Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications
Abstract
:1. Introduction
2. Antenna Design and Analysis
2.1. Single Antenna Configuration
2.2. Antenna Array Configuration
2.3. MIMO Configuration
3. Results and Discussion
3.1. S-Parameters
3.2. Radiation Characteristics
3.3. MIMO Characteristics
4. Comparison with Previous Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Potter, S.J.; Clayton, D.; Kind-Kovacs, F.; Kuitenbrouwer, V.; Ribeiro, N.; Scales, R.; Stanton, A. The Wireless World: Global Histories of International Radio Broadcasting; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Iriqat, S.; Vatansever, F. Comparison of Reality Types. Uludağ Univ. J. Fac. Eng. 2020, 25, 1155–1168. [Google Scholar] [CrossRef]
- Solyman, A.; Yahya, K. Evolution of Wireless Communication Networks: From 1G to 6G and Future Perspective. Int. J. Electr. Comput. Eng. 2022, 12, 3943. [Google Scholar] [CrossRef]
- Zhou, E.; Cheng, Y.; Chen, F.; Luo, H.; Li, X. Low-Profile High-Gain Wideband Multi-Resonance Microstrip-Fed Slot Antenna with Anisotropic Metasurface. Prog. Electromagn. Res. 2022, 175, 91–104. [Google Scholar] [CrossRef]
- Mendonça, S.; Damásio, B.; Freitas, L.; Oliveira, L.; Cichy, M.; Nicita, A. The Rise of 5G Technologies and Systems: A Quantitative Analysis of Knowledge Production. Telecomm. Policy 2022, 46, 102327. [Google Scholar] [CrossRef]
- Noor, S.K.; Jusoh, M.; Sabapathy, T.; Rambe, A.H.; Vettikalladi, H.; Albishi, A.M.; Himdi, M. A Patch Antenna with Enhanced Gain and Bandwidth for Sub-6 GHz and Sub-7 GHz 5G Wireless Applications. Electronics 2023, 12, 2555. [Google Scholar] [CrossRef]
- Islam, S.; Zada, M.; Yoo, H. Low-Pass Filter Based Integrated 5G Smartphone Antenna for Sub-6-GHz and Mm-Wave Bands. IEEE Trans. Antennas Propag. 2021, 69, 5424–5436. [Google Scholar] [CrossRef]
- Jakhar, J.; Jhajharia, T.; Gupta, B. Asymmetric Flare Shape Patch MIMO Antenna for Millimeter Wave 5G Communication Systems. Prog. Electromagn. Res. C 2023, 136, 75–86. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, A. Dual-Band MIMO Antenna with Compact Self-Decoupled Antenna Pairs for 5G Mobile Applications. IEEE Access 2019, 7, 82288–82296. [Google Scholar] [CrossRef]
- Chattha, H.T. 4-Port 2-Element MIMO Antenna for 5G Portable Applications. IEEE Access 2019, 7, 96516–96520. [Google Scholar] [CrossRef]
- Zheng, Z.; Ntawangaheza, J.D.; Sun, L. Wideband MIMO Antenna System for Sub-6 GHz Cell Phone. In Proceedings of the 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE), Zhengzhou, China, 22–24 January 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Wang, J. Compact High-Isolated MIMO Antenna Module with Chip Capacitive Decoupler for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 928–932. [Google Scholar] [CrossRef]
- Al-Bawri, S.; Islam, M.; Singh, M.; Alyan, E.; Jusoh, M.; Sabapathy, T.; Padmanathan, S.; Hossain, K. Broadband Sub-6GHz Slot-Based MIMO Antenna for 5G NR Bands Mobile Applications. J. Phys. Conf. Ser. 2021, 1962, 12038. [Google Scholar] [CrossRef]
