
Academic Editor: Aryya

Gangopadhyay

Received: 8 November 2024

Revised: 19 December 2024

Accepted: 27 December 2024

Published: 30 December 2024

Citation: Ayad, A.G.; El-Gayar, M.M.;

Hikal, N.A.; Sakr, N.A. Efficient

Real-Time Anomaly Detection in IoT

Networks Using One-Class

Autoencoder and Deep Neural

Network. Electronics 2025, 14, 104.

https://doi.org/10.3390/

electronics14010104

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Efficient Real-Time Anomaly Detection in IoT Networks Using
One-Class Autoencoder and Deep Neural Network
Aya G. Ayad 1,* , Mostafa M. El-Gayar 1,2,* , Noha A. Hikal 1 and Nehal A. Sakr 1

1 Information Technology Department, Faculty of Computers and Information, Mansoura University,
Mansoura 35516, Egypt; dr_nahikal@mans.edu.eg (N.A.H.); nehal_sakr@mans.edu.eg (N.A.S.)

2 Department of Computer Science, Arab East Colleges, Riyadh 11583, Saudi Arabia
* Correspondence: ayaayad1011@mans.edu.eg (A.G.A.); mostafa_elgayar@mans.edu.eg (M.M.E.-G.)

Abstract: In the face of growing Internet of Things (IoT) security challenges, traditional
Intrusion Detection Systems (IDSs) fall short due to IoT devices’ unique characteristics and
constraints. This paper presents an effective, lightweight detection model that strengthens
IoT security by addressing the high dimensionality of IoT data. This model merges an
asymmetric stacked autoencoder with a Deep Neural Network (DNN), applying one-class
learning. It achieves a high detection rate with minimal false positives in a short time.
Compared with state-of-the-art approaches based on the BoT-IoT dataset, it shows a higher
detection rate of up to 96.27% in 0.27 s. Also, the model achieves an accuracy of 99.99%,
precision of 99.21%, and f1 score of 97.69%. These results demonstrate the effectiveness and
significance of the proposed model, confirming its potential for reliable deployment in real
IoT security problems.

Keywords: asymmetric stacked autoencoder; deep neural network; dimensionality
reduction; internet of things; intrusion detection system; one-class classifier

1. Introduction
The Internet of Things (IoT) is a network of physical items, devices, automobiles,

and appliances with sensors, software, and connections. It transforms our interaction with
technology by facilitating data collection and exchange [1]. The ease of use of IoT is one of
its essential characteristics that gives customers the ability to remotely manage several areas
of their lives, including energy management [2], health monitoring, and home lighting.
Furthermore, IoT facilitates the automation of routine tasks, enhancing efficiency and
productivity [3].

Although this network has numerous significant features [4,5], it also has limitations
and security issues that should be addressed [6]. IoT devices are vulnerable to cyberattacks
because of their high level of connectivity, which may risk critical data and result in physical
harm. It is crucial to address these security concerns [7].

An Intrusion Detection System (IDS) is crucial for mitigating the security threats
associated with IoT devices [8]. This system actively tracks network traffic [9], looking for
unusual patterns or actions that could point to a potential cyberattack [10]. Additionally, it
protects user privacy and safety and ensures the IoT network’s confidentiality, integrity,
and availability [11]. It detects the attack by analyzing the data gathered from several
connected devices, after which it alerts the administrator with reports.

There are two primary types of IDS commonly employed in IoT environments:
Signature-IDS (SIDS) and Anomaly-IDS (AIDS) [12]. The main difference between them is
their approach to detecting malicious activities [13]:

Electronics 2025, 14, 104 https://doi.org/10.3390/electronics14010104

https://doi.org/10.3390/electronics14010104
https://doi.org/10.3390/electronics14010104
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3716-221X
https://orcid.org/0000-0002-4644-1835
https://orcid.org/0000-0003-2334-9523
https://orcid.org/0000-0001-6696-1195
https://doi.org/10.3390/electronics14010104
https://www.mdpi.com/article/10.3390/electronics14010104?type=check_update&version=1

Electronics 2025, 14, 104 2 of 25

• SIDS, known as pattern-matching or misuse IDS, compares system events or network
traffic against an attack signatures database. These signatures may be specific behav-
iors, patterns, or characteristics associated with known attacks [14]. If a match is found,
the SIDS triggers an alert. SIDS effectively detects known attacks but may fail against
new attacks [15].

• AIDS analyzes network traffic or system behaviors to identify patterns that signifi-
cantly vary from the expected normal behavior [16]. AIDS compares real-time traffic
to a baseline of normal behavior established using machine learning or deep learning
algorithms [15]. AIDS may either raise an alert or take action to mitigate the possi-
ble threat if abnormalities are discovered. Its goal is to detect and address potential
security risks or attacks not covered by traditional SIDS [17].

AIDS is particularly suitable for IoT environments due to the dynamic and varied
nature of IoT devices [18]. Its ability to adapt to evolving IoT device patterns enhances its
effectiveness in identifying emerging threats. Given these advantages, this paper focuses
on AIDS as a key approach for securing IoT networks. However, despite its strengths,
AIDS faces significant challenges in IoT environments [19]. The sheer size of IoT networks
creates tremendous difficulties for AIDS. As the number of connected devices grows, AIDS
may fail to manage the enormous volume of data, leading to false positives or missed
alarms [20]. Additionally, the resource constraints of IoT devices—such as limited process-
ing power, memory, and bandwidth—further hinder their ability to operate effectively [21].
Furthermore, the heterogeneous nature of IoT devices makes developing a unified detection
model challenging, restricting its capacity to adapt to the diverse types and behaviors of
IoT devices.

Deep Neural Network (DNN) models show promise in addressing some of these
limitations, notably in capturing complex relationships in high-dimensional data. However,
typical DNN techniques have difficulties in IoT scenarios. They frequently require extensive
labeled data for training, which may not always be accessible. They may also face challenges
with unbalanced datasets in which majority-class traffic dominates minority-class traffic.
Moreover, the computing demands of deep learning models may not be compatible with
IoT device resources.

To address these challenges, this work introduces a novel AIDS model that employs
an asymmetric stacked autoencoder for dimensionality reduction to enhance a DNN for
anomaly detection. One-class learning allows the model to focus on learning normal behav-
ior patterns and identify deviations without relying heavily on labeled attack samples. The
proposed approach improves the detection rate by effectively handling high-dimensional
data, addressing class imbalance, and overcoming computational constraints, all while
maintaining efficiency in resource-constrained IoT environments.

