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Abstract: Lexical semantic changes spanning centuries can reveal the complicated developing pro‑
cess of language and social culture. In recent years, natural language processing (NLP)methods have
been applied in this field to provide insight into the diachronic frequency change for word senses
from large‑scale historical corpus, for instance, analyzing which senses appear, increase, or decrease
at which times. However, there is still a lack of Chinese diachronic corpus and dataset in this field to
support supervised learning and text mining, and at the method level, few existing works analyze
the Chinese semantic changes at the level of morpheme. This paper constructs a diachronic Chinese
dataset for semantic tracking applications spanning 3000 years and extends the existing framework
to the level of Chinese characters and morphemes, which contains four main steps of contextual
sense representation, sense identification, morpheme sense mining, and diachronic semantic change
representation. The experiment shows the effectiveness of our method in each step. Finally, in an
interesting statistic, we discover the strong positive correlation of frequency and changing trend be‑
tween monosyllabic word sense and the corresponding morpheme.

Keywords: diachronic semantic tracking; lexical sense; morpheme

1. Introduction
Lexical meaning constantly changes over time, reflecting the complicated developing

process of language and social culture [1]. For example, in the Shang and Zhou dynas‑
ties (1000 BC), the original meaning of the Chinese character “师” means “army”. Later, it
emerged a new meaning of “an official position specifically responsible for people’s edu‑
cation”, and then it derived the meaning of “teacher”, which is the widest sense at present.

Tracking the lexical semantic changes spanning centuries, such as analyzing which
senses are stable andwhich senses appear, increase, or decrease atwhich times, contributes
to research in the fields of historical linguistics, philology, history, dictionary compilation,
and so on. It can also be applied for natural language processing (NLP) and retrieval
systems, for instance, automatically discovering semantic change of a word, providing
visualization analysis for diachronic lexical semantics, enhancing the retrieval or recom‑
mendation of the historical resource by considering the lexical meanings, etc. However,
how to extract diachronic lexical semantic knowledge from historical documents is a prob‑
lem. There are large numbers of historical documents preserved in human history, and
there are certain differences between ancient and modern languages. It relies on a large
amount of manual labor and expert experience to explore large‑scale historical materials
and determine the meaning of the target word in each context, and this kind of investi‑
gation is limited because it is impossible to cover all of the historical documents through
manual work.
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In recent years, NLP and a large historical corpus have promoted the development
of automated methods in this field. The large‑scale pre‑trained language model such as
BERT [2] can capture complex contextual features and give differentiated representations
to the target word in different contexts. Based on this deep contextualization representa‑
tion, diachronic sensemodeling is introduced in recentworks, which assigns differentiated
embedding to each sense of the target word rather than representing the word as a single
vector at each time period, and the model can represent the frequency distribution change
of these senses in a fine‑grained, smooth, and interpretable way [3].

However, there are still some problems that should be solved for semantic tracking
of the Chinese language spanning a long historical period. Most works typically consider
words as the smallest semantic unit. Unlike the “word” in Indo–European languages, the
Chinese character is the semantic unit naturally formed during the origin of the Chinese
language, which can be applied as a mono‑syllabic word or a morpheme to compose poly‑
syllabic compound words. Therefore, mining the semantic changes of Chinese characters
from the perspective of morphemes is significant for exploring the development of the
Chinese language over centuries. In addition, there is currently a lack of authoritative di‑
achronic Chinese datasets for supervised training and semantic tracking. Although the
pre‑trained language models have learned general contextual semantic information, they
are not yet able to identify senses accurately. An effective way is to fine‑tune themodel fur‑
ther through supervised learning to make similar senses closer in high‑dimensional space
and distinguish different ones.

Focused on the above problems, we construct a data resource for Chinese semantic
tracking. It includes a sense‑context dataset, which contains words (including Chinese
characters), senses, and contexts with time stage annotation, and a Chinese historical liter‑
ature corpus for sense tracking. In addition, we expand the semantic tracking framework
of work [3], it contains four main steps: contextual sense representation, sense identifica‑
tion, morpheme sense mining, and diachronic semantic change representation. Contex‑
tual sense representation and morpheme sense mining are innovative works in this paper.
More specifically, at the contextual sense representation step, we train a contextual sense
representation model using a sense‑context dataset. Then, the model is used for sense
identification and morpheme sense mining tasks, which identify the sense for each lexi‑
cal token in contexts of the Chinese historical literature corpus and discover the character
senses that can be applied to morphemes. Finally, the last step provides smooth frequency
distribution representations for each sense from the two levels of monosyllabic words
and morphemes. The framework can be applied to other languages; however, the mor‑
pheme sense mining is only designed for Chinese. For other languages, it cannot analyze
the information related to morpheme senses, while other functions are the same as those
of Chinese.

The results of the experiment showed that our model performs better for sense identi‑
fication andmorpheme sense mining than the original BERTmodel. The accuracy of sense
identification was improved from 55.08% to 74.19%, and the F1 score for morpheme sense
mining was improved from 59.21% to 75.14%. We also give a visualization and analysis
case of the semantic change in Chinese characters over centuries. Finally, as an interest‑
ing analysis of language development, we give the statistical conclusions observed from
semantic tracking of 100 common Chinese characters, discovering the strong positive cor‑
relation of diachronic frequency distribution changes between monosyllabic words and
corresponding morphemes.

The contributions of this paper include the following:
1. Constructing a resource for Chinese lexical semantic tracking, which includes a sense‑

context dataset and a Chinese historical literature corpus;
2. Extending the existing lexical semantic tracking framework from the perspective of

morphemes;
3. Proposing and training a contextual sense representation model for sense identifica‑

tion and morpheme sense mining tasks;
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4. Discovering strong positive correlations of frequency distribution and diachronic
change between monosyllabic word sense and corresponding morpheme sense.
This paper consists of the following sections: Section 2 will introduce the related

knowledge of Chinese words, characters, and morphemes. Section 3 will introduce the
related works. Section 4 will introduce our framework and method, including the con‑
textual sense representation model, sense identification, morpheme sense mining, and di‑
achronic semantic change representation, as well as the datasets we constructed. Section 5
is the evaluation of our method, which will show the experiments and results, and we will
also give a semantic tracking visualization case. Section 6 will analyze the correlations
of frequency distribution and diachronic change between monosyllabic words and corre‑
sponding morphemes. Section 7 is the discussion of the results. Section 8 is the conclusion
of the whole work.

