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Abstract: To reduce the interference from the electromagnetic force caused by coupling coils due to
distance changes in a wireless power transfer (WPT) system, this paper conducts a theoretical analy-
sis of the factors influencing the electromagnetic force experienced by the receiving coil. Maxwell
electromagnetic simulation is used for modeling and analysis, revealing the trends in the electromag-
netic force exerted on the receiving coil. Based on this analysis, a method is proposed that actively
adjusts the working frequency of WPT to alter the current phases of the transmitting and receiving
coils, thereby regulating the magnitude of the force on the receiving coil. Finally, mechanical tests,
including torque experiments, were conducted to validate the proposed method. The electromagnetic
force on the coil in the microgravity isolation platform of a space station was reduced from 961 µN to
113 µN, a level which plays an important role in improving the microgravity index of the system.

Keywords: wireless power transfer (WPT); electromagnetic force; frequency adjustment; microgravity
isolation platform

1. Introduction

Wireless power transfer (WPT) technology utilizes principles from electrical engineer-
ing, power electronics, and control theory, combining media such as magnetic fields, electric
fields, and microwaves to achieve non-contact transmission of electrical energy [1–4]. This
technology overcomes the limitations of fixed positions in traditional wired power trans-
mission, eliminates the risks associated with friction and electrical contact, and enhances
the flexibility and safety of systems. Currently, WPT has found widespread applications in
electric vehicles, consumer electronics, and the aerospace industry, gradually maturing as
a technology.

The Chinese space station has deployed a number of important scientific facilities,
both inside and outside the modules, to support a wide range of space science experiments,
including space life science and technology, microgravity fluid physics, microgravity com-
bustion science, space materials science, and microgravity fundamental physics [5–8].
Among these, the levitating experiment platform in the high microgravity cabinet is a key
apparatus for creating a high microgravity environment. It isolates various external distur-
bances by controlling its attitude and position through jet propulsion and is equipped with
an electromagnetic levitation experiment platform for installation of scientific payloads.

As shown in Figure 1, the levitating experiment platform adopts a square structure
with a highly integrated design concept. It mainly consists of components such as the
experimental bench main control unit, WPT, MEMS micro-thruster, intermittent gas supply
system, main power line, payload and camera. In order to power the levitating experiment
system, the high microgravity experiment cabinet adopts WPT technology, replacing the
potential hazards associated with traditional umbilical cord power supply processes. The

Electronics 2024, 13, 1568. https://doi.org/10.3390/electronics13081568 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081568
https://doi.org/10.3390/electronics13081568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0573-3903
https://doi.org/10.3390/electronics13081568
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081568?type=check_update&version=2


Electronics 2024, 13, 1568 2 of 16

transmitting coil for WPT is fixed on the high microgravity cabinet, while the receiving
coil is dependent on the levitation device. This configuration enables contactless and
force-free transmission.
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Figure 1. Schematic layout diagram of the levitating experiment platform.

The WPT technology operates on the principle of electromagnetic induction, enabling
the levitation device to draw energy from the induced current within the transmitting coil.
However, during the process of electric power transmission, the high-frequency alternating
magnetic field generated by the transmitting coil can interfere with the receiving coil,
creating electromagnetic-force disturbances. This interference poses a significant challenge,
especially for the suspension device inside the high-precision experiment cabinet, which
requires an extremely stringent mechanical testing environment. Therefore, employing
WPT technology to energize the levitation device within the high microgravity experiment
cabinet also generates the influence of electromagnetic-force.

In order to define the microgravity requirements of the space-science experimental
payloads, the vibration isolation performance requirements of the experimental payload
platform are shown in Table 1. The actuator of the controlled platform needs to generate
sufficient main power in time to suppress the vibration of its platform.

Table 1. The parameters of experimental payloads.