The primary contributions of the proposed work are as follows:

• Proposes a hybrid model that combines asymmetric stacked autoencoder for dimension-
ality reduction with a one-class Deep Neural Network for precise anomaly detection.

• Introduces a data-driven Thresholding mechanism based on precision–recall curves to
enhance adaptability and detection efficiency.

• Reduces detection times that enhance real-time performance while maintaining a
consistently high detection rate for reliable anomaly detection.

The structure of this paper is as follows: Section 2 reviews recent related works.
Section 3 provides a detailed explanation of the proposed model. Section 4 presents the
experimental setup and results. Section 5 discusses the findings, while Section 6 concludes
the paper and suggests directions for future research.

Electronics 2025, 14, 104 3 of 25

2. Related Work
This section reviews the literature on anomaly detection and IDS algorithms, evalu-

ating their strengths and weaknesses and highlighting gaps that our proposed approach
aims to address. Table 1 summarizes the key findings.

Table 1. Summary of Related Work. Results include Accuracy (%), Precision (%), Recall (%), f1 score
(%), Detection Rate (%), and Detection Time (seconds).

Study Method Dataset(s) Results

Yang et al. [22] ASE + CNN CTU-UNB, Contagio-
CTU-UNB

CTU-UNB: f1 score = 99.00
(6 classes), 98.00 (8 classes);
Contagio-CTU-UNB:
f1 score = 98.00 (6 classes),
97.00 (6 classes)

Aygun and Yavuz [23] AE, DnAE NSL-KDD AE: Accuracy = 88.28; DnAE:
Accuracy = 88.65

Zhang et al. [24] DnAE + WL UNSW-NB15 Accuracy = 98.80;
Precision = 95.00; Recall = 95.00

Mao et al. [25] GAN + AE KDDCUP99, Arrhythmia,
MNIST, CIFAR-10

KDDCUP99: f1 score = 87.00

Ieracitano et al. [26] SA, SAE, Q-SVM NSL-KDD Q-SVM: Accuracy = 83.15
(binary), 83.65 (multi); SAE:
f1 score = 87.10 (Normal), 97.08
(DoS), 77.13 (Probe)

Hikal and Elgayar [9] SVM, BPNN, RF, J-48 Standard Accuracy = 99.7, detection
time = 30:80

Binbusayyis et al. [27] 1D CAE + OCSVM UNSW-NB15 Detection Rate = 97.80;
Accuracy = 97.60;
f1 score = 98.10

Adeniyi et al. [28] DFFNN + SAE NF-ToN-IoT Accuracy = 89.00

Yao et al. [29] OC-BiGRU-AE + Ens WSN-DS, UNSW-NB15,
KDDCUP99

Detection Rates = 97.91 (WSN-
DS), 98.92 (UNSW-NB15), 98.23
(KDDCUP99)

Hou et al. [30] NAE + DNN NSL-KDD, N-BaIoT, BoT-
IoT

Accuracy = 90.03 (NSL-KDD),
99.51 (N-BaIoT), 99.80 (BoT-IoT)

El-Gayar et al. [20] Stacking CICIDS2017, car-hacking Accuracy = 98

Proposed One-Class Asymmetric
Stacked Autoencoder +
One-Class DNN

BoT-IoT Detection Rate = 96.27;
Accuracy = 99.99;
Precision = 99.21;
f1 score = 97.69; Detection
Time = 0.27

Bold text indicates the proposed work.

2.1. Overview of Existing Methods

Yang et al. [22] suggested utilizing a stacked autoencoder (SAE) and Convolutional
Neural Network (CNN) for enhanced intrusion detection. The model performed well
with f1 scores of 99.00% and 98.00% for 6- and 8-class classification tasks on the CTU-
UNB dataset, and similarly high scores on the Contagio-CTU-UNB dataset. They used
resource-intensive data conversion to fit the CNN architecture, which made real-time
applications difficult.

Considering resource constraints, Aygun and Yavuz [23] compared traditional and
denoising autoencoders for anomaly detection. Despite 88.28% and 88.65% accuracies,
their results are inferior to modern benchmarks. According to Zhang et al. [24], integrating
DnAE with a weighted loss function improved feature selection accuracy to 98.80% on the
UNSW-NB15 dataset, with precision and recall scores around 95.00%.

In a novel approach, Mao et al. [25] combined a discriminative encoder and generator
in a Generative Adversarial Network (GAN) for training and used the encoder as an
Autoencoder during testing On the KDDCUP99 dataset, this architecture scored 87.00% f1
score. However, using the outdated KDDCUP99 dataset limited its relevance for modern
IoT-based IDS. Using statistical analysis (SA) and SAE architectures, Ieracitano et al. [26]

Electronics 2025, 14, 104 4 of 25

achieved competitive results on the NSL-KDD dataset. The Q-SVM classifier had 83.15%
and 83.65% accuracies for binary and multiclass classification, while the SAE excelled with
f1 scores for specific attack types. The performance was dataset-dependent and did not
address modern IoT challenges.

Hikal and Elgayar [9] suggested a lightweight IoT botnet detection IDS using anoma-
lies. The IDS detects botnet attacks using SVM, BPNN, RF, and Decision Tree models.
The proposed framework achieves 99.7% detection accuracy and 30–80s detection time on
a standard dataset, according to experiments. Ensemble preprocessing improves learner
performance, detecting botnet attacks in IoT networks.

In a joint optimization framework, Binbusayyis et al. [27] developed an advanced
unsupervised intrusion detection method utilizing a 1D Convolutional AE (CAE) and
One-Class SVM (OCSVM). Although they achieved high detection rates of 97.8% and f1
scores of 98.1% on the UNSW-NB15 dataset, their joint optimization approach increased
computational complexity.

Adeniyi et al. [28] used DFFNN and SAE to improve deep learning model fine-tuning
for intrusion detection on the NF-ToN-IoT dataset. Although they achieved 89.00% accuracy,
optimizing the autoencoder’s learning process for feature extraction was challenging.
Yao et al. [29] suggested combining ensemble learning with OC-Bi-GRU-AE for hybrid
solutions. The model achieved high detection rates of 97.91%, 98.92%, and 98.23% on
the WSN-DS, UNSW-NB15, and KDD-CUP99 datasets. Ensemble learning was resource-
intensive, limiting its scalability.

Hou et al. [30] developed a hybrid model combining a CNN-based one-class nonsym-
metric autoencoder and a DNN to improve performance. With accuracies of 90.03%, 99.51%,
and 99.80% on various datasets, their approach showed strong detection capabilities. Fining
decision boundaries and handling resource-intensive data conversion processes, especially
in convolutional layers, remained difficult.