2. Introduction of Word, Chinese Character, Sense, and Morpheme
Wewill briefly introduce the concepts of words, Chinese characters, senses, and mor‑

phemes that are related to our research.
Word: A word is the smallest sentence‑making unit composed of morphemes. In this

paper, we simplistically classify the Chinese word into two kinds: monosyllabic word and
compoundword. Amonosyllabicword is composed of oneChinese character; for instance,
“师” is a monosyllabic word, and one of the meanings is “teacher”. The compound word
is composed of more than one Chinese character; for instance, the compound word “教师
(teacher)” is composed of two characters: “教 (educate)” and “师 (teacher)”. According to
our statistics on the 256,293 compound words from the Chinese dictionary, 85% (217,967)
of them consist of two characters, 6.7% (17,148) of them consist of three characters, and
7.8% (20,016) of them consist of four characters.

Sense: A sense is the meaning of a word, and one word can have multiple senses.
Chinese character: A Chinese character is the recording symbol in Chinese. From the

perspective of expressing meanings, a Chinese character can be seen as a monosyllabic
word (e.g., the monosyllabic word “师”). It can also be seen as a morpheme, for example,
the compound word “教师 (teacher)” is composed of two morphemes: “教 (educate)” and
“师 (teacher)”.

Morpheme: A morpheme is the minimal meaningful language unit in a word. For
example, the English word “teacher” is composed of morphemes “tech” and “er”. In Chi‑
nese, most morphemes are represented by a single Chinese character. In general, the sense
of the compound words is similar or related to the sense of their morphemes.

The semantics of Chinese characters are highly correlated to the evolution of the Chi‑
nese language and the entire history and culture. In ancient times, the Chinese character
(monosyllabic word) was the smallest semantic unit naturally created during the origin of
the Chinese language; with the development of society and the increase of cognitive con‑
cepts, polysyllabic compound words were created due to the unsustainable expansion of
characters, which can be directly composed of existing characters (morphemes). From the
above introduction, the expression or usage pattern of the semantics of Chinese characters
can be naturally and clearly divided into two types: used as a monosyllabic word or used
as a morpheme to compose other compoundwords. Each sense of Chinese characters may
be applied to both two patterns or tend to one of them, and the situation changes over time.
For example, in the modern age, many characters can no longer be directly used as mono‑
syllabic words in their certain senses, which does not mean that these senses have been
lost—they may still be preserved in morphemes. Therefore, it is necessary to introduce
the concept of morphemes into the semantic tracking framework of Chinese characters.

3. State of the Art
Themost relevant research to our work is lexical semantic change detection (LSCD) in

the NLP field. Most scholars currently use parametric distributional models, particularly
prediction‑based contextual embedding algorithms, to represent the semantic features of
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words. By calculating the distance of word embeddings between different times, experts
can understand the basics of semantic change. The word representation can be divided
into static embeddings and contextualized embeddings [4]. Static models depend on a
strong simplification: a single representation is sufficient to model the different meanings
of aword. Contextualized approaches can give differentiated representations for oneword
in different contexts.

Most static models, such as skip‑gram with negative sampling (SGNS) and continu‑
ous bag‑of‑words (CBOW) [5], are shallow neural language models. Kim et al. [6] first
used SGNS to track diachronic semantic changes. They chronologically trained the model
by initializing word vectors for subsequent years with the word vectors obtained from pre‑
vious years. Hamilton et al. [7] independently trained word embeddings in different time
intervals and aligned them to quantify semantic changes and reveal statistical laws of se‑
mantic evolution. Rosenfeld and Erk [8] built the first diachronic distributional model that
represents time as a continuous variable and uses word representations as a function of the
time vector. Yin et al. [9] developed a continuous diachronic distributional model based on
the global anchor method for quantifying linguistic shifts and domain adaptation. Kaiser
et al. [10] point out that the representations are strongly influenced by the size of training
corpora, and they use simple pre‑ and postprocessing techniques to improve the embed‑
dings. However, it is well known that word semantics can be represented with a range
of senses, but static models can only assign one embedding representation for each word.
Static models can model the coarse‑grained semantics of a word from one time to another
but cannot represent each sense at a fine‑grained level. Some works made extensions of
the SGNS model to learn sense‑specific embeddings to solve this problem [11,12].

Recently, an increase in large‑scale pre‑trained language models, e.g., BERT, has at‑
tracted considerable attention in the field of NLP, which is fine‑tuned with just one addi‑
tional output layer and achieves state‑of‑the‑art results for a wide range of tasks [2]. These
models can ideally capture complex characteristics of word use and how they vary across
linguistic contexts to provide contextualized representations for words. Hu et al. [3] first
used BERT to represent fine‑grained word senses, and they also proposed a framework
based on deep contextualization embeddings to deeply detect changes in word senses.
Work [13] follows their framework and applies it to Chinese lexical semantic tracking. In
particular, they constructed a corpus for word sense disambiguation for Chinese, which
is similar to our work. Giulianelli et al. [4] presented the first unsupervised approach for
lexical semantic change that makes use of BERT word representations. Kurtyigit et al. [14]
demonstrated that both static and contextualized models can successfully be applied to
discover new words that are changing meaning. Laicher et al. [15] considerably improved
BERT’s performance by reducing the influence of orthography on the target word while
keeping the rest of the input in its natural form. Teodorescu et al. [16] proposed a novel
approach based on framing lexical semantic change detection as aWSD problem, and they
utilized the XLM‑RoBERTa model [17]. Rosin et al. [18] proposed a temporal contextual
language model called TempoBERT, which uses time as an additional context of texts to
enhance the performance of semantic change detection. Cassotti et al. [19] proposed a
pre‑trained bi‑encoder model on a large‑scale dataset for the word to obtain comparable
lexical‑based representations.

Other related works focus on mining specific lexical changes, such as discovering
novel senses, which are usually based on clustering, topic modeling, and network ap‑
proaches. Cook et al. [20] detected novel senses by comparing a reference corpus and a
focus corpus with topic modeling. Mitra et al. [21] identified the sense birth, death, join,
and split based on clustering of a co‑occurrence graph. Tahmasebi and Risse [22] induced
word senses and tracked their changes based on a curvature clustering algorithm. Jana
et al. [23] detected the words evolved with a novel sense from a corpus from two differ‑
ent time periods based on network features and a support vector machine (SVM) classi‑
fier. The work [24] proposed a scalable method for contextual embeddings clustering that
generates interpretable representations. Giulianelli et al. [25] automatically generated nat‑
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ural language definitions of contextualized word usages as interpretable word and word
sense representations.

According to the investigation, themajority of existingworkswere designed for Indo–
European languages, especially English. One of the challenges is to extend existing meth‑
ods to other languages. One problem is the lack of data resources for this task; the scale
of existing resources should be further extended to cover more words and senses. On the
other hand, the semantics of Chinese characters and morphemes are also valuable and
have not been considered in existing research. At the method level, the accuracy, author‑
ity, and interpretability at the sense level are more important for our work, so we extend
the framework of paper [3], which constructed a contextualized model to represent each
sense, and tracked the fine‑grained semantic changes in a smooth process.