Project MAIS Ultra Microgravity
Experiment Payloads

Output
(After Control)

Noise 45 mN
umbilical cable 0 ∼ 500 µN Null

Max output force 250 mN Null 0 ∼ 800 µN
Load weight ≥12 kg ≥45 kg ≥45 kg
Load power ≥20 W ≥85 W ≥85 W

Free path ≥10× 10 mm ≥30× 30 mm ≥50× 50 mm

At present, in the field of WPT, the focus has predominantly been on harnessing
electromagnetic-forces for various applications, with comparatively limited emphasis on
mitigating electromagnetic-force interference.

Studies in the literature [9,10] propose a design scheme for miniature robots based
on WPT technology. By adjusting the size of the receiving coil capacitor, the intensity and
direction of electromagnetic-force can be precisely controlled, thereby achieving precise
control of the robot’s steering and speed. The team further suggests the use of interleaved
DC coils to power the miniature robot [11,12], controlling the thrust generated by the
miniature robot by adjusting the current in the external DC power coil. Study [13] achieves
simultaneous control by electromagnetic-force of multiple robots by using the frequency
splitting phenomenon. By setting the operating frequency of the receiving coil to the
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splitting frequency of the transmitting coil, it is possible to independently control the motion
of each miniature robot. Additionally, by adjusting the parameters of the transmitting coil,
the number of miniature robots can be increased or decreased. Studies [14,15] use finite
element methods to analyze and calculate the uniformity of the magnetic field generated
by the Helmholtz coil or Maxwell coil used, successfully achieving control over the motion
direction of the receiving robots and reducing motion errors by using position feedback.
Studies [16–19] propose a structural electromagnetic-force smoothing method based on
phase difference control. By adjusting the adjustable branch inductance connected in series
with a certain branch of the transmitting coil, control over the phase of the current flowing
through the coupled coil is achieved. Studies [20,21] propose a method of using a closed
magnetic core instead of two open magnetic cores, converting the original electromagnetic
attractive force between the two cores into an internal force, and thereby eliminating the
influence of an external electromagnetic attraction force.

The present study aims to mitigate the impact of electromagnetic-force on the receiving
coil. Theoretical analysis of the coil’s force situation is conducted to identify the primary
factors influencing the magnitude of the electromagnetic-force. Finally, a method is pro-
posed to control the electromagnetic-force on the receiving coil by real-time adjustment of
the switching frequency. Through simulation and experimentation, it is found that effective
control of the electromagnetic-force on the receiving coil is achieved when the transmission
distance varies. This validates the correctness of the proposed concept and establishes
a theoretical basis and experimental evidence for the application of WPT technology in
space stations.

2. Calculation and Analysis of Electromagnetic Forces in Coupling Coils

As mentioned above, the electromagnetic-force on the current-carrying conductor is
generated due to the interaction between the magnetic field and the electric current. In
order to study the electromagnetic-force characteristics of the coupled coils in WPT systems,
the current characteristics of the system are analyzed deeply. Figure 2 shows the mutual
inductance model of a loosely coupled transformer.
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Figure 2. Series–series compensated topology of the WPT system. 

Figure 2 illustrates the most basic series–series compensated topology of the WPT 
system, in which 𝑈𝑈ab represents the voltage across the terminals of the transmitting coil, 
𝑀𝑀 is the mutual inductance between the two coils, 𝑅𝑅eq is the load, 𝐼𝐼p and 𝐼𝐼s are the ef-
fective values of the currents in the transmitting and receiving coils, 𝑅𝑅p and 𝑅𝑅s are the 
internal resistances of the two coils, 𝐿𝐿p and 𝐿𝐿s are the self-inductances of the transmit-
ting and receiving coils, 𝐶𝐶p and 𝐶𝐶s are the compensation capacitors for the transmitting 
and receiving coils and 𝜔𝜔 is the switching angular frequency of the inverter. 

According to the Kirchhoff’s Voltage Law (KVL) equation, 

Figure 2. Series–series compensated topology of the WPT system.