El-Gayar et al. [20] introduced DFSENet, a new IDS, to protect the Internet of Vehicles
(IoVs) from cyberattacks. DFSENet detects cyber threats accurately by stacking multiple
machine learning models sequentially. Experiments using CICIDS2017 and car-hacking
datasets yielded over 98% accuracy.

2.2. Limitations of Existing Methods

Prior research on anomaly detection in IoT networks has several limitations that hinder
their effectiveness in addressing real-world challenges. For instance, methods such as those
proposed by Yang et al. [22] and Hou et al. [30] employed autoencoders combined with
CNN, which require resource-intensive data conversion. This process is computationally
expensive and less suitable for IoT datasets that predominantly consist of numerical data.
Another critical challenge is the issue of class imbalance, which is prevalent in IoT datasets.
While some studies, such as Binbusayyis et al. [27], attempted to address this, the solutions
remain insufficient to handle diverse IoT traffic patterns. Furthermore, techniques like the
one proposed by Hou et al. [30] lack data-driven thresholding mechanisms, limiting their
adaptability to varying attack scenarios. Lastly, many studies, including Mao et al. [25],
relied on outdated datasets like NSL-KDD, which fail to represent the complexity and
diversity of modern IoT environments, limiting their findings’ generalizability.

2.3. Addressing Existing Challenges

Our approach integrates several key innovations to overcome the challenges identified
in existing methods. We combine an autoencoder with a DNN optimized for the numerical
nature of IoT datasets, reducing computational overhead while maintaining high detec-
tion accuracy. This architecture eliminates the need for computationally expensive data

Electronics 2025, 14, 104 5 of 25

conversion, commonly seen in CNN-based approaches. We employ a one-class learning
technique, enabling the model to focus on learning normal behavior patterns and better
handling class imbalance. This improves detection performance, particularly in scenarios
with uneven class distributions. Additionally, we implement a data-driven thresholding
technique based on precision–recall curves, offering greater adaptability and accuracy in
anomaly detection. This method allows the model to adjust detection thresholds effectively.
Finally, our model is trained on a modern, comprehensive dataset that includes various
attack types, enhancing its generalizability and real-world applicability. These innovations
contribute to a robust, high-performance solution for anomaly detection in IoT networks.

3. The Proposed Model
IoT networks are being challenged by the need to manage massive volumes of high-

dimensional data, which may consume resources and hinder rapid anomaly detection.
Dimensionality reduction methods are critical for reducing this cost but must be carefully
constructed to ensure efficiency without decreasing detection accuracy. We suggest com-
bining a one-class asymmetric stacking autoencoder for dimensionality reduction with
a one-class DNN for anomaly detection. This approach alleviates computational chal-
lenges and enhances the precision of anomaly detection. The proposed model is visually
summarized in Figure 1.

The proposed model processes network traffic in three main stages. Initially, the data
are preprocessed to ensure they are suitable for the model. Next, dimensionality reduction
is performed using an unsupervised asymmetric stacked autoencoder, which is trained
exclusively on normal traffic data to extract significant features. These features are then
passed to the third component, a DNN, which is also trained only on normal traffic.
The DNN detects anomalous network activity by comparing the input features against
a predefined threshold. If the detection probability exceeds the threshold, the traffic is
classified as anomalous; otherwise, it is considered normal. This targeted training strategy
enables the DNN to identify deviations from typical behavior effectively. The subsequent
subsections provide a comprehensive discussion of the proposed model.

3.1. Data Preprocessing

IoT networks produce large-scale, heterogeneous datasets comprising diverse feature
types, including numerical data such as packet sizes and categorical data like protocol
types. These features often have varying value ranges, which can affect the performance
of machine learning models. Therefore, effective preprocessing is essential to standardize
the data and make them suitable for model input. In this study, we use the Bot-IoT dataset,
which is well organized, free of null values, and does not contain redundant samples.
The preprocessing stage focuses on two primary objectives: encoding categorical data into
a format that machine learning models can process and normalizing numerical features to
ensure consistent value ranges.

3.1.1. Data Encoding

The label encoding was applied to convert categorical features, such as the state at-
tribute with values like ‘RST’, ‘CON’, and ‘REQ’ into numerical values such as 1, 2, and 3.
This technique guarantees compliance with the model [31], which is especially advanta-
geous for resource-constrained IoT devices. Label encoding simplifies representation, saves
memory, and aligns categorical data with machine learning model needs by providing a
unique integer value to each category within a feature. It translates a categorical feature
(F1, F2, · · · , Fn) with C distinct values to an integer (F1_enc, F2_enc, · · · , Fn_enc) in the range
of 0 to C− 1, where C is the feature length, as described in Algorithm 1.

Electronics 2025, 14, 104 6 of 25

IoT-Dataset

CSV File
Data Preprocessing

Label Encoding Min-Max Normalization

pkts bytes state state_nu

8 1980 1 1

2 120 2 2

Dimensionality Reduction

One Class Asymmetric Stacked auto-encoder

Input
x=43

E
nc

od
er

L
ay

er
 1

Compressed
Features=20 D

ec
od

er
L

ay
er

 1

D
ec

od
er

L
ay

er
 2 Output

x'=43

Encoder Decoder

Input
x=43

E
nc

od
er

L
ay

er
 1

Compressed
Features=20

Compressed Representaion

Compressed Features

Sigmoid

Input

Dense1
Dense2

Output

One Class Deep Neural Network

Attack Detection

Cleaned Data

Detection Probability

Pr
ec

is
io

n-
R

ec
al

l C
ur

ve
T

hr
es

ho
ld

Thresholding

Attack

Normal

pkts bytes state state_nu

0.1 0.3 0.5 0.2

0.02 0.9 0.6 0.4

Figure 1. Framework of the proposed model.

Electronics 2025, 14, 104 7 of 25

Algorithm 1 Label Encoding

1: Input: Categorical feature F
2: Output: Numerical feature F_enc
3: unique_labels← []
4: label_map← dict{}
5: for each value in F do
6: if value not in unique_labels then
7: add value to unique_labels
8: label_map[value]← length(unique_labels) - 1
9: end if

10: encoded_value← label_map[value]
11: replace value with encoded_value in F
12: end for
13: Return F_en

3.1.2. Normalization

Feature normalization is critical, specifically when dealing with datasets that have
features with significantly different ranges. This step mitigates the impact of features with
large values, which can negatively affect the performance of detectors, such as the ‘bytes’
feature, which contains values ranging from 120 to 1980. Research suggests that scaling
improves the training process by ensuring consistent contributions from all features [32].
We utilize the Min-Max scaling method, which rescales all feature values to the range of
[0, 1], as illustrated in Equation (1) [33] and Algorithm 2.

x =
F_enc− F_encmin

F_encmax − F_encmin
(1)

where x is the normalized value, F_enc is an original feature value, and F_encmax and
F_encmin are the maximum and minimum values of this feature.