4. Materials and Methods
We will introduce our framework and method in five parts: dataset construction

(Section 4.1), contextual sense representation model (Section 4.2), sense identification
(Section 4.3), morpheme sense mining (Section 4.4), and diachronic semantic change rep‑
resentation (Section 4.5). The framework process is shown in Figure 1.
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Figure 1. Framework of semantic tracking of a Chinese character, taking the Chinese character “师”
as an example. It contains four steps: (1) contextual sense representation model training using the
sense‑context dataset; (2) realizing sense identification based on themodel, mapping the target word
in the contexts into the corresponding sense label; (3) realizing themorpheme sensemining based on
the model, matching the character sense with the corresponding compound word senses; (4) seman‑
tic change representation, providing smooth frequency distribution representations for each sense
according to the results from step 2 and step 3.

Firstly, we construct a sense‑context dataset based on authoritative Chinese dictionar‑
ies and train a contextual sense representationmodel, which can extract contextual features
of the word (character), making the embeddings of senses with similar meanings close
in space.
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Then, given a Chinese character to be analyzed (“师” in Figure 1), we retrieve all the
contexts containing the target character in a large‑scale historical literature corpus and per‑
form sense identification and morpheme sense mining based on the contextual sense rep‑
resentationmodel. The purpose of the sense identification task is to select the correct sense
for the target character (word) in a context from the set of candidate senses provided by the
sense‑context dataset. For instance, in Figure 1, the Chinese character “师” has three can‑
didate senses: “army; troop”, “teacher”, and “a respectful title for a monk, nun, or Taoist”,
and “army; troop” is the correct sense for the character which is in the context “…九国之师,
逡巡而不敢进….” (“the army of the nine countries hesitated and dared not advanced”).

The morpheme sense mining task aims to answer which senses of the target character
(which is used as a morpheme) can be used in compound words and what senses of com‑
poundwords are composed by it. In this work, we called the senses of the target character,
which can be used in a group of compound words to participate in composing their mean‑
ings, “morpheme sense”. Therefore, the main process of this task is to match each sense
of the target character to the candidate senses of its compound words. For instance, the
three morpheme senses of “师” (“army; troop”; “teacher”; “a respectful title for a monk,
nun, or Taoist”) in Figure 1 can be, respectively, matched to the senses of compoundwords
of “出师” (dispatch troops to fight), “教师” (a person who teaches skills), and “大师” (an
honorific title for a Buddhist).

Finally, for each sense of the target character, after identifying all the corresponding
tokens in the contexts of the corpus and finding all related senses of compound words,
we can represent and visualize the diachronic frequency distribution of the sense in two
perspectives of monosyllabic word and morphemes. The details will be introduced in
Sections 4.1–4.5.

4.1. Dataset Construction
We build a sense‑context dataset and a historical literature corpus from an authorita‑

tive dictionary and an open historical database, respectively, used for model training and
semantic tracking.

4.1.1. Diachronic Chinese Sense‑Context Dataset
The diachronic Chinese sense‑context dataset has 10 information tags as follows:

1. Context: One context of the target word, usually one sentence;
2. Time stage: The time stage of the context. We divide time intervals by relatively

broad Chinese dynasties because dynasty is the most direct and important basis for
dividing Chinese historical stages, including politics, life, culture, language, and so
on. Although the change nodes in language are not entirely consistent with dynas‑
ties, the more fine‑grained time division is hard to define, and the exact years of the
majority of ancient documents are no longer traceable, which makes it hard to realize
automatic annotation. The time ranges in this work divided by dynasties are shown
in Figure 2;

3. Author: The author of the context;
4. Title: The name of the literary work from which the context is from;
5. Word position: The position index of the target word in the context;
6. Word ID: The identifier code of the word;
7. Word: The target word in the context. It can be a monosyllabic word (character) or a

compound word;
8. Sense ID: The identifier code of the sense for the target word in the context;
9. Sense gloss: The definition of the sense;
10. Sense number: The number of the sense that the target word has.
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descriptive words unrelated to the meaning. This is because we find that most of the
sense definitions in the dictionary are short, within 8 characters and two sentences,
and for those long contexts, only the first few sentences are the interpretation of
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3. We aligned the same sense from different resources according to the cosine similar‑
ity of definitions. If the similarity score was up to 0.85, we considered them as the
same sense;

4. We annotated the dynasty for each document based on their author and title informa‑
tion by automatically searching Baidu Baike [26].
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4.1.2. Chinese Historical Literature Corpus
The historical literature corpus includes documents and their historical dynasty. This

corpus is extracted from the Daizhige corpus [27], which has a scale of over 2 billion
characters and covers documents passed down throughout the Chinese historical period,
including various categories such as poetry, novels, essays, dramas, etc. We also anno‑
tated the dynasty for each document by automatically searching Baidu Baike [26]. After
deleting the duplicate documents and those that failed to find the dynasty, we obtained
4569 documents distributed throughout various dynasties, with a total of 4.13 GB.

4.2. Contextual Senses Representation Model
In this work, we define contextual sense representation as the token embedding for

the target character (or compound word) in a certain context. Although the BERT model
has already learned several general semantic features from the pre‑trained procedure, to
give better contextual sense representations to distinguish different sensesmore accurately,
we fine‑tune the BERTmodel under theWSD task using a sense‑context dataset. More for‑
mally, given a character (or compound word) w and context c, a WSD system is a function
f such that f (w, c) = s subject to s ∈ Sw, where Sw is the set of all possible candidate senses
of w.

This work utilizes a jointly optimized bi‑encoder model to import the information in
the sense‑context dataset to improve the contextual sense representation. The architecture
of the model is shown in Figure 4. Here, we trained a single model to cover all dynasties
rather than separate models for each period. This is because the pre‑trained transformer
model, such as BERT, has the ability to distinguish semantic features of contexts from dif‑
ferent eras, and the costs of time and space for training multiple models are much more
than the single one.
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Figure 4. Architecture of the bi‑encoder contextual senses representation model in this work.

The bi‑encoder architecture independently encodes contexts and sense glosses. Each
of the two models is initialized with BERT, which has 12 layers, 768 hidden units, and
12 heads. In this work, we use the bert‑ancient‑Chinese model [28], which was acquired
by further training on the large‑scale corpus of ancient Chinese literature from Google’s
bert‑base‑Chinese [29] model to make it more suitable for processing ancient Chinese. The
training of the BERT model is on the Masked Language Model (MLM) and Next Sentence
Prediction (NSP), which are the two unsupervised pre‑training tasks.