- Addepalli, T.; Kumar, M.S.; Jetti, C.R.; Gollamudi, N.K.; Kumar, B.K.; Kulkarni, J. Fractal Loaded, Novel, and Compact Two- and Eight-Element High Diversity MIMO Antenna for 5G Sub-6 GHz (N77/N78 and N79) and WLAN Applications, Verified with TCM Analysis. Electronics 2023, 12, 952. [Google Scholar] [CrossRef]
- Upadhyaya, T.; Sorathiya, V.; Al-shathri, S.; El-Shafai, W.; Patel, U.; Pandya, K.V.; Armghan, A. Quad-Port MIMO Antenna with High Isolation Characteristics for Sub 6-GHz 5G NR Communication. Sci. Rep. 2023, 13, 19088. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, R.; Chu, F.-C.; Ho, C.-Y.; Wang, C.-C. Advanced Thin-Profile Fan-Out with Beamforming Verification for 5G Wideband Antenna. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 977–982. [Google Scholar] [CrossRef]
- Bangash, K.; Ali, M.M.; Maab, H.; Ahmed, H. Design of a Millimeter Wave Microstrip Patch Antenna and Its Array for 5G Applications. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Malviya, L.; Gupta, P. Millimeter Wave High-Gain Antenna Array for Wireless Applications. IETE J. Res. 2023, 69, 2645–2654. [Google Scholar] [CrossRef]
- Mistri, R.K.; Mahto, S.K.; Singh, A.K.; Sinha, R.; Al-Gburi, A.J.A.; Alghamdi, T.A.H.; Alathbah, M. Quad Element MIMO Antenna for C, X, Ku, and Ka-Band Applications. Sensors 2023, 23, 8563. [Google Scholar] [CrossRef]
- Zambak, M.F.; Al-Bawri, S.S.; Jusoh, M.; Rambe, A.H.; Vettikalladi, H.; Albishi, A.M.; Himdi, M. A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications. Electronics 2023, 12, 2149. [Google Scholar] [CrossRef]
- Nirmal, S.; Kumar, S.; Chandel, R. High Isolation Compact Two Port 5G MIMO Diversity Antenna with Asymmetrical Feed and Partial Ground Structure. Prog. Electromagn. Res. C 2023, 136, 23–36. [Google Scholar] [CrossRef]
- Addepalli, T.; Anitha, V.R. Design and Analysis of a Novel Compact Spanner-Shaped Ultra-Wideband Antenna for MIMO Systems. Int. J. Commun. Syst. 2021, 34, e4739. [Google Scholar] [CrossRef]
- Musaed, A.; Al-Bawri, S.; Abdulkawi, W.; Aljaloud, K.; Yusoff, Z.; Islam, M. High Isolation 16-Port Massive MIMO Antenna Based Negative Index Metamaterial for 5G Mm-Wave Applications. Sci. Rep. 2024, 14, 290. [Google Scholar] [CrossRef]
- Zahra, H.; Awan, W.A.; Ali, W.A.E.; Hussain, N.; Abbas, S.M.; Mukhopadhyay, S. A 28 GHz Broadband Helical Inspired End-Fire Antenna and Its MIMO Configuration for 5G Pattern Diversity Applications. Electronics 2021, 10, 405. [Google Scholar] [CrossRef]
- Baz, A.; Jansari, D.; Lavadiya, S.; Patel, S.K. Miniaturized and High Gain Circularly Slotted 4 × 4 MIMO Antenna with Diversity Performance Analysis for 5G/Wi-Fi/WLAN Wireless Communication Applications. Results Eng. 2023, 20, 101505. [Google Scholar] [CrossRef]
- Dey, S.; Dey, S.; Koul, S.K. Isolation Improvement of MIMO Antenna Using Novel EBG and Hair-Pin Shaped DGS at 5G Millimeter Wave Band. IEEE Access 2021, 9, 162820–162834. [Google Scholar] [CrossRef]