Algorithm 2 Min-Max Normalization

Require: data: The dataset to be normalized
Ensure: normalizedData: The normalized dataset

1: F_encmin ← min(data)
2: F_encmax ← max(data)
3: for each value in data do
4: Compute x from Equation (1)
5: normalizedData.addItem(x)
6: end for
7: return normalizedData

3.2. Dimensionality Reduction

This section focuses on the essential dimensionality reduction process, which im-
proves model efficiency and accuracy, especially in high-dimensional IoT datasets. We
employ an asymmetric stacked autoencoder (ASAE), an advanced autoencoder established
specifically for dimensionality reduction applications, which captures correlations and
preserves essential information through its reconstruction capabilities. Autoencoder, a kind
of Artificial Neural Network (ANN), is generally employed for unsupervised learning
tasks [34]. We utilize the autoencoder rather than traditional approaches, such as Principal
Component Analysis (PCA) [35], since it can capture nonlinear correlations within the
data. This selection makes the autoencoder a more flexible and adaptable technique than
the linear transformations offered by PCA [36]. While alternative nonlinear methods like
t-SNE, UMAP, and ISOMAP are also effective at capturing nonlinear relationships, they are
primarily designed for visualization and do not offer the same reconstruction capabilities.

Electronics 2025, 14, 104 8 of 25

This makes ASAE more suitable for our task of preserving critical information for anomaly
detection and classification. Additionally, ASAE’s scalability, integration with machine
learning pipelines, and adaptability to IoT data make it an ideal choice for our study. In the
following sections, we briefly introduce the Traditional autoencoder, followed by a detailed
explanation of ASAE.

3.2.1. Traditional Autoencoder

Traditional autoencoders usually consist of one layer in both the encoder and decoder,
with symmetric architecture in which the number of neurons in the encoder matches the
number of neurons in the decoder [37], as shown in Figure 2.

x1

x2

x3

x4

x5

x6

xn

x'1

x'2

x'3

x'4

x'5

x'6

x'n

h1

h2

hm

Compressed Features

Output(Reconstructed Features)
 X' X

Input(input Features)
X

Latent Representation
w(1)

b(1)

w(2)

b(2)

h

MSE

~~

Figure 2. Structure of autoencoder.

3.2.2. Asymmetric Stacked Autoencoder

The ASAE differs from traditional autoencoders, which are typically shallow and
symmetric. The ASAE employs a deep-layered and asymmetric structure, as depicted
in Figure 3. This means the ASAE incorporates multiple hidden layers in the encoder
and decoder, allowing for more complex feature extraction. Additionally, the ASAE’s
architectural flexibility provides for varying the number of layers and neurons between
the encoder and decoder, resulting in more meaningful data representations and improved
reconstruction accuracy.

As illustrated in Figure 3, the encoder and decoder networks are considered the main
working blocks of ASAE, as explained below. Given the input dataset after preprocessing
(x1, x2, x3, . . . , xn), where x indicates the feature representation of the input data and x̄
represents the reconstructed output data after decoding from the hidden layer.

• The Encoder Network
It transforms the input data into a representation in lower-dimensional latent space.
The encoder has fewer layers but more neurons per layer, focusing on dimensionality
reduction and abstraction [38]. Equation (2) shows the mathematical formula for the
encoding process.

h(xi) = F(W(1)xi + b(1)) (2)

where W(1) represents the weight matrix connecting the input layer to the hidden
layer, while b(1) denotes the bias vector associated with the input layer. The activation
function F, a ReLU, is applied across all encoder layers to incorporate nonlinearity and
mitigate challenges such as vanishing gradients [39]. The ReLU activation function is
mathematically expressed in Equation (3).

ReLU(zi) = max(0, zi) (3)

Electronics 2025, 14, 104 9 of 25

where zi represents the value of the i-th element in the input vector z.
• The Decoder Network

It reconstructs the original data from the compressed representation. It typically has
more layers with fewer neurons, focusing on accurately reconstructing the original
input data [38]. The decoding process is shown in Equation (4).

x̄i = g(W(2)h(xi) + b(2)) (4)

where W(2) is the weight matrix between the hidden layer and the output layer, b(2) is
the bias vector of the hidden layer, and g is the decoding activation function, sigmoid,
that takes a vector of real numbers as input and transforms them into a vector of values
ranging from 0 to 1 [39]. Equation (5) mathematically represents the sigmoid function.

sigmoid(zi) =
1

1 + e−zi
(5)

The parameter matrix of the autoencoder is optimized to minimize the reconstruction
error, or Mean Square Error (MSE), as shown in Equation (6).

MSE =
1
n

n

∑
i=1
∥Xi − X̄i∥2 (6)

x'1

x'2

x'3

x'4

x'5

x'6

x'n

h1

hm

Decoder Layer 1

Compressed Features

Decoder

Encoder Layer 1 Decoder Layer 2x1

x2

x3

x4

x5

x6

xn

Input(input Features)
X

Encoder

Latent Representation

w(1)

b(1)

w(2)

b(2)

h

~~

MSE

Figure 3. Structure of asymmetric stacked autoencoder.

3.3. Attack Detection

This section describes our framework’s crucial attack detection stage, achieved through
a fully connected DNN. However, unlike traditional learning methods, we employ a one-
class (OC) learning paradigm. This approach focuses on learning the features of normal
network traffic [40], allowing the DNN to effectively identify deviations from normal
patterns that are classified as attacks [41].

During detection, the DNN utilizes the decision boundary to identify incoming data
as normal or abnormal. If the data fall within the boundary, they are regarded as nor-
mal. Conversely, data points outside the boundary are considered attacks and trigger

Electronics 2025, 14, 104 10 of 25

appropriate responses from the IDS. This approach effectively addresses the challenge of
imbalanced datasets.