The input of the context encoder is c = [CLS], w1, . . . wi, . . . , wn, [SEP], where w1
to wn are n characters in the context c; wi is the target character to be predicted; [CLS] and
[SEP] are BERT‑specific start and end symbols [2]. In our model, wi is randomly replaced
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with a [MASK] symbol in a certain proportion to conceal the information of the character
and enable the model to better predict the sense based on the context. We take the corre‑
sponding output of wi in the final layer of context encoder as the representation rwi . For
compound words that are tokenized into multiple characters, we represent them as the
average of the embeddings of their characters.

The input of the gloss encoder is g = [CLS], d1, . . . , dm, [SEP], where g is the gloss
(definition) of a candidate sense of wi; d1 to dm are m characters in the gloss. We take the
average of m embeddings from d1 to dm that are outputted from the final layer of the gloss
encoder as the gloss representation rg.

We train the model based on the idea of comparative learning [30]. For each target
character (or compound word) w, its candidate sense set Sw contains all of the senses in
the corresponding mini‑batch of gloss encoder. We then score each gloss g of candidate
sense s ∈ Sw for target character w by calculating cosine similarity:

sim(w, g) =
rwrg

∥ rw ∥ · ∥ rg ∥ (1)

For the correct pair of characters (or compound word) and sense gloss (wi, gk), our
goal is to make the representation of rwi close to rgk and far away from other candidate
sense gloss embeddings in the feature space. We use a cross‑entropy loss on the scores for
the glosses of candidate senses to train the bi‑encoder model; the training objective for wi
is defined as:
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= −log
esim(wi , gk)/τ

∑
|Swi |
j=1 esim(wi , gj)/τ

(2)

where τ is a temperature hyperparameter, we directly use the default value as 0.5. We fine‑
tune all the parameters using the contrastive learning objective (Equation (2)). The batch
size of the gloss encoder is set as the default value of 64, and the proportion of the [MASK]
symbol in the context encoder is 0.2. Here, we experimented with the values in the set [0.1,
0.2, 0.3], and 0.2 generated the best results in the sense identification task. We train the
model on the sense‑context dataset for 50 epochs until the results of sense identification
have not continued to be improved. After training, the output rwc of the final layer of the
context encoder can bedirectly used as the contextual sense representation for the character
(or compound word) w in the certain context c.

4.3. Sense Identification
It is convenient to identify the sense of the character (or compound word) in a certain

context using our model because it is trained under the task ofWSD. Given the target char‑
acter (or compound word) w and the certain context c, we input c to the context encoder of
the trained model and achieve the contextual sense embedding rwc from the final hidden
layer of the model. For each candidate sense s of w, we feed its gloss into the gloss en‑
coder and output the gloss embedding rg. In this way, we can achieve the contextual sense
embedding rwc and all of the candidate gloss embeddings {r g1

, rg2 , . . . , rgn

}
(assuming w

has n senses). We directly compute the cosine similarities between rwc and n gloss embed‑
dings and select the one with the highest similarity score as the predicted sense for w in
context c.

4.4. Morpheme Sense Mining
The morpheme sense mining task aims to answer which senses can be applied to the

morpheme to compose compound words and what senses of compound words can be
composed by each morpheme sense. More specifically, for each target character w, this
task finally obtains a morpheme sense set MSw for it, as well as the corresponding senses
of compound words composed by each morpheme sense in MSw. MSw is the subset of Sw,
which is the set of senses for the target character. Therefore, the key point is to match each
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sense of the target character with the corresponding senses of compound words that are
composed by the character.

Figure 5 shows an example of morpheme sensemining for the Chinese character “师”.
The method retrieves all the compound words that are composed by the character “师”
from the dictionary and then matches their senses to the corresponding sense of “师”. For
instance, the first sense of the compound word “出师” means “dispatch troops to fight”,
which should be matched to the sense “army; troop” of “师”; the second sense of “appren‑
tice completes study” should be matched to the sense “teacher” of “师”. Details are shown
as follows.
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Figure 5. An example of a morpheme sense mining task (matching three senses of the Chinese char‑
acter “师” with the senses of compound words of “出师”, “教师”, and “大师”).

For target character w, we can acquire the contextual sense representations
{rwc1 , rwc2 , . . . , rwcm} of w from the context encoder of our model, assuming w has m con‑
texts in the historical literature corpus. Then, we execute sense identification (Section 4.3)
to find the sense ofw in each context and obtain sense representations

{
rs1 , rs2 , . . . , rsk

}
of

w, assuming w has k senses. Sense representation rs is defined as the average of contextual
sense representations that are identified to sense s.

For each compound word which is composed by w, we also obtain its sense represen‑
tations in the same way. For each sense of each compound word, we calculate the cosine
similarities between its representation and

{
rs1 , rs2 , . . . , rsk

}
, matching the compound

word sense to the character sense with the highest similarity score. If the maximum score
is less than 0.01, the sense of the compound word will not be matched to any character
sense. We set this parameter by observing the experimental results in a small range of
data samples. Our candidate values are [0.01, 0.02], and we found most of the matching
is incorrect when the similar score is < 0.01. After this step, for each sense of w, it has a
corresponding set of compound word senses. When the number of matched compound
word senses is greater than a threshold β, we add the sense to the morpheme sense set
MSw. We set β = 3 in this work. It is also set by observing the results in a small range of
samples. Our candidate parameters are [1, 2, 3, 4, 5], and we found most of the matchings
are incorrect when β is < 3.

After this task, for each target character w, we achieve a morpheme sense set MSw, as
well as the set of matched senses of compound words for each morpheme sense in MSw.

4.5. Diachronic Semantic Change Representation
We follow thework [3] to represent the change of frequency distribution of each sense

of Chinese characters (or compound words) over time. For Chinese characters, we extend
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the model to represent the semantic change at two levels: monosyllabic words and mor‑
phemes. Here is a brief introduction below.

Given the target character w to be represented and compound words of it, we conve‑
niently identify their tokens in contexts to the corresponding sense based on the method
described in Section 4.3. After processing morpheme sense mining based on the method
in Section 4.4, we obtain themorpheme sense set MSw, as well as the corresponding senses
of compound words for each character sense in MSw. According to this information, we
conduct statistics on the sense labels of context in each time range (Section 4.1) separately
to achieve the frequency distribution of each sense of the character w in the whole histori‑
cal period. For each character sense si, the diachronic change of frequency distribution is
represented by:

Tword(si) =
{

Psi
t1

, Psi
t2

, . . . , Psi
tn

}
(3)

Tmorpheme(si) =
{

PMsi
t1

, PMsi
t2

, . . . , PMsi
tn

}
i f si ∈ MSw (4)

where Tword(si) is the representation of a diachronic change of frequency distribution for si
when it is applied to a monosyllabic word; Tmorpheme(si) is the representation for si when
character w is used as a morpheme in compound words. If si is not in MSw, Tmorpheme(si)

will not exist. {t1, t2, . . . , tn} are sequential n time ranges. Psi
t and PMsi

t are, respectively,
defined as:

Psi
t =

Nsi
t

∑m
k=1 Nsk

t
(5)

PMsi
t = 0.5 × NMsi

t

∑m
k=1 NMsk

t
+ 0.5 × NSsi

t

∑m
k=1 NSsk

t
(6)

where Nsi
t is the number of tokens in contexts identified as sense si at time t, assuming

w has m senses. NMsi
t is the number of tokens in contexts of compound words that are

matched to si at time t after sense identification and morpheme sense mining processes.
NSsi

t is the number of senses of compound words that are matched to si at time t. Finally,
we conduct quartic polynomial curve fitting for Tword(si) and Tmorpheme(si). This method
gives a continuous frequency distribution representation for each sense of the target Chi‑
nese character (word), clearly monitoring the status of each individual sense, whether it is
growing or decreasing.

