) is 71.4% of the chip area.

2.1. Half-Bridge

The half-bridge (HB) consists of low-side (LS) and high-side (HS) transistors with the
parameter gate width ratio between the gate width of the HS and LS transistor WG,HS/LS
given by: kG = WG,LS/(WG,HS + WG,LS) = WG,LS/WG,TOT. The gate width is proportional to
the chip area and inversely proportional to the on-resistance RON of the power transistor.
The optimal gate width ratio kG,OPT was analyzed and derived in [11], depending on the
duty cycle of a buck converter DC = VOUT/VIN in steady state with continuous conduction
mode (CCM) or critical conduction mode (CRM) only for the conduction losses. The
function is given by [11]:

kG,OPT =

√
DC − DC2 + DC − 1

2DC − 1
(1)

In [17], the optimal on-resistance is calculated including conduction, switching, gate
drive, reverse recovery, output capacitance charge and diode conduction loss with normal-
ized device-specific parameters. If the optimum gate width ratio is calculated on the basis
of the analysis and calculation in [17], this coincides with (1), although only the conduction
losses were considered in the derivation. The realized half-bridge is symmetrical and has
two identical HS/LS transistors. This results in a gate width ratio of 50% optimal for,
e.g., 24-to-12 V conversions.

2.2. Gate Driver and Level Shifter

The gate driver is a single path, three stage with rail-to-rail driving based on bootstrap-
ping. The first stage is a NOT gate (in detail, a direct-coupled FET logic inverter), and the
second stage is a push–pull buffer with another NOT gate extended with a bootstrapping
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circuit consisting of diode and stacked MIM capacitor with approx. 10 pF. At this point,
reference is made to the design guide for monolithically integrated GaN gate drivers [18].
The driver is designed identically for HS and LS, but the HS driver has an additional
protective diode. The first NOT gate stage of the HS driver is used as a level shifter, and
the driver is additionally supplied with a bootstrap circuit, whereby only the bootstrap
diode DBOOT is integrated on the chip (see Figure 1). Further details to the design and a
schematic of the HS driver can be found in [16]. The design of the level shifter is simple,
although there are already more complex ones in GaN [13,15,19–21].

2.3. Dead Time Control

The dead time control is realized by two logic gates (AND and NAND) and stacked
MIM capacitors to design an RC element. The dead time can be further increased by an
external capacitor. Further dead time circuits are realized in [14,22–24].

2.4. Voltage Mode Control

The voltage mode control is based on a PWM generator consisting of a comparator
and a sawtooth generator and an error amplifier with external type III compensation. The
sawtooth generator is a hysteresis comparator with a charging unit. Further details on the
design and a schematic of the sawtooth generator can be found in [16]. An overview of two
sawtooth generators is given in [22]. The comparator consists of a differential stage with a
cross-coupled latch and output stage and is similar to [25].

3. Measurement Results

The GaN IC is soldered in a DIL engineering package and then bonded. The package
is plugged into an adapter located on a DC–DC converter board and is shown in Figure 2.
The PCB is not designed for high power density but to provide a flexible platform for
measuring the GaN IC. The GaN IC was measured step by step, from static to dynamic
characterization of function blocks up to the converter system. Some highlights of the
measurements are shown.
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The static output and breakdown characteristics of the half-bridge are shown in
Figure 3. The on-resistance is 120 mΩ, and the breakdown voltage is >80 V. Next, the HB
driver including the level shifter is characterized with ext. CBOOT = 100 nF. The integrated
stacked MIM capacitors of the bootstrapped NOT gate are increased externally with further
1 nF, which value has not been optimized. Figure 3 shows the supply current of the driver
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IDD,DRV as a function of the switching frequency f SW with a supply voltage VDD of 5/6 V.
The quiescent current is 0.7/0.8 mA (f SW = 0 kHz) and increases proportionally with the
frequency, which is to be expected. This measurement is supplemented by a dynamic
characterization with a constant input voltage VIN and preset PWM signals using an
arbitrary wave generator. Figure 4 shows the measurement of VSW, as well as VGS,HS/LS
with two input voltages of 24 V/48 V and three duty cycles of 10/50/90% at VDD = 6 V,
f SW = 100 kHz, DC = 50%, tDEAD = 100 ns. VGS,HS is not measured directly but calculated
by VG,H-VSW. The high level of VGS,HS is reduced by the voltage drop across the bootstrap
diode DBOOT (see Figure 1) of 1–1.5 V. To achieve acceptable gate overdrive, the supply
voltage is increased to 6 V. The half-bridge driver and level shifter are strongly influenced
and slowed down by the high 2DEG sheet resistance. The driver was tested to 1 MHz and
has a min. input pulse width of 25 ns.
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Figure 3. (a) Output and breakdown characteristic for HS/LS transistor and (b) driver current
IDD,DRV as a function of the switching frequency with VDD = 5/6 V and DC = 50%.
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Figure 4. Switching characterization of the driver (VSW, VPWM,HS/LS) with an input voltage of (a) 24 V
and (b) 48 V at VDD = 6 V, f SW = 100 kHz, and three different duty cycles DC = 10/50/90%.