- Pradeep, P.; Jaya Sankar, K.; Paidimarry, C. A Compact Semi-Circular Slot MIMO Antenna with Enhanced Isolation for Sub-6 GHz 5G WLAN Applications. Wirel. Pers. Commun. 2022, 125, 3683–3698. [Google Scholar] [CrossRef]
- Abbas, M.A.; Allam, A.; Gaafar, A.; Elhennawy, H.M.; Sree, M.F.A. Compact UWB MIMO Antenna for 5G Millimeter-Wave Applications. Sensors 2023, 23, 2702. [Google Scholar] [CrossRef] [PubMed]
- Raheel, K.; Ahmad, A.; Khan, S.; Shah, S.A.A.; Ali Shah, I.; Dalarsson, M. Design and Performance Evaluation of Orthogonally Polarized Corporate Feed MIMO Antenna Array for Next-Generation Communication System. IEEE Access 2024, 12, 30382–30397. [Google Scholar] [CrossRef]
- Yamina, T.; Bensid, C.; Sayad, D.; Mekki, S.; Zegadi, R.; Bouknia, M.; Elfergani, I.; Singh, P.; Rodriguez, J.; Zebiri, C. Low-Profile UWB-MIMO Antenna System with Enhanced Isolation Using Parasitic Elements and Metamaterial Integration. Electronics 2023, 12, 4852. [Google Scholar] [CrossRef]
- Tangirala, G.; Garikipati, S.; Meshram, M.; Durbhakula, M.; Sharma, V. Quad Element Luna-Shaped UWB-MIMO Antenna with Improved Isolation and Gain Using Novel Decoupling Networks. Wirel. Netw. 2024, 1–13. [Google Scholar] [CrossRef]
- Shankar Das, G.; Bikash Chamuah, B.; Beria, Y.; Protim Kalita, P.; Buragohain, A. Compact Four Elements SUB-6 GHz MIMO Antenna for 5G Applications. Mater. Today Proc. 2023, in press. [CrossRef]
- Elabd, R.; Al-Gburi, A. Super-Compact 28/38 GHz 4-Port MIMO Antenna Using Metamaterial-Inspired EBG Structure with SAR Analysis for 5G Cellular Devices. J. Infrared Millim. Terahertz Waves 2023, 45, 35–65. [Google Scholar] [CrossRef]
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
Ws | 25.7 | Ls | 50 |
W | 11 | L | 17 |
Wf | 3.5 | Lf | 13.5 |
Wf1 | 1.6 | Lf1 | 12 |
Lg | 22 | Lr | 7 |
Ref. | Bandwidth (GHz) | Antenna Dimensions (mm2) | ECC | Minimum Isolation (dB) | Peak Gain (dBi) |
---|---|---|---|---|---|
[9] | 3.4–3.6, 4.8–5 | 150 × 75 | 0.14 | 17 | 8 |
[10] | 2.7–3.6 | 50 × 100 | 0.009 | 13 | 4.5 |
[11] | 3.3–5.8 | 150 × 75 | 0.03 | 15 | 6 |
[12] | 3.4–3.7 | 145 × 70 | 0.01 | 12 | 5 |
[13] | 2.38–2.7, 3.19–3.84 | 150 × 75 | 0.17 | 10 | 6 |
[14] | 3.3–6 | 72 × 72 | 0.005 | 15 | >2.5 |
[15] | 3.52–3.6, 5.22–5.38 | 90 × 90 | 0.05 | 22 | 4.2 |
Proposed MIMO | 2.1–3.6, 5.9–7.4 | 126 × 63 | 0.0002 | 20 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iriqat, S.; Yenikaya, S.; Secmen, M. Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications. Electronics 2024, 13, 1502. https://doi.org/10.3390/electronics13081502
Iriqat S, Yenikaya S, Secmen M. Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications. Electronics. 2024; 13(8):1502. https://doi.org/10.3390/electronics13081502
Chicago/Turabian StyleIriqat, Sanaa, Sibel Yenikaya, and Mustafa Secmen. 2024. "Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications" Electronics 13, no. 8: 1502. https://doi.org/10.3390/electronics13081502
APA StyleIriqat, S., Yenikaya, S., & Secmen, M. (2024). Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications. Electronics, 13(8), 1502. https://doi.org/10.3390/electronics13081502