Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Theory of Convolutional Neural Networks
2.1.1. Convolutional Layer
2.1.2. Pooling Layer
2.1.3. Fully Connected Layer
2.1.4. Decision Layer
2.2. Fault Diagnosis Method Based on EAIP-CNN
2.2.1. Construction of Equal-Angle Integer-Period Array
2.2.2. Properties of Angle Cycle Array in the Process of CNN
3. Implementation of Uniform Angle Sampling and Experiment Setup
4. Experiment Results and Analysis
4.1. Fault Diagnosis Results
4.2. Process of Adaptive Feature Extraction
- (1)
- In T1, T3, and T7, the feature distribution of normal samples appears relatively uniform, sporadically exhibiting substantial feature values, while the localized maxima are notably pronounced in the damaged states.
- (2)
- A quasi-complementary relationship between different states is apparent in images T2 and T5. Normal samples display a higher occurrence of maximal feature values in T2.
- (3)
- The outer-race fault (ORF) feature map reveals prominent vertical stripes, indicating that larger feature values are concentrated around corresponding angular positions.
- (4)
- Ball fault (BF) samples exhibit localized maxima in regions near the left side in T1, T2, T3, T7, and T8. T5 and T6 reveal distinct horizontal stripe patterns.
4.3. Comparison Analysis with Different Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault Diagnosis and Fault-Tolerant Control of PMSM Drives-State of the Art and Future Challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Attoui, I.; Fergani, N.; Boutasseta, N.; Oudjani, B.; Deliou, A. A new time-frequency method for identification and classification of ball bearing faults. J. Sound Vib. 2017, 397, 241–265. [Google Scholar] [CrossRef]
- Burda, E.A.; Zusman, G.V.; Kudryavtseva, I.S.; Naumenko, A.P. An Overview of Vibration Analysis Techniques for the Fault Diagnostics of Rolling Bearings in Machinery. Shock. Vib. 2022, 2022, 6136231. [Google Scholar] [CrossRef]
- Cui, L.L.; Jin, Z.; Huang, J.F.; Wang, H.Q. Fault Severity Classification and Size Estimation for Ball Bearings Based on Vibration Mechanism. IEEE Access 2019, 7, 56107–56116. [Google Scholar] [CrossRef]
- Heng, A.; Zhang, S.; Tan, A.C.C.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and opportunities. Mech. Syst. Signal Process. 2009, 23, 724–739. [Google Scholar] [CrossRef]
- Hou, J.J.; Lu, X.K.; Zhong, Y.D.; He, W.B.; Zhao, D.F.; Zhou, F. A comprehensive review of mechanical fault diagnosis methods based on convolutional neural network. J. Vibroeng. 2024, 26, 44–65. [Google Scholar] [CrossRef]
- Patil, M.S.; Mathew, J.; RajendraKumar, P.K. Bearing signature analysis as a medium for fault detection: A review. J. Tribol. 2008, 130, 014001. [Google Scholar] [CrossRef]
- Yin, S.; Ding, S.X.; Xie, X.C.; Luo, H. A Review on Basic Data-Driven Approaches for Industrial Process Monitoring. IEEE Trans. Ind. Electron. 2014, 61, 6418–6428. [Google Scholar] [CrossRef]
- Farooq, U.; Ademola, M.; Shaalan, A. Comparative Analysis of Machine Learning Models for Predictive Maintenance of Ball Bearing Systems. Electronics 2024, 13, 438. [Google Scholar] [CrossRef]
- Ao, H.; Cheng, J.S.; Yang, Y.; Truong, T.K. The support vector machine parameter optimization method based on artificial chemical reaction optimization algorithm and its application to roller bearing fault diagnosis. J. Vib. Control 2015, 21, 2434–2445. [Google Scholar] [CrossRef]
- Liu, F.; Shang, Z.W.; Gao, M.S.; Li, W.X.; Pan, C.L. Bearing failure diagnosis at time-varying speed based on adaptive clustered fractional Gabor transform. Meas. Sci. Technol. 2023, 34, 095002. [Google Scholar] [CrossRef]
