An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles
Abstract
:1. Introduction
- We converted the YOLOv4-tiny model to output single-scale features, which resulted in improved detection speed. Furthermore, we utilized the K-means++ algorithm to re-cluster anchor boxes, thereby improving the model’s detection accuracy.
2. Materials and Methods
2.1. YOLOv4-Tiny Algorithm
2.2. YOLOv4-Tiny Improvement
2.2.1. Single-Scale Feature Output
2.2.2. Anchor Box Optimization
2.3. Hardware Platforms
2.3.1. Comparison of Hardware Platforms
2.3.2. The ZCU104 Development Platform
2.3.3. Hardware Platform Development
2.4. Model Transformation
3. Experimental Results
3.1. Dataset
3.2. Experimental Setting
3.3. Evaluation Indicators
3.4. Experiments on the GPU
3.4.1. Ablation Experiments
3.4.2. Comparison Experiments
3.5. Experiments on the FPGA
3.6. Experimental Comparison of Different Platforms
3.7. Visualization of Detection Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiang, J.; Yuan, C.; Yu, C.; Lin, S.; Yang, H. Analysis of Elastic Bar Fracture Causes of Fasteners in Ballastless Track of High-Speed Railway. J. Rail Way Sci. Eng. 2019, 16, 1605–1613. [Google Scholar]
- Wei, X.; Yang, Z.; Liu, Y.; Wei, D.; Jia, L.; Li, Y. Railway Track Fastener Defect Detection Based on Image Processing and Deep Learning Techniques: A Comparative Study. Eng. Appl. Artif. Intell. 2019, 80, 66–81. [Google Scholar] [CrossRef]
- Bono, F.M.; Radicioni, L.; Cinquemani, S.; Benedetti, L.; Cazzulani, G.; Somaschini, C.; Belloli, M. A Deep Learning Approach to Detect Failures in Bridges Based on the Coherence of Signals. Future Internet 2023, 15, 119. [Google Scholar] [CrossRef]
- Chellaswamy, C.; Krishnasamy, M.; Balaji, L.; Dhanalakshmi, A.; Ramesh, R. Optimized Railway Track Health Monitoring System Based on Dynamic Differential Evolution Algorithm. Measurement 2020, 152, 107332. [Google Scholar] [CrossRef]
- Zhan, Z.; Sun, H.; Yu, X.; Yu, J.; Zhao, Y.; Sha, X.; Chen, Y.; Huang, Q.; Li, W.J. Wireless Rail Fastener Looseness Detection Based on MEMS Accelerometer and Vibration Entropy. IEEE Sens. J. 2020, 20, 3226–3234. [Google Scholar] [CrossRef]
- Mao, Q.; Cui, H.; Hu, Q.; Ren, X. A Rigorous Fastener Inspection Approach for High-Speed Railway from Structured Light Sensors. ISPRS J. Photogramm. Remote Sens. 2018, 143, 249–267. [Google Scholar] [CrossRef]
- Damljanović, V.; Weaver, R.L. Laser Vibrometry Technique for Measurement of Contained Stress in Railroad Rail. J. Sound Vib. 2005, 282, 341–366. [Google Scholar] [CrossRef]
- Guerrieri, M.; Parla, G.; Celauro, C. Digital Image Analysis Technique for Measuring Railway Track Defects and Ballast Gradation. Measurement 2018, 113, 137–147. [Google Scholar] [CrossRef]
- Khan, R.A.; Islam, S.; Biswas, R. Automatic Detection of Defective Rail Anchors. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1583–1588. [Google Scholar]
- Feng, H.; Jiang, Z.; Xie, F.; Yang, P.; Shi, J.; Chen, L. Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems. IEEE Trans. Instrum. Meas. 2014, 63, 877–888. [Google Scholar] [CrossRef]