Figure 2 illustrates the most basic series–series compensated topology of the WPT
system, in which Uab represents the voltage across the terminals of the transmitting coil,
M is the mutual inductance between the two coils, Req is the load, Ip and Is are the
effective values of the currents in the transmitting and receiving coils, Rp and Rs are the
internal resistances of the two coils, Lp and Ls are the self-inductances of the transmitting
and receiving coils, Cp and Cs are the compensation capacitors for the transmitting and
receiving coils and ω is the switching angular frequency of the inverter.

According to the Kirchhoff’s Voltage Law (KVL) equation,
(

Rp + jωLp + 1
jωCp

)
Ip − jωMIs = Uab(

Req+Rs + jωLs +
1

jωCs

)
Is − jωMIp = 0

(1)
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The current Is in the receiving coil is obtained as follows:

Is =
jωM(

Req+Rs + jωLs +
1

jωCs

) Ip (2)

Is = Ip
ωM√(

Rs + Req
)2

+

(
ωLs − 1

ωCs

)2
∠ ϕ (3)

ϕ = tan−1 ωLs − 1
ωCs

Rs + Req
(4)

where ϕ is the phase difference between ip and is.
It is assumed that

ip = Ipsin ωt (5)

is = Issin(ωt + ϕ) (6)

The magnetic force [22] between the two current-carrying coils can be derived from
the general expression for their mutual inductance:

F = Ip Ip
∂M
∂ZQ

(7)

where ZQ is the generalized coordinate. The magnetic force has only an axial component
because the coils are coaxial. We will begin with the current element of the receiving coil.

The amperage force F of the current element isd
→
l on the coil Ls is

dF = isd
→
l ×

→
Bp = isrsd

(
φ·→e φ

)
×
→
Bp (8)

→
Bp represents the electromagnetic induction intensity at the location of the current element,
rs is the radius of the receiving coil and φ is the angular radian of the current element.

Using cylindrical coordinates, the vector
→
Bp is decomposed as follows:

→
Bp = Bz

→
e z + Bρ

→
e ρ + Bφ

→
e φ (9)

Then,
dF = isrsd

(
φ·→e φ

)
×
(

Bz
→
e z + Bρ

→
e ρ + Bφ

→
e φ

)
(10)

where Bz, Bρ, Bφ,
→
e z,
→
e ρ,

→
e φ is the column coordinate decomposition of electromagnetic

induction and φ radian, respectively.
Since the current is in the direction φ, Bφ = 0.

dF = isrsd
(

φ·→e φ

)
×
(

Bz
→
e z + Bρ

→
e ρ

)
= isrsBzd

(
φ·→e ρ

)
− isrsBρd(φ·ez) (11)

Among them,

Fρ =
∮

isrsBzd
(

φ·→e ρ

)
(12)

Fz =
∮

isrsBρd
(

φ·→e z

)
= 2πisrsBρ (13)

The magnetic induction intensity of the location of the Bρ current element is stimulated
by the current of the sending end.

Because of
B = µH (14)
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∇× H = J +
∂D
∂t

(15)

B is produced by Ip, and they have the same phase.
Therefore,

Bρ = B·sin ωt (16)

The electromagnetic-force of the receiving coil is obtained as follows.

Fz = 2πisrsBρ = 2πrsBIssin(ωt + ϕ)sin ωt = πrsBIs[cos ϕ− cos(2ωt + ϕ)] (17)

The electromagnetic-force on the receiving end of the multi-turn coil is

Fz = Fz_dc − Fz_ac (18)

where

Fz_ac =
NπrsωMIpBcos(2ωt + ϕ)√(
Rs + Req

)2
+

(
ωLs − 1

ωCs

)2
(19)

Fz_dc =
NπrsωMIpBcosϕ√(

Rs + Req
)2

+

(
ωLs − 1

ωCs

)2
(20)

According to the above formula, the electromagnetic-force on the receiving coil consists
of high-frequency alternating-current force Fz_ac and direct-current bias force Fz_dc. The
high-frequency alternating-current force does not contribute propulsion to the coupling
mechanism, while the direct-current bias force is non-cancelable and exerts a persistent
influence on the coupling mechanism. In order to mitigate the impact of electromagnetic
interference on the levitator system, the study focuses solely on the research of the direct-
current bias force Fz_dc.