5. Evaluation
We evaluate the method through three indicators around contextual sense represen‑

tation, sense identification, and morpheme sense mining tasks as follows:
1. Contextual sense representation: given the embedding of the target character out‑

putted by the model in a certain context, we calculate the similarity scores between it
and all senses in the dictionary and count the number of synonymous senses with it
in the top ranking. The purpose is to evaluate the effect of the model on representing
senses in certain contexts, including whether it can distinguish different senses and
give similar representations for synonymous senses;

2. Sense identification: given the target character (or compound word) and the corre‑
sponding context, the model selects the sense for the target character (word) from
the list of candidate senses. We use accuracy as the indicator to evaluate the effect of
sense identification;

3. Morpheme sense matching: given the target character sense and the corresponding
compound word senses matched to it by the model. We use precision, recall, and
f1 as indicators to evaluate whether the morpheme sense matching is correct and
comprehensive.
The specific methods and results for each indicator will be introduced in

Sections 5.1–5.3, respectively. Finally, as a qualitative analysis, we provide a semantic
tracking case of the character “师” in Section 5.4.
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5.1. Results of Contextual Sense Representation
In this section, we evaluate the contextual sense representation of our fine‑tuned

model that was trained in the sense‑context dataset to verify whether it can distinguish
different senses and give similar representations for the synonymous senses. Andwe com‑
pare it with the original BERT model.

In the experiment, for the target character w and certain context c, we evaluate the
contextual sense representation rwc by calculating the cosine similarity between it and the
representations {rs1 , rs2 , . . . , rsn} of all senses {s1, s2, . . . , sn} in the dictionary, assuming
that there is a total n senses recorded in the dictionary. We sort the senses in the dictionary
according to their similarity scores and use the number of synonymous senses to w in the
Top 5–30 ranking as the indicator for evaluation. The sense representation rs is defined as
the average of contextual sense representations for all contexts of s which are recorded in
the sense‑context dataset.

We randomly select 300 contexts that do not exist in the training dataset distributed
in various historical eras and corresponding commonly used target characters as the sam‑
ples. Before the selection, we had given unique identifications for each context in the sense‑
context dataset to make sure the testing samples were not in the training set. Three highly
educated Chinese native speakers who can understand basic ancient Chinese were asked
to judge whether the candidate senses in the top rankings are synonymous with the corre‑
sponding meaning of the target character. The candidate sense will be set as the synony‑
mous sense if more than two judges support it. It should be noted that the dictionary data
source had provided the corresponding sense label for the target character in context, so
the task of the annotators did not include judging the sense of the character in the ancient
Chinese context; they just needed to compare the definitions (written by modern Chinese)
between the character sense and the similar senses given bymachine. Finally, we count the
number of captured synonymous terms in Top‑5, Top‑10, andTop‑30 rankings and take the
average of 300 samples. We compare the effects between the original bert‑ancient‑Chinese
model (BERT‑ancient) and our model (BERT‑ancient‑trained). The results are shown in
Table 2. It can be seen that our trained model captures more synonymous senses in the
similarity ranking of the Top 5–30, which means that it can give closer representations of
the synonymous senses.

Table 2. Number of synonymous terms in the Top 5–30 ranking of similar senses given by our trained
model and original BERTmodel (BERT‑ancient is bert‑ancient‑Chinesemodel; BERT‑ancient‑trained
is our model trained from bert‑ancient‑Chinese).

Model Top‑5 Top‑10 Top‑30

BERT‑ancient 1.120 1.613 3.193
BERT‑ancient‑trained (ours) 2.257 3.767 7.410

Table 3 shows four examples of Top‑5 similar senses from the two models, respec‑
tively. It can be found that though the original BERT model can generate differentiated
representations for characters depending on different contexts, its ability to distinguish
senses is limited. For instance, for the second character sense “行” (walk), all of the Top‑
5 similar senses recommended by the BERT‑ancient model belong to the same character
“行”, though they are not synonymous. In comparison, the trainedmodel avoids this prob‑
lem by selecting similar senses from all Chinese characters. Another problem is that BERT
tends to find senses that are related in topic, which often exist in similar contexts but are not
synonymous. For instance, for the third character sense, “愕” (amazed), the BERT model
finds a similar sense, “惶” (confused), which is also a kind of psychological state but is not
synonymous with “愕”. By further learning the gloss and contextual differences between
different senses, the trained model can capture the features not only about contexts but
also about their meaning. So, it achieved better results in this experiment.
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Table 3. Four cases of Top‑5 similar senses given by two models.

Input Senses and Contexts Models Top‑5 Similar Senses

character: 师
sense: n. army
context:
王师北定中原日，家祭无忘告乃翁。
(When the army recaptured the lost
land in the Central Plains, don’t
forget to tell me when you hold a
family sacrifice)

BERT‑ancient

1. 师s5 (the organizational
unit of the military); 2. 迹s5
(achievements, deeds); 3.
犹s14 (plan); 4. 国s1 (nation;
country); 5. 还s1 (return; go
back)

BERT‑ancient‑ trained

1. 师s6 (army); 2. 军s1 (army);
3. 贼s6 (People who cause
serious harm to the country
and society); 4. 国s1 (nation;
country); 5. 王s1 (king)

character: 行
sense: v. walk
context:
独行踽踽。岂无他人？(Walking
alone. Is there anyone else?)

BERT‑ancient

1. 行s32 (righteously); 2. 行s4
(walk); 3. 行s1 (road; path); 4.
行s46 (ancient military
system); 5. 行s52 (position in
the family hierarchy)

BERT‑ancient‑ trained

1. 行s4 (walk); 2. 徒s1 (walk);
3. 步s1 (walk); 4. 匊s3 (an
ancient capacity unit); 5. 蹈s5
(walk)

character: 愕
sense: adj. amazed
context:
天地事物之变，可喜可愕，一寓于书。
(The changes of things in the world
are both delightful and amazed)

BERT‑ancient

1. 愕s1 (amazed); 2. 愕s2
(speak bluntly); 3. 鄂s7
(amazed); 4. 讶s2 (amazed); 5.
惶s2 (confused)

BERT‑ancient‑ trained

1. 愕s1 (amazed); 2. 惊s4
(amazed); 3. 异s9 (amazed); 4.
诧s3 (amazed); 5. 怪s3
(amazed)

5.2. Results of Sense Identification
In the experiment, given the test context and the target character (word) contained

in the context, the model chooses the correct sense for the character from the candidate
sense set.