- Jiao, R.; Li, S.; Ding, Z.X.; Yang, L.; Wang, G. Fault diagnosis of rolling bearing based on BP neural network with fractional order gradient descent. J. Vib. Control 2023. [Google Scholar] [CrossRef]
- Lei, Y.G.; He, Z.J.; Zi, Y.Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 2009, 36, 9941–9948. [Google Scholar] [CrossRef]
- Merainani, B.; Rahmoune, C.; Benazzouz, D.; Ould-Bouamama, B. A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network. J. Vib. Control 2018, 24, 2512–2531. [Google Scholar] [CrossRef]
- Satish, B.; Sarma, N.D.R. A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 12–16 June 2005; Volume 2293, pp. 2291–2294. [Google Scholar]
- Zhang, L.; Xiong, G.L.; Liu, H.S.; Zou, H.J.; Guo, W.Z. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- de Almeida, L.F.; Bizarria, J.W.P.; Bizarria, F.C.P.; Mathias, M.H. Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron. J. Vib. Control 2015, 21, 3456–3464. [Google Scholar] [CrossRef]
- Khajavi, M.N.; Keshtan, M.N. Intelligent fault classification of rolling bearings using neural network and discrete wavelet transform. J. Vibroeng. 2014, 16, 761–769. [Google Scholar]
- Li, Y.B.; Xu, M.Q.; Wang, R.X.; Huang, W.H. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 2016, 360, 277–299. [Google Scholar] [CrossRef]
- Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing Health Monitoring Based on Hilbert–Huang Transform, Support Vector Machine, and Regression. IEEE Trans. Instrum. Meas. 2015, 64, 52–62. [Google Scholar] [CrossRef]
- Wang, Y.J.; Kang, S.Q.; Jiang, Y.C.; Yang, G.X.; Song, L.X.; Mikulovich, V.I. Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine. Mech. Syst. Signal Process. 2012, 29, 404–414. [Google Scholar] [CrossRef]
- Kou, Z.M.; Yang, F.; Wu, J.; Li, T.Y. Application of ICEEMDAN Energy Entropy and AFSA-SVM for Fault Diagnosis of Hoist Sheave Bearing. Entropy 2020, 22, 1347. [Google Scholar] [CrossRef]
- Yiakopoulos, C.T.; Gryllias, K.C.; Antoniadis, I.A. Rolling element bearing fault detection in industrial environments based on a-means clustering approach. Expert Syst. Appl. 2011, 38, 2888–2911. [Google Scholar] [CrossRef]
- Jing, T.; Azarian, M.H.; Pecht, M. Rolling element bearing fault detection using density-based clustering. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Spokane, WA, USA, 22–25 June 2014; pp. 1–7. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Yan, R.Q.; Chen, Z.H.; Mao, K.Z.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Jing, L.Y.; Zhao, M.; Li, P.; Xu, X.Q. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 2017, 111, 1–10. [Google Scholar] [CrossRef]
- Luczak, D. Machine Fault Diagnosis through Vibration Analysis: Continuous Wavelet Transform with Complex Morlet Wavelet and Time-Frequency RGB Image Recognition via Convolutional Neural Network. Electronics 2024, 13, 452. [Google Scholar] [CrossRef]
- Shao, H.D.; Jiang, H.K.; Zhang, H.Z.; Duan, W.J.; Liang, T.C.; Wu, S.P. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech. Syst. Signal Process. 2018, 100, 743–765. [Google Scholar] [CrossRef]
- Shao, H.D.; Jiang, H.K.; Zhang, H.Z.; Liang, T.C. Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief Network. IEEE Trans. Ind. Electron. 2018, 65, 2727–2736. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, H.G.; Shao, H.D.; Duan, W.J.; Wu, S.P. An adaptive deep convolutional neural network for rolling bearing fault diagnosis. Meas. Sci. Technol. 2017, 28, 095005. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing 2020, 417, 36–63. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.Y.; Gao, L.; Zhang, Y.Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion. IEEE Trans. Instrum. Meas. 2020, 69, 3325–3333. [Google Scholar] [CrossRef]