3.3.1. Threshold Selection for OC-DNN

As previously discussed, the one-class (OC) model relies on a threshold or decision
boundary during detection to differentiate between normal and abnormal behavior. This
section examines two methods for determining the optimal threshold:

1. Receiver Operating Characteristic (ROC) Curve: This curve, typically used for bal-
anced datasets [42], visually depicts the trade-off between correctly identifying normal
(true positives) and mistakenly classifying attack traffic as normal (false positives) at
various threshold settings [43]. The ROC curve is useful for balanced datasets as it
illustrates the model’s capability to differentiate between classes, taking into account
both true and false positives. Since both classes are represented relatively, the ROC
curve can accurately reflect the trade-offs between detecting positive instances and
avoiding false alarms.

2. Precision–Recall Curve: This curve becomes particularly valuable for imbalanced
datasets [42]. It graphically illustrates the precision (low false positive rate) against
the recall (detection rate) [44]. By examining this curve, we can select a threshold
that balances the required recall and precision values. Because it focuses on the
model’s performance about the positive class, the precision–recall curve provides
more information for unbalanced datasets. Precision–recall curves do not consider
the true negative rate, which might be excessively large in unbalanced datasets. As a
result, even in rare cases, they are more applicable for assessing how well the model
detects the positive class.

3.3.2. Data-Driven Threshold Determination (DDTD) for Anomaly Detection

Instead of being established randomly or predetermined, the threshold in the Data-
Driven Threshold Determination (DDTD) method is decided based on the dataset’s char-
acteristics, such as the precision–recall trade-off. As seen in Figure 4 and explained in
Algorithm 3, this method ensures that the threshold adjusts to the unbalanced nature of
IoT network data using validation data. The technique minimizes false positive rates and
creates a robust decision boundary by optimizing precision at intersection points while
balancing recall and precision.

Algorithm 3 Data-Driven Threshold Determination using Precision–Recall Curve

Require: Trained model, XValidation, yvalid (true labels of the validation set)
Ensure: Optimal threshold

1: Using the trained model, predict valid_y_predictions based on XValidation
2: Compute the Precision–Recall Curve
3: for each data point in the validation set do
4: precision, recall, thresholds← Compute Precision–Recall(XValidation, yvalid, valid_y_predictions)
5: end for
6: intersection_indices← Find Intersection Points(precision, recall)
7: intersection_values← PrecisionAt(intersection_indices)
8: max_p← max(intersection_values)
9: intersection_thresholds← ThresholdsAt(intersection_indices)

10: optimal_threshold← intersection_thresholds[IndexAt(max_p)]
11: return optimal_threshold

The presence of intersections between the precision and recall curves is guaranteed
due to the imbalanced validation dataset, reflecting the coexistence of normal and abnormal
traffic in real IoT environments. These intersections enable the model to determine a mean-
ingful threshold during the validation phase, ensuring accurate classification of test data.

Electronics 2025, 14, 104 11 of 25

In contrast, scenarios lacking such intersections would occur only in one-class datasets (e.g.,
containing solely normal or anomalous data). However, these cases are not relevant to the
proposed method or typical IoT environments, where both the validation and test datasets
are designed to contain two classes, guaranteeing the existence of intersection points.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ec
is

io
n/

Re
ca

ll

Precision-Recall Curve for Optimal Threshold
Precision
Recall
Intersection Points
Optimal Threshold

Figure 4. Determination of the optimal threshold based on the intersection points between precision
and recall curve.

4. Experimental Evaluation and Results
This section provides an experimental evaluation of the proposed model’s perfor-

mance. It outlines evaluation metrics, experimental setup, and the used dataset for testing.
Then, the results are compared against state-of-the-art intrusion detection methods to
highlight the model’s effectiveness.

4.1. Dataset Description

We used the BoT-IoT data to evaluate the proposed model. The BoT-IoT dataset,
originating from the work by [45], was explicitly designed to reflect realistic network
environments. It encompasses data collected from common smart home devices, including
smart refrigerators, garage doors, thermostats, lights, and weather monitoring systems.
Table 2 presents the characteristics of the BoT-IoT dataset, and Figure 5 illustrates a snapshot
from the dataset file. Additionally, Table 3 presents the dataset’s features from their name,
description, domain, and data type.

Table 2. Characteristics of the BoT-IoT dataset.

Description Value

Source Cyber Range Lab at UNSW Canberra
Original_Size 72,000,000 samples
Utilized_ Size 3.6 million records (5% of the full dataset)
Class Distribution 477 normal flow samples, 3,688,045 attack flow samples
Features 46 per sample

Electronics 2025, 14, 104 12 of 25

daddr dport pkts bytes state state_number ltime seq dur mean
192.168.100.780 8 1,980 RST 1 1,528,088,529 9 7.0564 0.0689
192.168.100.147-1 2 120 CON 2 1,528,088,522 10 0.0001 0.0001
192.168.100.780 8 2,126 RST 1 1,528,088,529 11 7.0479 0.0645
192.168.100.780 8 2,024 RST 1 1,528,088,529 12 7.0476 0.0642
192.168.100.780 8 2,319 RST 1 1,528,088,529 13 7.0468 0.0639
192.168.100.780 8 1,983 RST 1 1,528,088,529 14 7.0466 0.0636
192.168.100.780 8 1,978 RST 1 1,528,088,529 15 7.0464 0.0631
192.168.100.780 8 2,021 RST 1 1,528,088,529 16 7.0461 0.063
192.168.100.780 8 1,996 RST 1 1,528,088,529 17 7.0458 0.0629
192.168.100.780 8 2,038 RST 1 1,528,088,529 18 7.0421 0.0611
192.168.100.780 8 2,300 RST 1 1,528,088,529 19 7.0413 0.0608

Figure 5. Example subset of the BoT-IoT dataset.

Table 3. Bot-IoT Dataset Features.