We randomly select 12,000 sentences and target character (word) from the dictionary
that do not exist in the training dataset to construct a test dataset for sense identification.
We divide the test set into two cases: the target word is a character or a compound word
because the number of the candidate sense of compound words (1.56 for average) is sig‑
nificantly less than that of characters (6.12 for average) in the dictionary. We also divide
the test set according to the number of sample contexts in the training set into three cases:
the target sense containing only one training sample in the training set, containing multi‑
ple training samples (>7), and in between, because as usual, the more context samples for
training, the better effect will be acquired. Therefore, we divide 12,000 test context samples
into six groups of 2000 samples each: character with multiple samples (C‑multi); charac‑
ter with less samples (C‑less); character with one sample (C‑one); compound word with
multiple samples (W‑multi); compound word with less samples (W‑less), and compound
word with one sample (W‑one).

The experiment is based on two pre‑trained BERT models: bert‑base‑Chinese and
bert‑ancient‑Chinese. The baselines are the long short‑term memory (LSTM) model and
the original BERT models (BERT‑base and BERT‑ancient). For the original BERT models,
for each sense in the dataset, we use the average embedding of tokens from all example
contexts in the training set as the representation of it and choose the sense that has the
highest score of cosine similarity with the target word. And for the supervised model, we
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follow the method introduced in Section 4.3. We use accuracy to evaluate this task, and
the results are shown in Table 4.

Table 4. Results of sense identification in test dataset (BERT‑base is bert‑base‑Chinese; BERT‑ancient
is bert‑ancient‑Chinese).

Models C‑Multi C‑Less C‑One W‑Multi W‑Less W‑One

LSTM 43.45% 37.25% 16.16% 60.26% 56.40% 35.85%
BERT‑base 52.68% 45.15% 23.61% 69.90% 69.20% 43.65%
BERT‑ancient 55.08% 46.10% 25.46% 73.15% 70.70% 42.30%
BERT‑base‑trained (ours) 68.08% 63.25% 58.18% 76.15% 76.55% 65.65%
BERT‑ancient‑trained (ours) 74.19% 66.55% 60.03% 78.70% 78.10% 67.10%

The results show that the effects of unsupervisedmethods are very limited, especially
when there is only one context sample in the training dataset, only 23.61% for BERT‑base
in C‑one. By introducing information from the training dataset and fine‑tuning the model,
the effect of sense identification can be significantly improved both for character and com‑
poundwords in all of the groups. However, there is still room for improvement; the effects
of character groups are significantly worse than the compound word groups due to the ex‑
cessive candidate senses and less context samples in the training set.

5.3. Results of Morpheme Sense Mining
For each character sense to be evaluated, we use accuracy, recall, and f1 as indicators

to determine whether the senses of compound word matched to it are correct and compre‑
hensive. The gold standard is annotated by three Chinese native speakers, and the process
is as follows:

We randomly select 200 sense samples of commonly used characters in both ancient
and modern times. Given the information, including the character sense to be evaluated,
corresponding compoundwords, and their senses, three annotators were asked to provide
all compoundword senses that should bematched to the character sense, whichmeans that
these compoundwords are composed by the target character (morpheme) and their mean‑
ings are related to the morpheme sense. If more than two annotators thought that one can‑
didate sense of the compound word should be matched, we would add it to the matching
list of the target character sense. Finally, we obtained the matching lists of 200 sense sam‑
ples and compared them with the lists given by BERT‑ancient and Bert‑ancient‑trained.

The results are shown in Table 5. It can be seen that the F1 value of our BERT‑ancient‑
trainedmodel is 75.14%, and the original BERT‑ancientmodel is only 59.21%,which proves
that introducing information from our dataset to enhance the ability of contextual sense
representation of the model can improve the effect of the morpheme sense mining task.

Table 5. Results of morpheme sense matching for 200 senses of Chinese characters.

Models Precision Recall F1

BERT‑ancient 67.71% 61.23% 59.21%
BERT‑ancient‑trained (ours) 77.25% 79.12% 75.14%

5.4. Visualization Case of Semantic Tracking
Figure 6 shows a visualization case of semantic tracking of the character “师”. The fig‑

ure shows the change in the frequency distribution of each sense of the character in a con‑
tinuous and fine‑grained way. Different colors and shapes represent different senses. The
solid lines indicate the senses that are applied to monosyllabic words, and the dotted line
is the senses that are applied to compound words as morphemes (morpheme sense). The
method discovered 11 morpheme senses in this case. From Figure 6, it can be concluded
that the sense “army; troop” had the absolute highest proportion in the earliest ancient
period, indicating that “army; troop” is the original meaning of this character. Although it
was in decline continuously in later ages, it is still a commonly used meaning now. These
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senses, such as “teacher” and “a person who specializes in a certain art”, have gradually
increased, especially the sense of “teacher” has replaced “army” as the most commonly
used sense in modern times. The sense “a respectful title for a monk, nun, or Taoist” had
increased in the middle ancient periods, but there had been a downward trend in recent
periods. In comparison, the majority of other senses occupy very small proportions (<2%).
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We also analyze the changes in the wording of a concept. By processing all synony‑
mous characters that can describe the concept, we can draw the frequency distribution of
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their corresponding senses in different eras. Figure 7 is an example of the concept “army;
troop”, which can be lexicalized by the characters such as “师”, “军”, “兵”, “旅”, “戎”, “赋”,
and “伍”. Figure 7 shows that the character “师” was widely used in the earliest ancient
times but decreased rapidly; the two most commonly used characters are “军” and “兵”
in all historical periods and they present growth trends. Specially, we observe the incon‑
sistencies in the frequency between the usage of monosyllabic words and morphemes for
the character “伍”, which is frequently used in a morpheme to compose compoundwords;
however, it is rarely directly used in a monosyllabic word.
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6. Analysis
The sense‑tracking framework implemented in this work can be used to analyze the

law of language development, for example, to discover the semantic change of lexical
meanings in various historical periods. For the first time, we give an analyzed case from
the view of the relationship between the two kinds of expressions of Chinese characters:
monosyllabic words and morphemes (in compound words). We focus on the following
three issues:
1. The diachronic proportion change of the two kinds of expressions of Chinese charac‑

ters;
2. The correlation of the frequency between the two kinds of expressions. For instance,

if one character sense is always applied to the monosyllabic word, is it frequently or
rarely applied to the morpheme?