3. Active Regulation Methods for Electromagnetic Force

Assume that the frequency of the resonant cavity at the receiver is fs, the switching
frequency of the system is f , and the transmission distance is h.

According to Equation (20), the electromagnetic-force Fz_dc is mainly affected by the
current Ip in the transmitting coil, mutual inductance M, operating angular frequency ω,
and the phase difference ϕ between the currents. The phase difference ϕ directly determines
the magnitude and direction of the electromagnetic-force.

The levitation system’s free-drifting state leads to changes in the relative positions of the
receiving and transmitting coils, which affects the resonant relationship of the coupling coil. In
this case, the current phase difference ϕ 6= 90◦, resulting in electromagnetic-force interference.

The specific rationale is as follows:

(1) When h is kept at the rated position,

f = fs (21)

The receiving end exhibits purely resistive characteristics, and the current phase difference
ϕ = 90◦, cosϕ = 0 and the electromagnetic-force (Fz_dc = 0) on the receiving coil is zero.
Consequently, there is no static force between the two coils.

(2) When h increases,
h ↑→ Ls ↓→ fs ↑ (22)

Then,
f < fs (23)
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At this time, the receiving end exhibits capacitive characteristics, and the current
phase difference ϕ > 90◦, leading to cosϕ < 0. The electromagnetic-force Fz_dc < 0 on the
receiving coil, resulting in an attractive force between the two coils.

If the fixed frequency operating mode is adopted, the receiving end will be drawn
closer until a repulsive force is generated. In ideal conditions, it would undergo oscillations
back and forth until equilibrium is reached at f = fs. However, in reality, interference may
cause the equilibrium point to deviate. Additionally, during the attraction process, the
proximity may lead to overvoltage protection in the subsequent DC/DC stage.

If a variable frequency operating mode is adopted, as the transmission distance
increases, the operating frequency is reduced to adjust the magnitude of the current phase
difference ϕ, maintaining it near 90◦. This ensures that the electromagnetic-force on the
receiving end is minimized.

(3) When h decreases,
h ↓→ Ls ↑→ fs ↓ (24)

Then,
f > fs (25)

At this time, the receiving end exhibits inductive characteristics, and the current phase
difference ϕ < 90◦, leading to cosϕ > 0. The electromagnetic-force Fz_dc > 0 on the
receiving coil, resulting in a repulsive force between the two coils.

If the fixed frequency operating mode is adopted, the receiving end will be pushed
away until an attractive force is generated. In ideal conditions, it would oscillate back and
forth until equilibrium is reached at f = fs. However, in reality, interference may cause the
equilibrium point to deviate. Additionally, during the repulsion process, the distance may
become too great, leading to power loss.

If a variable frequency operating mode is adopted, as the transmission distance
decreases, the operating frequency is increased to adjust the magnitude of the current phase
difference ϕ, maintaining it around 90◦. This ensures that the electromagnetic-force on the
receiving end is minimized.

Figure 3 is a flowchart of frequency control. When the transmission distance changes,
adjusting the system’s switching frequency alters the phase difference ϕ to minimize the
electromagnetic-force on the receiving coil. To measure the position changes of the receiving
coil, three sets of laser ranging sensors are employed. Each set measures one degree of
freedom of the coil’s position, providing changes in the coil’s motion along the x, y and z
axes. The position data obtained from the receiving laser displacement sensor provides the
position x, y, z of the coil during motion.
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Figure 4 below illustrates the frequency tracking control diagram for WPT. The fre-
quency tracking adjustment system mainly consists of laser ranging sensors, current sam-
pling circuits, zero-crossing comparators, DPLL (digital phase-locked loop), and driver
circuits. The specific implementation process is as described in the following.
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Figure 4. Frequency tracking control diagram.