No. Name Description Domain Data Type

1 pkSeqID Unique row identifier for each entry Statistical int64
2 stime Timestamp marking the start of the record Time float64
3 flgs Indicators for the transaction’s flow state Categorical object
4 flgs_number Numeric representation of the flow state flags Statistical int64
5 proto Protocol name used during the transaction Categorical object
6 proto_number Numeric encoding of the protocol used Statistical int64
7 saddr IP address of the source initiating the transaction Categorical object
8 sport Port number on the source side Categorical object
9 daddr IP address of the destination endpoint Categorical object
10 dport Port number on the destination side Categorical object
11 pkts Total packet count in a transaction Statistical int64
12 bytes Total byte count in a transaction Statistical int64
13 state Status or condition of the transaction Categorical object
14 state_number Numeric encoding of the transaction state Statistical int64
15 ltime Timestamp indicating the end of the record Time float64
16 seq Sequence number from the Argus tool Statistical int64
17 dur Total duration of the transaction Time float64
18 mean Average duration across aggregated records Statistical float64
19 stddev Standard deviation of durations in aggre-

gated records
Statistical float64

20 sum Sum of durations across aggregated records Statistical float64
21 min Minimum duration within aggregated records Statistical float64
22 max Maximum duration within aggregated records Statistical float64
23 spkts Number of packets sent from the source to the des-

tination
Statistical int64

24 dpkts Number of packets sent from the destination to
the source

Statistical int64

25 sbytes Byte count for source-to-destination data transfer Statistical int64
26 dbytes Byte count for destination-to-source data transfer Statistical int64
27 rate Packets transferred per second in the transaction Time float64
28 srate Source-to-destination packet transfer rate Time float64
29 drate Destination-to-source packet transfer rate Time float64
30 TnBPSrcIP Total bytes transferred per source IP Statistical int64
31 TnBPDstIP Total bytes transferred per destination IP Statistical int64
32 TnP_PSrcIP Total packets transferred per source IP Statistical int64
33 TnP_PDstIP Total packets transferred per destination IP Statistical int64
34 TnP_PerProto Total packets for each protocol type Statistical int64
35 TnP_Per_Dport Total packets transferred per destination port Statistical int64
36 AR_P_Proto_P_SrcIP Average packet rate per protocol for each source IP Statistical float64
37 AR_P_Proto_P_DstIP Average packet rate per protocol for each destina-

tion IP
Statistical float64

38 N_IN_Conn_P_DstIP Number of inbound connections per destina-
tion IP

Statistical int64

39 N_IN_Conn_P_SrcIP Number of inbound connections per source IP Statistical int64
40 AR_P_Proto_P_Sport Average packet rate per protocol for source port Statistical float64
41 AR_P_Proto_P_Dport Average packet rate per protocol for destina-

tion port
Statistical float64

42 Pkts_P_State_P_Protocol_P_DestIP Packet count grouped by state and protocol for
each destination IP

Statistical int64

43 Pkts_P_State_P_Protocol_P_SrcIP Packet count grouped by state and protocol for
each source IP

Statistical int64

44 attack Label indicating traffic type: 0 for normal, 1 for
attack

Categorical int64

45 category General category of the traffic Categorical object
46 subcategory Specific subcategory of the traffic Categorical object

Electronics 2025, 14, 104 13 of 25

Evaluation Environment Overview

The dataset was generated within a sophisticated testbed environment meticulously
designed to simulate IoT traffic and various attack scenarios, as illustrated in Figure 6.
The testbed consists of the following core modules [45]:

internet

Switch

Attack NodesVictim Nodes

Traffic Monitoring Node

Virtual Machine Setup Internal Network

WAN LAN

PF Sense Firewall

192.168.1.5

192.168.1.8

192.168.1.10

192.168.1.3

192.168.100.1

192.168.100.30

192.168.100.31

192.168.100.32
VMware ESXi Hosts

Figure 6. Testbed setup for the Bot-IoT dataset.

1. Network Platforms: The dataset comprises both normal and abnormal samples. Nor-
mal traffic includes benign communications from IoT devices (e.g., smart refrigerators,
weather monitoring systems) interacting with their respective cloud services. Abnor-
mal traffic is generated by attacker VMs running various attack scenarios (DDoS, DoS,
Probing, Information Theft) aimed at IoT devices and network infrastructure. These
VMs are managed within a vSphere platform on an ESXi cluster, including network
devices like firewalls and taps for monitoring traffic. Captured traffic reflects real-
world conditions, with benign IoT communications and malicious activities captured
to evaluate the IDS framework’s detection capabilities.

2. Simulated IoT Services: IoT services were simulated using the Node-RED middleware,
which facilitates lightweight communication between IoT devices and cloud servers
via the MQTT protocol. JavaScript scripts developed within Node-RED emulate
temperature, pressure, and humidity sensors, periodically publishing data to the AWS
IoT hub. This setup realistically represents smart home device interactions, including
regular device-to-cloud communication.

3. Feature Extraction and Forensic Analytics: The captured network traffic, stored in
pcap files, is processed using the Argus tool to extract flow-based features. Features
such as packet counts, byte counts, and traffic rates are computed and stored in CSV
format for further analysis.

The experiments were performed on an HP laptop running Windows 10 Pro Enter-
prise 64-bit, equipped with an Intel Core i7-5500 CPU (2.40 GHz, dual-core, four logical
processors) and 16 GB of RAM, supported by 14.6 GB of virtual memory. Python 3.10 was
utilized for implementation, with PyCharm (2022.2) as the development environment. Data
preprocessing was carried out using Pandas (1.5.2) and NumPy (1.26.0), while machine
learning and deep learning tasks were handled using Scikit-learn (1.1.3) and Keras with
TensorFlow (2.10.0), respectively.

Electronics 2025, 14, 104 14 of 25

4.2. Performance Evaluation Metrics

Different performance evaluation metrics were employed to validate the proposed
model’s effectiveness, as described in the following sections.

4.2.1. Classification Performance Metrics

This section describes the metrics used to evaluate the performance of the proposed
model. The commonly utilized metrics include accuracy, precision, recall, and the f1 score,
which are defined in Equations (7)–(10). True positive (TP) and true negative (TN) refer to
correctly classified positive and negative samples, respectively. Conversely, false positive
(FP) and false negative (FN) represent positive and negative samples that are misclassified.

• Accuracy: measures the proportion of correct predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

• Precision: represents the model’s ability to predict positive samples correctly.

Precision =
TP

TP + FP
(8)

• Recall/Detection rate: measures the model’s ability to identify true positive samples.

Recall =
TP

TP + FN
(9)

• f1 score: combines precision and recall, offering a balanced view of the model’s perfor-
mance.

f 1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

4.2.2. Resource Efficiency Metric

To comprehensively assess the efficacy of the proposed AIDS model tailored for IoT
networks, it is imperative to evaluate its impact on network resources, particularly those
targeted for optimization. Unfortunately, the datasets lack detailed information on device
structures, such as battery capacity, energy usage, and bandwidth. Consequently, the only
quantifiable resource at our disposal is the detection time. A decrease in detection time
signifies a reduction in resource consumption and makes this able to be implemented in
real-world scenarios. This metric acts as a proxy for resource consumption, reflecting the ef-
ficiency gains achieved by our proposed AIDS model within the constraints of IoT networks
with inherent limitations. The detection time (Time) is defined as the duration between the
moment the detection starts and the moment it ends, as depicted in Equation (11).