The next step is the commissioning of the voltage mode control with the dead time
control. The sawtooth carrier signal must be provided by a function generator due to a
layout error on the GaN IC. The supply current is 1.5 mA at VDD = 6 V. All measuring
points are loaded with 3.9 pF by the passive probes. Figure 5 shows a measurement of the
PWM generator with three different frequencies of the carrier signal (50/100/150 kHz) at
the same operating point with the static values VFB = 2.66 V and VREF = 2.95 V. The driving
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strength of the output stage of the comparator is not very high, as it was designed for low
power consumption. In combination with the load of the probes, the rise time of the PWM
signal is limited. This becomes clear from the different positive duty cycles of 23/42/51%
at the same operating point with different carrier signal frequencies. The dead times for the
frequency variation in Figure 5 are: tDEAD,HI = 278/316/326 ns (between the LS turn-off,
HS turn-on) and tDEAD,LO = 202/171/166 ns (between the HS turn-off, LS turn-on). The
output of the dead time logic is also additionally affected by the probes.
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Figure 5. Measurement of the PWM generator and dead time control with the three different carrier
frequencies (a) 50 kHz, (b) 100 kHz, and (c) 150 kHz at the same operating point (VFB = 2.66 V and
VREF = 2.95 V).

Characterization as a synchronous buck converter is shown in Figure 6 without voltage
mode control. The power inductor L has an inductance of 220 µH (component designation:
WE 74437529203221). The input and output capacitance banks each have a value of 6.7 µF
(3 × 2.2 µF + 0.1 µF). Figure 6 shows exemplarily two measurements at 24 V and 48 V input
voltage under the same conditions (VDD = 6 V, f SW = 100 kHz, DC = 50%, tDEAD = 100 ns,
RL = 24 Ω).

Table 1 compares this work to the state-of-the-art DC–DC synchronous buck con-
verter with integrated power stage including a half-bridge, driver and level shifter using
GaN technology.

Table 1. Comparison of GaN-based DC–DC converters with integrated power stage including a
half-bridge, driver, and level shifter.

[13] [14] [15] This Work

Technology GaN-on-Si GaN-on-SOI GaN-on-SOI GaN-on-Si
Int. Dead Time Yes Yes No Yes

Int. Control Yes No No Yes
Die size [mm2] 16.75 - 5.26 1 7.5

Power Supply [mW] 13.8 - - 26.4
Max. VIN [V] 48–400 200 50 80
Max. IOUT [A] 5 10 4 2

Max. POUT [W] 240 223 100 ≈100 2

f SW [MHz] ≤50 0.25–0.5 ≤1 ≤1
ηPEAK [%] 94.5 98.3 96 -

1 Estimated from chip photos, 2 Estimated from IV curve.
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Figure 6. Switching characterization of the DC–DC converter (VIN, VSW, VOUT, VGS,HS/LS, IL) with
an input voltage of (a) 24 V and (b) 48 V at VDD = 6 V, f SW = 100 kHz, and load of 24 Ω.