- Gibert, X.; Patel, V.M.; Chellappa, R. Sequential Score Adaptation with Extreme Value Theory for Robust Railway Track Inspection. arXiv 2015, arXiv:1510.05822. [Google Scholar]
- Gibert, X.; Patel, V.M.; Chellappa, R. Deep Multitask Learning for Railway Track Inspection. IEEE Trans. Intell. Transp. Syst. 2017, 18, 153–164. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S. Research of Method for Detection of Rail Fastener Defects Based on Machine Vision; Atlantis Press: Amstelkade, The Netherland, 2015. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. arXiv 2014, arXiv:1311.2524. [Google Scholar]
- Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. arXiv 2023, arXiv:2207.02696. [Google Scholar]
- Qi, H.; Xu, T.; Wang, G.; Cheng, Y.; Chen, C. MYOLOv3-Tiny: A New Convolutional Neural Network Architecture for Real-Time Detection of Track Fasteners. Comput. Ind. 2020, 123, 103303. [Google Scholar] [CrossRef]
- Fu, J.; Chen, X.; Lv, Z. Rail Fastener Status Detection Based on MobileNet-YOLOv4. Electronics 2022, 11, 3677. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Yang, X.; Wang, K.; Zhang, H. Track Fastener Defect Detection Model Based on Improved YOLOv5s. Sensors 2023, 23, 6457. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zang, Q.; Zhang, K.; Wu, L. A Rail Fastener Defect Detection Algorithm Based on Improved YOLOv5. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2024, 09544097241234380. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, W.; Dammer, K.-H.; Guo, L.; Cao, Z. Ag-YOLO: A Real-Time Low-Cost Detector for Precise Spraying with Case Study of Palms. Front. Plant Sci. 2021, 12, 753603. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Ma, C.; Chen, J.; Chen, L.; Bu, S.; Xu, S.; Zhao, Y.; Zhang, C.; Hagino, T. Fast Tree Detection and Counting on UAVs for Sequential Aerial Images with Generating Orthophoto Mosaicing. Remote Sens. 2022, 14, 4113. [Google Scholar] [CrossRef]
- Tilon, S.; Nex, F.; Vosselman, G.; Sevilla de la Llave, I.; Kerle, N. Towards Improved Unmanned Aerial Vehicle Edge Intelligence: A Road Infrastructure Monitoring Case Study. Remote Sens. 2022, 14, 4008. [Google Scholar] [CrossRef]
- Balamuralidhar, N.; Tilon, S.; Nex, F. MultEYE: Monitoring System for Real-Time Vehicle Detection, Tracking and Speed Estimation from UAV Imagery on Edge-Computing Platforms. Remote Sens. 2021, 13, 573. [Google Scholar] [CrossRef]
- Luo, W.; Han, W.; Fu, P.; Wang, H.; Zhao, Y.; Liu, K.; Liu, Y.; Zhao, Z.; Zhu, M.; Xu, R.; et al. A Water Surface Contaminants Monitoring Method Based on Airborne Depth Reasoning. Processes 2022, 10, 131. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Wu, H.; Dong, R. A Safe Flight Approach of the UAV in the Electrical Line Inspection. Int. J. Emerg. Electr. Power Syst. 2015, 16, 503–515. [Google Scholar] [CrossRef]
- Rau, J.Y.; Hsiao, K.W.; Jhan, J.P.; Wang, S.H.; Fang, W.C.; Wang, J.L. Bridge Crack Detection Using Multi-Rotary UAV and Object-Base Image Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2-W6, 311–318. [Google Scholar] [CrossRef]
- Wu, Y.; Qin, Y.; Wang, Z.; Jia, L. A UAV-Based Visual Inspection Method for Rail Surface Defects. Appl. Sci. 2018, 8, 1028. [Google Scholar] [CrossRef]