The laser ranging sensor continuously detects the position of the receiving coil in
real time and sends the collected position information to the FPGA to adjust the system’s
operating frequency. The current-sensing circuit continuously samples the current ip
flowing through the transmitting coil. Subsequently, this current is processed by zero-
crossing comparison circuits to generate square wave signals uab that are in phase and
frequency with ip. The DPLL compares uab with the feedback-driven signal u0, generating a
driving logic signal at the same frequency as uab. Finally, this driving logic signal enters the
driver circuit to produce four-channel PWM waveforms to control the switching transistors.

The paper adopts a frequency tracking control method based on a PI-controlled digital
phase-locked loop (DPLL). To facilitate the study and determination of the impact of the
proportional KP and integral KI parameters of the internal loop filter of the PI-control digital
phase-locked loop on frequency adjustment, it is necessary to establish its mathematical
model. Figure 5 illustrates the flowchart of the mathematical model of the PI-controlled
digital phase-locked loop.
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where 𝐾𝐾P and 𝐾𝐾I represent the proportional and integral coefficients of the loop filter, 
respectively. 

Near the lock frequency point, the transfer function of the voltage-controlled oscilla-
tor (VCO) equals the rate of change of the output phase 𝜃𝜃o(𝑠𝑠) with respect to its input 
division ratio 𝑁𝑁 . Therefore, the transfer function of the frequency divider can be ex-
pressed as 

𝜇𝜇dco(𝑠𝑠) =
𝜕𝜕𝜃𝜃o
𝜕𝜕𝑁𝑁

= −
𝑁𝑁𝑓𝑓clk
𝑁𝑁2𝑠𝑠

 (28) 

Therefore, the transfer function of the system near the lock frequency point can be 
obtained as follows: 
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2𝑁𝑁2
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Figure 5. Mathematical model of the PI-controlled phase-locked loop.

In the diagram above, θi(s) denotes the phase of the input signal ui, while θo(s)
represents the phase of the output signal uo. Additionally, Hdpd(s), Hdlf(s), and Hdco(s)
correspond to the transfer functions of the phase detector, loop filter, and voltage-controlled
oscillator (VCO), respectively.

Hdpd(s) =
fclk

2π f
(26)

where fclk represents the system clock frequency, and f denotes the frequency of the input signal.
The transfer function of a loop filter with proportional and integral characteristics,

essentially a PI controller, can be represented as follows:

Hdlf(s) = KP +
KI f

s
(27)

where KP and KI represent the proportional and integral coefficients of the loop filter,
respectively.
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Near the lock frequency point, the transfer function of the voltage-controlled oscillator
(VCO) equals the rate of change of the output phase θo(s) with respect to its input division
ratio N. Therefore, the transfer function of the frequency divider can be expressed as

Hdco(s) =
∂θo

∂N
= −π fclk

N2s
(28)

Therefore, the transfer function of the system near the lock frequency point can be
obtained as follows:

HDPLL(s) =

KP f 2
clk

2N2 f s + KI f 2
clk

2N2

s2 +
KP f 2

clk
2N2 f s + KI f 2

clk
2N2

(29)

In the local dynamic model, when the input signal varies around the lock frequency
point such that f ≈ fo ≈ fclk/2N, the transfer function can be simplified as

HDPLL(s) =
2KP fi·s + 2KI f 2

s2 + 2KP fi·s + 2KI f 2 (30)

From Equation (30), it can be observed that the system is a typical second-order system.
According to the general form of a second-order system transfer function, the damping
ratio ξ and natural frequency ωc of the system can be obtained as follows:

ωc =
KP√
2KI

(31)

ξ =
√

2KI fi (32)

With f = 100 kHz as the assumed input signal frequency, the dynamic performance
of the DPLL solely depends on the parameters KP and KI of the loop filter when the input
signal is constant. The impacts of different values of KP and KI on the system performance
are illustrated in Figure 6.
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When KI is constant, a larger KP leads to better system stability and faster locking
speed. According to Equation (31), an excessively large KP results in a large damping ratio.
According to Equation (32), the natural angular frequency remains constant in this case.
Therefore, an excessively large KP makes the system overly sensitive to noise in the input
signal. When KP is constant, a larger KI leads to faster system response, but the stability
margin decreases. According to Equation (31), an excessively large KI results in a small
damping ratio, leading to excessive overshoot in the system.