4. Considerations on Life Cycle Assessment

In the following, three different scenarios of DC–DC converters with different power
stages, listed and visualized in Table 2, are compared, and considerations on life cycle
assessment (LCA) are made. The most important converter parameters are VIN, VOUT, IOUT,
and f SW, which are decisive for the power stage. On the converter side, efficiency is the most
important parameter alongside power density, which depends on the load. In most cases,
however, there are only energy efficiency requirements, e.g., from the EU, for products such
as (uninterruptible) power supply units, servers, computers, etc., but not specifically for
the (auxiliary) DC–DC converters used in them. There are also no weighted efficiencies
as for inverters. Only the Energy Star® defines minimum required efficiencies for DC–DC
converters, e.g., for rated output power ≤ 500 W, 70/82/89/85% (for 10/20/50/100% load
level) [26]. For this reason, the peak efficiency is still a decisive evaluation criterion, and
the load/user/mission profile must be known for detailed analyses.

Nevertheless, there are some figures of merit (FOMs), e.g., RON·A, RON·QG or price·RON
for the power semiconductors/materials used in the power stage. The FOMs for 100 V
devices are listed for the three scenarios. The data are taken from [27]. The conduction
and switching losses can be deduced from these FOMs. What is important for the LCA,
however, is how high the CO2 equivalent (CO2eq) is for a device used. Table 2 lists the
required electricity for semiconductor manufacturing (substrate, front-end of line, and partly
back-end of line), whereby the data are taken from [28,29]. All three technologies (Si MOSFET,
Si BCD/CMOS, GaN) have similar values, whereby the packaging is not taken into account
here and contributes a further significant factor. This value simply has to be multiplied by
the CO2 emission per kWh. In addition, there are various environmental impacts that are
categorized, e.g., climate change, ozone depletion, resource use, etc., and which must be
considered in an LCA [28]. If scenario 2 is realized instead of 1, half of the semiconductor
chip area can be saved and therefore also half of the CO2eq. In addition, the Si MOSFETs
require a package due to the vertical device geometry, which has a negative impact on the
CO2 footprint. Low-voltage GaN HEMTs with their lateral structure, on the other hand,
also enable a chip-scale or flip-chip package solution. The low capacitances of GaN HEMTs
allow a further increase in switching frequency, which miniaturizes the passive components
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and reduces the amount of copper used in the inductor and the PCB size, for example. The
functional integration to the power semiconductors in scenario 3 can further reduce the size
required for packaging and PCB. Thus, monolithic integration in GaN has a positive effect
and can reduce the use of materials and resources as well as the relative climate impact for
more sustainable power stages, which is why 48 V GaN power stages are increasingly being
used in data centers and motor applications like drones.

Table 2. Comparison of DC–DC converters in the context of power devices and their semiconductor
material. The data are taken from [27–29].
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Description Discrete half-bridge with
two Si MOSFETs

Discrete half-bridge with two GaN
HEMTs

Monolithic GaN half-bridge with
opt. int. driver, control, etc.

Control and driving Si BCD/CMOS IC Si BCD/CMOS IC GaN (int. to the GaN half-bridge)

RON·A [mΩ·cm2] @100 V 0.513 0.225 0.225
RON·QG [mΩ·nC] @100 V 288 31.2 31.2
Price RON [€·Ω] @100 V 1.33 × 10−2 1.15 × 10−2 1.15 × 10−2
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1 Included substrate, front-end of line, back-end of line; packaging not included, 2 Back-end of line not included,
3 Yield not included.

5. Conclusions

This article presents a GaN IC with an integrated half-bridge, driver, level shifter,
dead time and PWM generator with error amplifier to realize a voltage mode control. The
half-bridge and driver with level shifter are measured up to an input voltage of 48 V also in
the DC–DC converter application with inductor currents less than 1 A. The driver has a low
quiescent current of less than 1 mA and also features an integrated bootstrap diode. Less
than 1/3 of the chip area of the GaN IC is for the additional periphery of the power stage,
which would usually have to be realized discretely in other technologies. The reduction in
the BOM, PCB area, saving of additional packages, e.g., the driver, reduces the CO2eq and
thus the climate impact.
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