- Wang, H.Q.; Li, S.; Song, L.Y.; Cui, L.L. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals. Comput. Ind. 2019, 105, 182–190. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox Fault Identification and Classification with Convolutional Neural Networks. Shock. Vib. 2015, 2015, 390134. [Google Scholar] [CrossRef]
- Bahmani, M.H.; Esmaeili Shayan, M.; Fioriti, D. Assessing electric vehicles behavior in power networks: A non-stationary discrete Markov chain approach. Electr. Power Syst. Res. 2024, 229, 110106. [Google Scholar] [CrossRef]
- Shayan, M.E.; Najafi, G.; Ghobadian, B.; Gorjian, S.; Mamat, R.; Ghazali, M.F. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renew. Energy 2022, 201, 179–189. [Google Scholar] [CrossRef]
- Li, L.; Hu, H.L.; Qin, Y.; Tang, K.H. Digital Approach to Rotational Speed Measurement Using an Electrostatic Sensor. Sensors 2019, 19, 2540. [Google Scholar] [CrossRef]
- Li, L.; Hu, H.; Tang, K. A specially-designed electrostatic sensor for the condition monitoring of rolling bearings. Meas. Sci. Technol. 2021, 32, 035110. [Google Scholar] [CrossRef]
Parameter | Rotational Speed/rpm | Number of Sampling Points within One Cycle | Number of Cycles for Sampling | Number of Datasets |
---|---|---|---|---|
value | 1800 | 256 | 128 | 180 |
Classification Results | Recall Rate/% | ||||
---|---|---|---|---|---|
NR | ORF | IRF | BF | ||
30 sets of NR data | 30 | 0 | 0 | 0 | 100 |
30 sets of ORF data | 0 | 30 | 0 | 0 | 100 |
30 sets of IRF data | 0 | 0 | 28 | 2 | 93.33 |
30 sets of BF data | 0 | 0 | 1 | 29 | 96.67 |
Accuracy Pi% | 100 | 100 | 96.55 | 93.55 | A = 97.5% |
Layer | Operation | Zero Fill | Step Length | Output Data Dimension |
---|---|---|---|---|
Input | / | / | / | [120 256 1] |
Convolution 1 | 16@[9 9 1] | [4 4 4 4] | 1 | [120 256 16] |
Pooling 1 | Max pooling 4 × 4 | [0 0 0 0] | 4 | [30 64 16] |
Convolution 2 | 8@[5 5 16] | [2 2 2 2] | 1 | [30 64 8] |
Pooling 2 | Max pooling 2 × 2 | [0 0 0 0] | 2 | [15 32 8] |
Convolution 3 | 4@[3 3 8] | [1 1 1 1] | 1 | [15 32 4] |
Pooling 3 | Max pooling 2 × 2 | [0 0 0 0] | 2 | [7 16 4] |
Full connection | / | / | / | 448 |
Layer | Operation | Zero Fill | Step Length | Output Data Dimension |
---|---|---|---|---|
Input | / | / | / | [96 320 1] |
Convolution 1 | 16@[9 9 1] | [4 4 4 4] | 1 | [96 320 16] |
Pooling 1 | Max pooling 4 × 4 | [0 0 0 0] | 4 | [24 80 16] |
Convolution 2 | 8@[5 5 16] | [2 2 2 2] | 1 | [24 80 8] |
Pooling 2 | Max pooling 2 × 2 | [0 0 0 0] | 2 | [12 40 8] |
Convolution 3 | 4@[3 3 8] | [1 1 1 1] | 1 | [12 40 4] |
Pooling 3 | Max pooling 2 × 2 | [0 0 0 0] | 2 | [6 20 4] |
Full connection | / | / | / | 480 |
Model | Data Input Dimension | Accuracy/% |
---|---|---|
ACA-CNN | Equal-angle integer-period array 128 × 256 | 97.5 |
ACA-CNN for comparison | Equal-angle integer-period array 120 × 256 | 95.0 |
CNN | Normal permutation 96 × 320 | 87.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yuan, X.; Zhang, F.; Chen, C. Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network. Electronics 2024, 13, 1576. https://doi.org/10.3390/electronics13081576
Li L, Yuan X, Zhang F, Chen C. Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network. Electronics. 2024; 13(8):1576. https://doi.org/10.3390/electronics13081576
Chicago/Turabian StyleLi, Lin, Xiaoxi Yuan, Feng Zhang, and Chaobo Chen. 2024. "Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network" Electronics 13, no. 8: 1576. https://doi.org/10.3390/electronics13081576
APA StyleLi, L., Yuan, X., Zhang, F., & Chen, C. (2024). Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network. Electronics, 13(8), 1576. https://doi.org/10.3390/electronics13081576