According to the analysis above, when the phase error is large, a larger KP should be
chosen, while KI should be kept relatively small. Preliminary phase adjustment is mainly
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achieved by the proportional element, which both ensures response speed and avoids
excessive overshoot. When the phase error is small, a smaller KP should be chosen, while
KI should be larger. This ensures quick elimination of the steady-state error introduced by
the proportional element after preliminary phase adjustment.

Figure 7 shows the curves depicting the variation of the phase difference ϕ and
electromagnetic-force Fz_dc with the switching frequency f . It can be seen from the
figure that when the changing range of switching frequency is ∇ f = ±10 kHz, the
electromagnetic-force of the receiving coil is in a generally monotonic state. Moreover,
during this range, the system’s power transfer meets the required specifications.
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Figure 7. Curve depicting the variation of the phase difference ϕ with the switching frequency f .

Therefore, to control the impact of electromagnetic-forces on the receiving coil, the
objective can be achieved by adjusting the working frequency.

4. Simulation and Experimental Verification

Through modeling and simulation, we analyze the influence of each parameter on the
electromagnetic-force Fz_dc.

4.1. Simulation Analysis

In order to illustrate the influence of electromagnetic-force generated in the receiving
coil during WPT, 3D modeling of the transmitting and receiving coils was conducted using
ANSYS Maxwell 2021 R2 finite element software. The coil model is shown in Figure 8a,
and the outer circuit of the coil is shown in Figure 8b.
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Figure 8. Simulation model. (a) Coil model; (b) External circuit.

The simulation emulates the actual circuit, and the parameters for the simulation setup
are listed in Table 2, below. Ip represents the peak current of the transmitting coil, and the
coil material is copper.

Table 2. Simulation model parameters.

Coil Input Excitation
(A)

Outside Diameter
(mm) Number of Turns

Transmitting Ip·sin(2πωt) 190 10
Receiving External circuit 190 15
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The simulation procedure consisted of three stages: (1) A 3D field simulation was
performed to find the magnetic field distribution and induced voltage. (2) The induced
secondary current was simulated using the circuit simulator in consideration of the WPT
circuit and the switching frequency was adjusted to the maximum current of the receiving
coil. (3) The propulsion forces were simulated using a 3D field solver, again based on the
induced current from the circuit simulation and incident magnetic field from the primary
coil Lp.

The simulation was configured with Ip set to 20 A and a switching frequency of
100 kHz. The variables being scanned are h and L, where h represents the axial separation
at the coil’s center along the Z-axis, and L represents the eccentricity along the X-axis.

Figure 9a,b, respectively, show the variation curves of the electromagnetic-force expe-
rienced by the receiving coil under different transmission distances and eccentricities. From
Figure 9a, it can be observed that as the transmission distance increases, the induced current
in the receiving coil gradually decreases, leading to a reduction in the electromagnetic-
force. The farther the transmission distance, the less electromagnetic-force interference.
In Figure 9b, when there is a lateral displacement in the receiving coil, the change in
electromagnetic-force is relatively small.
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Figure 10 indicates that the frequency of the electromagnetic-force on the receiving
coil is twice that of the current’s frequency.
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From Figure 11, it can be observed that at a fixed switching frequency, the electromagnetic-
force experienced by the receiving coil gradually decreases to zero as the transmission
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distance increases, and then gradually increases. However, when operating in variable
frequency mode, as the transmission distance changes, the electromagnetic-force expe-
rienced on the receiving coil under different switching frequencies evinces a zero-point
phenomenon, that is, the electromagnetic-force is zero.
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In Figure 12, when the receiving coil undergoes lateral displacement, the electromagnetic-
force it experiences remains at the µN level. As the eccentricity approaches the system’s
switching frequency, the electromagnetic-force caused by eccentricity becomes smaller.
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In summary, by adjusting the switching frequency f of WPT, the interference of
the electromagnetic-force on the receiving coil can be effectively reduced, so that the
electromagnetic-force can be kept at the order of µN.