3. The correlation of the trend between the two kinds of expressions. For instance, if the
frequency of one character sense increases on a monosyllabic word, does it have the
same or inverse trend on the morpheme?
We selected 100 commonly used Chinese characters in both ancient andmodern times

as samples for analysis. The average number of senses for each character is 22.19, but
the number of commonly used senses is only 3.57 on average. The senses whose pro‑
portion is greater than 0.1 during at least one historical period are defined as the com‑
monly used senses. The analysis and results for the three issues are, respectively, shown
in Sections 6.1–6.3.
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6.1. Diachronic Proportion Change between Monosyllabic Word and Morpheme
We calculated the number of contexts in which the target character is applied as a

monosyllable and compoundword, respectively, in various historical periods andobtained
the diachronic proportion change after averaging for all character samples. As shown in
Figure 8, the proportion of morphemes (in compound words) continues to increase sig‑
nificantly, while monosyllabic words decrease significantly. The result is in line with the
intuition of the development process of Chinese: as human cognitive concepts increased,
the infinite development of the number of Chinese characters (monosyllabic words) would
greatly increase the memory burden. Therefore, the existing characters were morphe‑
meized, and compound words were formed to express the new concepts. The proportion
of compoundwords especially showed a rapid upward trend during the historical periods
with dramatic cognitive changes, such as the recent modern historical period.
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6.2. Correlation of the Using Frequency between Monosyllabic Words and Morphemes
In this section, we will further analyze the correlation of the frequency between the

two kinds of sense expressions. Given the two diachronic frequency distribution functions
of each sense, which are, respectively, applied to the monosyllabic word and morpheme,
we quantified the comprehensive using frequency of the sense for each function and calcu‑
lated the frequency correlation between the two kinds of expressions in all sense samples.

We used the area enclosed by the function and x‑axis to quantify the frequency score
of a sense:

P(X) =
∫

f (x)dx (7)

The higher the using frequency of the sense, the larger the value of P(X); conversely,
P(X) will tend to be close to 0. We calculated the scores of 1279 senses of 100 common char‑
acters in the two kinds of expressions, respectively, and obtained the frequency score se‑
quences in the expression of monosyllabic words: Seqw(Pw(X1), Pw(X2), . . . , Pw(X1279))
and morphemes: Seqm(Pm(X1), Pm(X2), . . . , Pm(X1279)). Finally, we obtained the Spear‑
man correlation between the two sequences, the result of which is shown in Table 6.
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Table 6. Spearman correlation of frequency betweenmonosyllabic word andmorpheme expressions
in samples of 1279 senses.

Spearman p

0.751 <0.01

The results show that the frequency between monosyllabic words and morpheme ex‑
pressions has a strong positive correlation. On this basis, to analyze the distribution of the
using frequency similarities of 1279 sense pairs of (Pw(Xi), Pm(Xi)), we further quantified
the frequency similarity between the two diachronic frequency distribution functions:

f re_sim(X1, X2) = 1 − |P(X1)− P(X2)|
P(X1) + P(X2)

(8)

If the using frequency of the two functions is closer, the score is closer to 1; otherwise,
it approaches 0. We conducted statistics on the score of 1279 combinations of (Pw(Xi),
Pm(Xi)). For comparison, we also calculated the scores between 1279 random combina‑
tions of (Pw(Xi), Pm(Xk)) i ̸= k, which means that the two functions are from different
senses. The results are shown in Table 7. The median is 0.628, while for the randomized
combinations from different senses is only 0.354. We used the Wilcoxon signed‑rank test
and proved that the scores of matching combinations are significantly higher than random‑
ized ones.

Table 7. Distribution of the frequency similarities of 1279 matching and random function combina‑
tions.

Groups Median (P25, P75)
Wilcoxon Signed‑Rank Test

z p

f re_sim(matching) 0.628 (0.340, 0.851)
17.185 <0.01f re_sim (random) 0.354 (0.145, 0.657)

Based on the above analysis, we think that the frequency of a sense between monosyl‑
labic words andmorpheme expressions has a strong positive correlation; that is, in general,
if one character sense is always applied to the monosyllabic word, it is also frequently ap‑
plied to the morpheme. However, 280 senses (sim < 0.35) that do not conform to this rule
are observed in 1279 samples, most of which (261) are only applied to morphemes and
rarely used to monosyllabic words.

6.3. Correlation of the Trend between Monosyllabic Word and Morpheme
In this section, we will analyze the correlation of the trend between the two kinds

of sense expressions. Given the two diachronic frequency distribution functions of each
sense that are, respectively, applied to the monosyllabic word and morpheme, we inter‑
polated with 0.1 as the interval, and concatenated the values of the two kinds of func‑
tions, respectively, of all senses and finally obtained two discrete sequences Seqw and Seqm:
Seqw = Seqw1

⊕
Seqw2

, . . . ,
⊕

Seqw1279
; Seqm = Seqm1

⊕
Seqm2

, . . . ,
⊕

Seqm1279
, where

Seqwi
and Seqmi

are the sequences of the interpolation values of the functions of monosyl‑
labic word and morpheme, respectively, from the i‑th sense sample.

We conducted a Spearman correlation on Seqw and Seqm to obtain the correlation be‑
tween the overall diachronic trends of the two kinds of expressions. The result is shown
in Table 8.
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Table 8. Spearman correlation of trend between monosyllabic word and morpheme expressions in
samples of 1279 senses.

Spearman p

0.731 <0.01

The correlation score is 0.731 and p < 0.01, which shows that the changing trend of
sense between monosyllabic words and morphemes has a strong positive correlation. In
order to give the distribution of the trend similarity scores of 1279 pairs of (Seqwi

, Seqmi
), we

directly quantified the trend similarity between the two diachronic distribution functions
as follows:

rsim(X1,X2)
= Spearman(Seq1, Seq2) (9)

We calculated the Spearman correlation scores between Seqwi
and Seqmi

for all
1279 senses. For comparison, we also gave the scores between 1279 random combinations
of (Seqwi

, Seqmk
) i ̸= k, the two sequences of which are from different senses. The results

are shown in Table 9.

Table 9. Distribution of trend similarities of 1279 matching and random function combinations.

Groups Median (P25, P75)
Wilcoxon Signed‑Rank Test

z p

tr_sim (matching) 0.555 (0.051, 0.862)
17.308 <0.01tr_sim (random) −0.082 (−0.587, 0.510)

The result shows that the median of the correlation is 0.555, while for the randomized
combinations from different senses is −0.082. Wilcoxon signed‑rank test shows that the
scores of matching pairs are significantly higher than those of randomized pairs.