- Banić, M.; Miltenović, A.; Pavlović, M.; Ćirić, I. Intelligent Machine Vision Based Railway Infrastructure Inspection and Monitoring Using UAV. Facta Univ. Ser. Mech. Eng. 2019, 17, 357–364. [Google Scholar] [CrossRef]
- Nex, F.; Armenakis, C.; Cramer, M.; Cucci, D.A.; Gerke, M.; Honkavaara, E.; Kukko, A.; Persello, C.; Skaloud, J. UAV in the Advent of the Twenties: Where We Stand and What Is Next. ISPRS J. Photogramm. Remote Sens. 2022, 184, 215–242. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An Efficient Task Assignment Framework to Accelerate DPU-Based Convolutional Neural Network Inference on FPGAs. IEEE Access 2020, 8, 83224–83237. [Google Scholar] [CrossRef]
- Dobai, R.; Sekanina, L. Towards Evolvable Systems Based on the Xilinx Zynq Platform. In Proceedings of the 2013 IEEE International Conference on Evolvable Systems (ICES), Singapore, 16–19 April 2013; pp. 89–95. [Google Scholar]
- Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
Algorithm | Anchor Box |
---|---|
YOLOv4-tiny | [(10, 14) (23, 27) (37, 58)] [(81, 82) (135, 169) (344, 319)] |
K-means++ | [(25, 27) (34, 48) (55, 73)] |
Network Model | Class | R/% | FPR/% | mAP/% | FPS |
---|---|---|---|---|---|
YOLOv4-tiny | A | 75.0 | 12.9 | 90.5 | 336.3 |
B | 91.7 | 0 | |||
YOLOv4-tiny + Single-Scale Feature Output | A | 72.6 | 13.3 | 88.7 | 554.9 |
B | 89.8 | 0.9 | |||
YOLOv4-tiny + Single-Scale Feature Output + Anchor Box Optimization (Improved YOLOv4-tiny) | A | 86.1 | 3.1 | 95.8 | 554.9 |
B | 100 | 0 |
Network Model | Class | R/% | FPR/% | mAP/% | FPS |
---|---|---|---|---|---|
Faster R-CNN | A | 77.5 | 13.6 | 90.6 | 10.7 |
B | 88.3 | 0 | |||
SSD | A | 82.0 | 5.8 | 93.4 | 30.3 |
B | 99.5 | 0 | |||
YOLOv4-tiny | A | 75.0 | 12.9 | 90.5 | 336.3 |
B | 91.7 | 0 | |||
Improved YOLOv4-tiny | A | 86.1 | 3.1 | 95.8 | 554.9 |
B | 100 | 0 |
Network Model | Class | R/% | FPR/% | mAP/% | Thread | FPS |
---|---|---|---|---|---|---|
YOLOv4-tiny | A | 75.0 | 6.9 | 89.5 | 1 | 70.9 |
B | 87.5 | 0 | 8 | 179.6 | ||
Improved YOLOv4-tiny | A | 83.3 | 3.23 | 95.1 | 1 | 84.2 |
B | 100 | 0 | 8 | 295.9 |
Network Model | Hardware Platform | mAP/% | FPS | Power Consumption/W |
---|---|---|---|---|
Improved YOLOv4-tiny | GeForce RTX 3070 | 95.8 | 554.9 | 235 |
Improved YOLOv4-tiny | ZCU104 | 95.1 | 295.9 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Liu, A.; Yang, X.; Diao, W. An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles. Electronics 2024, 13, 1781. https://doi.org/10.3390/electronics13091781
Yu Q, Liu A, Yang X, Diao W. An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles. Electronics. 2024; 13(9):1781. https://doi.org/10.3390/electronics13091781
Chicago/Turabian StyleYu, Qi, Ao Liu, Xinxin Yang, and Weimin Diao. 2024. "An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles" Electronics 13, no. 9: 1781. https://doi.org/10.3390/electronics13091781
APA StyleYu, Q., Liu, A., Yang, X., & Diao, W. (2024). An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles. Electronics, 13(9), 1781. https://doi.org/10.3390/electronics13091781