Detection Time = End− Start (11)

4.3. Experimental Evaluation

This section presents the proposed model’s analysis and the experiments’ results. The
K-fold cross-validation technique, with the k = 10, was utilized to evaluate the model.
In this method, the dataset is divided into 10 equal parts or ’folds’ at random. For each
iteration, the model is trained on nine folds, while the remaining fold is used for validation.
This process is repeated 10 times, ensuring each fold is used as the validation set once.
The performance metrics are then averaged across all iterations to provide a robust estimate
of the model’s performance. This approach helps minimize overfitting by testing the model
on various subsets of data, thereby reducing the bias associated with a single train-test split.

Electronics 2025, 14, 104 15 of 25

4.3.1. Analysis of ASAE Structure

This section explores the architectural aspects of the ASAE model. We discuss its key
features and design choices, contrasting it with traditional autoencoders and highlighting
its suitability for numeric IoT data.

Unlike some autoencoders that employ CNN layers [30], our model utilizes dense
layers to align with the numeric nature of the input data and avoid unnecessary resource
consumption associated with converting data for CNN. This decision prioritizes resource
efficiency for IoT environments. The network structure significantly impacts classification
performance. We determined the optimal configuration through experiments with various
structural combinations as illustrated in Table 4. The encoder utilizes three dense layers
with ReLU activation functions, reducing the initial 43 features to 20 in the bottleneck layer
(also with ReLU). The decoder utilizes five dense layers and an output layer containing the
reconstructed 43 features employing the sigmoid activation function in the last layer.

As this autoencoder is used in this paper for dimensionality reduction, we must
force the network to concentrate on the most essential features. We apply the L1 or Lasso
regularizer module to the activity of a first layer in the encoder. L1 regularization is
highly effective for feature selection in high-dimensional datasets. By introducing a penalty
term to the loss function, sparse weights in the network are promoted. This sparsity
minimizes overfitting by discouraging excessive reliance on specific features. A learning
rate of 0.00001 is applied to the L1 function to define the regularization intensity. The model
is compiled with the Mean Squared Error (MSE) loss function and the Adam optimizer.

The selection of a batch size for training was purposefully made from a range of
options, including 1, 8, 16, 32, 64, and 128, with a specific choice of 1. This selection
demonstrates its benefits, particularly when confronted with a constrained training set.
In our case, the training dataset for normal samples, as mentioned previously, consists of
477 samples, and after splitting, the resulting number became relatively small.

We also implement the early stopping technique on 100 epochs to avoid overfitting,
optimize the training process, and save computational resources. Early stopping is a
regularization technique that halts the training process when the model’s performance on
the validation set begins to decline.

Table 4. Configuration Details of the Autoencoder.

Component Subcomponent Details

Encoder

Input 43 features
Output 20 features (bottleneck layer)
Activation Function ReLU
Layers Three dense layers

Decoder

Input 20 features (from bottleneck layer)
Output 43 features (reconstructed output)
Activation Function Sigmoid
Layers Five dense layers

Loss Function – Minimum Square Error (MSE)

Optimizer – Adam optimizer

Batch Sizes – 1, 8, 16, 32, 64, 128

Training
Epochs – 100

Electronics 2025, 14, 104 16 of 25

4.3.2. Performance of ASAE Against Traditional Autoencoders

Following the analysis of the ASAE structure, we implemented and evaluated the pro-
posed model alongside various traditional autoencoders on the BoT-IoT dataset. The com-
parison focuses on models with 20 dimensions, which were used with a DNN classifier,
as these parameters yielded the best results for the ASAE model. Additionally, the DNN
configuration, including the number of layers, number of neurons per layer, and other
hyperparameters, was fixed across all autoencoders to control for potential confounding
factors. This setup demonstrated that detection accuracy and performance improvements
are primarily due to the ASAE architecture rather than differences in the neural network
structure or training parameters. Table 5 summarizes the quantitative assessment of how
the ASAE model performs compared with traditional autoencoders.

Table 5. Performance of ASAE and its variants.

AE_Method Accuracy Precision Recall f1 Score Detection Time

Traditional AE 97.8231 65.1290 65.2331 65.1814 0.4381
Sparse AE 98.9812 97.4398 97.7650 97.6008 0.3921

Variational AE 95.9900 94.8782 92.9867 93.9314 0.8576
ASAE 99.9989 99.2059 96.2686 97.6920 0.2746

Bold text indicates the optimal result.

The results highlight the remarkable performance of the ASAE model in anomaly
detection compared with traditional, sparse, and variational autoencoders. In terms of
accuracy, ASAE achieves an outstanding 99.9989%, far surpassing traditional autoencoders
at 97.8231% and variational autoencoders at 95.9900% and showing a clear improvement
over sparse autoencoders at 98.9812%, which indicates that ASAE captures the latent rep-
resentations of data more effectively, leading to significantly more reliable classifications.
This improvement can be attributed to ASAE’s increased capacity to capture and utilize
latent data representations, resulting in more accurate and exact classifications even in
challenging conditions. The ASAE model’s precision of 99.2059% demonstrates its superior-
ity, a significant improvement over the sparse autoencoder at 97.4398%, and substantially
better than the traditional autoencoder at 65.1290%. The rise in precision shows ASAE’s
ability to reduce false positives, ensuring that detected anomalies truly reflect actual threats
or data abnormalities. ASAE outperforms traditional autoencoders at 65.2331% and vari-
ational autoencoders at 92.9867%, with a high recall value of 96.2686%, comparable to
sparse autoencoders at 97.7650%. This result implies that ASAE detects the vast majority of
anomalies in the dataset, demonstrating strong performance even under challenging condi-
tions. ASAE’s f1 score of 97.6920% reflects its ability to detect anomalies while accurately
avoiding false positives.

ASAE additionally stands out in detection time, with the shortest duration of 0.2746 s
recorded. This efficiency is especially significant for real-time applications that require
quick anomaly detection. The variational autoencoder has the longest detection time of
0.8576 s, while traditional and sparse autoencoders follow the ASAE at 0.4381 and 0.3921 s,
respectively. ASAE’s low computing overhead makes it suitable for resource-constrained
or latency-sensitive situations while providing accurate results.