Based on the above analysis, we think that there is a strong positive correlation of
the diachronic trend between the two expressions of one sense. That is, if the frequency of
a sense increases or decreases in a certain erawhen expressed as amonosyllabic word, it of‑
ten has the same change trend when expressed as a morpheme. While there are
299 senses (sim ≤ 0) that do not conform to this rule, they are observed in 1279 samples.

7. Discussion
7.1. Theoretical and Practical Implications

At the theoretical level, this work provides a framework, method, and dataset for lex‑
ical semantic tracking of Chinese over a long historical period. According to our investiga‑
tion, this is the first work that focuses on Chinese characters and morphemes in this field.
Our framework inherits the existing basic process of semantic tracking [3,16], which is to
identify word senses on a large‑scale corpus and generate the diachronic frequency dis‑
tribution for each sense. However, different from their work, we do not consider “word”
as the smallest unit of semantics but rather consider the relationship between morphemes,
characters, and words in Chinese for the first time in diachronic semantic modeling and
add the morpheme sense mining process. It enables our approach to provide a richer rep‑
resentation of diachronic changes at these three levels, which is crucial for analyzing the
evolution of Chinese over a long historical period and can provide theoretical guidance
for the diachronic semantic modeling of Chinese. We also give a diachronic analysis case
firstly from the perspective of monosyllabic words and morphemes that can provide a
reference for future works of automatically exploring the laws of language evolution. At
the method level, we do not directly use the pre‑trained model as the work [3] but intro‑
duce the information of sense definitions to further train a contextual sense representation
model in theWord‑sense disambiguation task. We proved that by capturing the features of
definitions, the model can enhance the contextual sense representation and achieve better
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performance in both sense identification and morpheme sense mining tasks. Our model
and the open dataset can both serve Chinese NLP research.

At the practical level, most of the existing works discover what words or senses
changed based on models of clusters, topics, or networks. However, the conclusions are
coarse‑grained and fuzzy, which require extensive human explanations. Different from
their approaches, the advantage of our framework is interpretability for specific senses,
which can provide insights into the nature of semantic change in the morpheme, character,
and word levels by identifying specific senses that appear or disappear in texts over time.
Therefore, it is suitable for generating fine‑grained analysis for experts and amateurs in
the fields of historical linguistics, history, and so on. This work can be applied to the Chi‑
nese diachronic semantic analysis and information retrieval system of historical literature
resources. For instance, generating visual images of diachronic semantic changes, recom‑
mending contexts of historical documents for each sense and time range, and automatically
discovering statistical laws of language evolution, etc.

7.2. Limitations
Limitations of the dataset: One problem is that the number of context samples per

sense in the dataset is small for supervised learning. In the sense‑context dataset, there are
only 2.08 context samples belonging to each sense on average, and only 3.61 belong to the
sense of characters. For commonly used senses with more than seven context samples, the
accuracy of identification can reach 74.19%, and for these senses with only one sample, the
accuracy is only 60.03%. Another problem is that the granularity of senses is fine. As a
result, there are often quite a lot of senses for one character, and several of them are simi‑
lar and overlap in their meanings, for instance: “green bamboo” and “younger bamboo”;
“woman” and “elderly women”. It affects the performance of sense identification andmor‑
pheme sense mining. For sense identification, many wrong senses predicted by the model
are highly similar to the correct ones, which is why there is no need to differentiate; among
the 1000 incorrect samples surveyed, we observed 245 that belong to this problem.

Limitation of method: The limitations of the method in this work include the follow‑
ing: (1) This method cannot discover senses that are not recorded in the dictionary: to
ensure accuracy and interpretability, our model is implemented based on dictionary infor‑
mation and supervised learning. However, some senses from ancient times may not have
been verified and included in the dictionary, and new senses have existed in recent years.
(2) This method cannot further judge the more complex semantic relationships between
senses, such as widening, narrowing, and semantic extension, which are also important
for the study of the evolution of diachronic lexical meanings. (3) For sense identification,
we observe that the model tends to classify the tokens to the candidate senses with more
context samples in the training set, which is an inevitable problem of supervised learning.
It will further lead to the deviation of semantic tracking results: the predicted proportion of
the senses with more samples in the dataset will be higher than the actual situation, while
the senses with less samples will be the opposite.

In the future, we will expand and improve the existing framework and methods, in‑
cluding (1) expanding the dataset and further improving the effect of contextual sense
representation, sense identification, and morpheme sense mining tasks; (2) developing a
method to automatically discover new senses that are not recorded in the dictionary; (3) fur‑
ther introduce the method to judge the more complex semantic relationships between lex‑
ical senses, such as widening, narrowing, and semantic extension, serving the researchers
of diachronic evolution of Chinese; (4) the Large Language Model and Generative Pre‑
trained Transformer develop fast, and we plan to explore methods based on them. The
ultimate goal is to enable the machine to answer questions about language changes using
natural languages.
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8. Conclusions
This paper proposed a semantic tracking framework and method for Chinese char‑

acters in a long historical period from two views of monosyllabic words and morphemes,
including constructing a contextual sense representation model, realizing sense identifi‑
cation and morpheme sense mining based on the model, so as to process the large‑scale
historical corpus and obtain the diachronic semantic change representation of each sense
of character. Another contribution of this work is to construct datasets from authorita‑
tive dictionaries and historical corpus, which includes a sense‑context dataset for model
training and a Chinese historical literature corpus for sense tracking. In the experiment,
we evaluated the method through quantitative and qualitative ways to show the perfor‑
mance. We demonstrated that our model introducing information from the dataset shows
better performance for sense representation compared to the original BERT model: our
model gave more synonymous terms in the Top 5–30 similar sense rankings, the aver‑
age number of synonyms from the Top‑5 ranking was 2.2 while for original BERT was
1.1. And our model also achieves better results in both sense identification and morpheme
sense matching tasks. The accuracy of sense identification was improved from 55.08% to
74.19%, and the F1 score formorpheme senseminingwas improved from 59.21% to 75.14%.
The visualization and the qualitative analysis cases show that the method can carry out a
smooth and continuous representation of the frequency distribution of each sense of char‑
acters in historical periods. Finally, for the first time, we gave an analyzed case through
100 commonly used characters from the view of the relationship between monosyllabic
words andmorphemes. As a result, we proved that there is a strong positive correlation be‑
tween the frequency and change trend of the two kinds of sense expressions of a monosyl‑
labic word and the corresponding morpheme. The Spearman correlation of frequency be‑
tweenmonosyllabicwords andmorpheme expressions in samples of 1279 senseswas 0.751,
p < 0.01. This work can serve the fields of historical linguistics, history, dictionary compi‑
lation, NLP, and information processing of historical resources, which is of significance in
capturing the laws of Chinese language evolution and exploring the process of social and
cultural development.
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