4.2. Experimental Verification

In order to verify the influence of electromagnetic-force on the receiving coil, a mechan-
ical torsion test was conducted in the Microgravity Laboratory of the Chinese Academy of
Sciences. The experimental device is shown in Figure 13.

Testing was conducted using a torsion balance and a laser rangefinder, with the testing
precision reaching the level of 10−7 m. To reduce the high-frequency internal resistance
caused by the skin effect in the coil, Litz wire winding was employed in the coupler’s coil.
Since the highest quality factor Q was measured at the resonant frequency of 100 kHz, the
matching capacitance for both the transmitting and receiving coils was tuned to 100 kHz.
In order to enhance the efficiency of WPT and achieve soft-switching characteristics, the
operating frequency was set slightly higher than the resonant frequency.
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The detailed parameters of the coil are provided in Table 3.

Table 3. Parameters of a WPT coil.

Parameter Primary Coil Secondary Coil

Diameter 190 mm 190 mm
Turns of coil 10 15

Weight 0.21 kg 0.33 kg
Self-inductance 23.462 µH 53.288 µH

Mutual inductance
h = 10 mm
h = 20 mm
h = 30 mm

16.9 µH
13.02 µH
9.44 µH

(1) The magnitude of electromagnetic force on the receiving coil at different positions

In Figure 14a,b, it can be observed that at a transmission distance of 10 mm, the
electromagnetic-force on the receiving coil is repulsive, and the electromagnetic-force Fz_dc
is about −387 µN, with a switching frequency of 109.6 kHz. When the eccentricity is
10 mm, the electromagnetic-force is about −480 µN, and the system’s switching frequency
is 108.6 kHz.

In Figure 14c,d, it can be observed that at a transmission distance of 20 mm, the
electromagnetic-force on the receiving coil is repulsive, and the electromagnetic-force Fz_dc
is about −113 µN, with a switching frequency of 101.3 kHz. When the eccentricity is
10 mm, the electromagnetic-force is about −143 µN, and the system’s switching frequency
is 98.6 kHz.

In Figure 14e,f, it can be observed that at a transmission distance of 30 mm, the
electromagnetic-force on the receiving coil is attractive, and the electromagnetic-force
Fz_dc is about 148 µN, with a switching frequency of 91.7 kHz. When the eccentricity is
10 mm, the electromagnetic-force is about 162 µN, and the system’s switching frequency is
90.8 kHz.

Table 4 presents a comparison between simulation-based and experimental data as to
the electromagnetic-force magnitude exerted on the receiving coil at various positions.

Due to the presence of magnetic shielding materials around the coupled coils, as well
as the influence of circuit boards and mounting metal surfaces, the electromagnetic-force
is further affected. Additionally, there may be errors in the actual transmission distance
h measured using laser rangefinder sensors. Therefore, there will be slight differences
between simulation and experimentation.
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Figure 14. The magnitude of the electromagnetic force on the receiving coil at different transmission
distances. (a) h = 10 mm, L = 0 mm; (b) h = 10 mm, L = 10 mm; (c) h = 20 mm, L = 0 mm;
(d) h = 20 mm, L = 10 mm; (e) h = 30 mm, L = 0 mm; (f) h = 30 mm, L = 10 mm.

Table 4. Simulation-based and experimental results.

Position Simulation Experimental

L (mm) h (mm) Fz_dc (µN) f (kHz) Fz_dc (µN) f (kHz)

0
10 −318 110 −387 109.6
20 −45 100 −113 101.3
30 119 90 148 91.7

10
10 −469 110 −480 108.6
20 −130 100 −143 98.6
30 154 90 162 90.8

In the coaxial scenario, when the transmission distance h is minimal, the electromagnetic-
force exerted on the receiving coil is at its maximum and repulsive. At this point, the
system’s switching frequency is also at its maximum value. As h increases, the repulsive
force on the receiving coil decreases until, at a certain position, the receiving coil is no
longer affected by electromagnetic-force, and the phase difference is 90◦. At this point, the
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switching frequency of the switches is at the rated value. As h is further increased, the
electromagnetic-force on the receiving coil becomes attractive, and the greater h becomes,
the more the attractive force increases. When the transmission distance reaches its maxi-
mum, the attractive force on the receiving coil also reaches its maximum, and the system’s
switching frequency is minimized.

When the transmission distance is fixed, any deviation in the x or y direction by the
receiving coil results in an increase in the electromagnetic-force exerted on it, causing a
slight decrease in the system’s switching frequency. As the transmission distance increases,
the impact of the deviation on the electromagnetic-force diminishes.

In summary, when the levitator is in free drift, adjusting the system’s switching
frequency f ensures that the electromagnetic-force interference on the receiving coil is less
than 500 µN, meeting the experimental requirements of space science.

(2) Power and efficiency curves

The experiment was conducted in the levitation laboratory. The test results of WPT
under the full-load conditions are shown in Figure 15, when the transmission distance is
10 mm, the transmission power of the system is 98 W; when the transmission distance is
30 mm, the output power is 85 W. The system demonstrated a maximum efficiency of 78%,
meeting the power supply requirements of the levitation system.
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5. Discussion

To mitigate the electromagnetic-force interference within the high-microgravity exper-
imental cabinet during WPT, the research described utilizes adjustments to the system’s
switching frequency to control the magnitude and direction of the electromagnetic-force.
However, it is noted that further discussion is required regarding the effectiveness of this
method, based on theoretical analysis and experimental findings.

(1) Otherness

Compared to the method of adjusting the capacitance of the receiving coil, as described
in [10], this paper’s approach of adjusting the system’s switching frequency enables real-
time control of the magnitude and direction of the electromagnetic-force on the receiving
coil. This effectively avoids the need for real-time changes to the resonant capacitance of
the receiving end, thus enhancing the system’s flexibility. Although the research described
in [20] reduces the electromagnetic-force on the receiving coil to zero, it does not fulfill
other requirements of the space-based high-precision experimental cabinet.

(2) Limitations

Small variations in transmission distance directly affect the magnitude and direction of
the electromagnetic-force, imposing strict requirements on the measurement of the receiving
coil’s position. The more accurately the transmission distance is measured, the more
precise the control of the magnitude and direction of the electromagnetic-force, resulting
in smaller errors. Additionally, as the transmission distance increases, it is necessary to
reduce the switching frequency, leading to a decrease in the overall transmission power
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and efficiency of the system. Therefore, this method is suitable for scenarios in which
the transmission distance varies within the range of millimeters and where there are no
stringent requirements on power and transmission efficiency.

(3) Future research direction

WPT is a current research hotspot and has found wide application in many fields.
Research related to this technology primarily focuses on improving transmission power
and efficiency. However, studies on the electromagnetic-force interference generated during
WPT are relatively scarce. It is worth contemplating and researching how to reduce the
impact on surrounding electronic devices during the power supply process.

6. Conclusions

In order to reduce electromagnetic-force interference caused by the free drift of the
receiving coil in WPT systems, this paper proposes a method of adjusting the switching
frequency to control the magnitude and direction of the electromagnetic-force on the
receiving coil. When the transmission distance changes, the actual transmission distance is
measured using a laser ranging sensor, and the system’s switching frequency is dynamically
adjusted, effectively reducing the impact of the electromagnetic-force on the receiving coil.
Experimental results demonstrate that as the transmission distance changes from 10 mm
to 30 mm, the system’s switching frequency changes from 109.6 kHz to 90.8 kHz, and the
electromagnetic-force on the receiving coil changes from−387 µN to 148 µN. Therefore, the
feasibility of the control method has been verified through simulation and experiment, and
the influence of the electromagnetic-force can meet the requirements of a high-microgravity
experimental cabinet, which lays a theoretical and experimental basis for the application of
WPT technology in space stations.
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