4.3.3. Performance of the Classifier

This section discusses the architecture and performance of the DNN, the anomaly
detector, in the proposed AIDS model summarized in Table 6. It utilizes six dense layers
and prevents overfitting by incorporating dropout layers at specific points with various
rates (0.5, 0.2, 0.2, 0.1, 0.1, 0.1). Additionally, early stopping with a maximum of 200 epochs
is implemented to optimize training. We employ the L2 regularization, also known as

Electronics 2025, 14, 104 17 of 25

the Ridge regularizer module, which penalizes large weights more severely than smaller
ones and promotes the model’s distribution across all input features, enhancing generaliza-
tion. The learning rate passed to this module is set at 0.001. All dense layers employ the
ReLU activation function except for the output layer, which utilizes the sigmoid function.
The binary_cross-entropy loss and Adam optimizers are used when compiling, and a batch
size of 1 is used.

Table 6. Learning Configuration for Deep Neural Network.

Component Details

Layers six dense and six dropout
Training Epochs 200
Regularizer L2
Activation Function ReLU and Sigmoid
Learning Rate 0.001
Loss Function binary_cross-entropy
Optimizer Adam
Batch Size 1

Having established the practical DNN framework, we deploy diverse classifiers on
the Bot-IoT dataset without applying the proposed ASAE, as summarized in Table 7. These
classifiers include Sigmoid and DNN as deep learning models, complemented by One-Class
Support Vector Machine (OCSVM) and Isolation Forest (IF) as machine learning models.
This comparison aims to understand the impact of autoencoder features on classification.

Table 7. Performance of state-of-the-art classifiers without ASAE.

Method No.Epochs Threshold Accuracy Precision Recall f1 Score Detection Time

Sigmoid 6 0.00051961 99.0336 49.9192 49.9990 49.7666 0.2798
DNN 11 7.144177× 10−14 99.8767 97.9564 97.9565 81.9797 0.3119

OCSVM - - 00.0105 43.2543 14.5883 00.0106 0.5983
IF - - 21.6777 15.9982 49.9710 17.8165 0.4303

Bold text indicates the optimal result.

The Sigmoid classifier demonstrates moderate accuracy of 99.03% but exhibits rel-
atively low precision, recall, and f1 score, indicating challenges distinguishing between
positive and negative classes. This leads to a notable number of false positives and false
negatives. The choice of Sigmoid, potentially motivated by simplicity, may not be optimal
for capturing complex data patterns.

In contrast, the DNN classifier surpasses Sigmoid with a high accuracy of 99.88%
and superior precision, recall, and f1 score, showcasing the capacity of a deeper neu-
ral network to discern intricate relationships in the data. The extremely low threshold
7.144177× 10−14 indicates a high confidence threshold for classification, and the elevated
f1 score underscores its effectiveness in handling imbalanced datasets.

OCSVM is designed for one-class problems and demonstrates a low accuracy of 0.01%.
Its high recall suggests an ability to identify samples of the minority class. The Isolation
Forest exhibits improved accuracy by 21.68% compared with OCSVM.

Considering their operational characteristics, the absence of explicit threshold values
for OCSVM and Isolation Forest is reasonable. These models might not provide explicit
threshold values because they do not rely on probability scores like other classifiers. OCSVM
separates normal samples from the origin in feature space, and Isolation Forest isolates
anomalies based on the number of partitions required. Therefore, traditional threshold
values may not be applicable.

Electronics 2025, 14, 104 18 of 25

4.3.4. Performance of the Proposed Model

This section investigates how the autoencoder affects classifiers by reducing their
dimensionality. The encoded representation from the autoencoder acts as input for the fol-
lowing classifier. We analyze the autoencoder’s impact on enhancing feature representation
and facilitating improved classification results.

Table 8 evaluates the hybrid model’s performance based on the autoencoder’s en-
coded representations (AE_Configuration), followed by classification by various classifiers
(Classifier_Configuration). Notably, each configuration explores different dimensions and
training epochs for the autoencoder, while the classifiers maintain a consistent number of
epochs and different thresholds.

Table 8. Performance of the proposed model.

AE_Configuration Classifier_Configuration
Accuracy Precision Recall f1 Score Detection Time

Dimensions Epochs Threshold Epochs Threshold Type

8

37 0.0484 6 0.0002 Sigmoid 99.9620 95.2196 60.9610 67.6376 0.2670
20 0.0431 6 3.7156× 10−9 DNN 99.8759 96.3669 53.9684 57.2814 0.2726
28 0.0510 - - OCSVM 71.4784 46.8532 49.9982 41.6923 0.2967
41 0.0484 - - IF 73.1973 37.7932 49.9929 42.2634 0.6364

10

44 0.0439 6 0.0006 Sigmoid 99.9897 99.9949 76.3598 84.5180 0.2724
29 0.0449 6 0.0003 DNN 99.9874 96.8194 73.6944 81.4635 0.2731
20 0.0439 - - OCSVM 57.9091 40.0677 49.9953 36.6781 0.3404
28 0.0388 - - IF 99.9861 50.3956 51.7185 50.6417 0.5260

15

34 0.0381 6 0.0015 Sigmoid 99.9883 96.4231 74.6831 82.2285 0.2764
27 0.0442 6 9.9143× 10−22 DNN 99.9906 96.4243 77.7247 84.7158 0.2743
24 0.0472 - - OCSVM 99.9883 96.4231 74.6831 82.2285 0.2820
40 0.0399 - - IF 99.9874 50.3962 53.3277 50.7061 0.2688

20

33 0.0444 6 0.0018 Sigmoid 99.9952 98.8073 85.5490 91.1359 0.2775
28 0.0533 6 0.0039 DNN 99.9989 99.2059 96.2686 97.6920 0.2746
41 0.0409 - - OCSVM 99.4750 60.4563 50.2321 50.3314 0.3940
43 0.0412 - - IF 99.9006 51.9399 50.2501 50.4280 0.5012

Bold text indicates the optimal result.

Regarding the hybrid model, Sigmoid and DNN classifiers exhibit varying perfor-
mance based on different autoencoder configurations. Notably, DNN consistently outper-
forms Sigmoid in accuracy, precision, recall, and f1 score across all configurations. This
reinforces the idea that a deeper neural network with dimensionality reduction layers can
better capture complex data patterns, making it a more suitable choice for the proposed
model. On the contrary, the OCSVM and Isolation Forest classifiers designed for one-class
problems displayed mixed performance. OCSVM has difficulty with imbalanced datasets,
which is evident from its lower accuracy and precision. Meanwhile, Isolation Forest shows
improved accuracy and can find anomalies in the dataset.

The proposed model’s results assert the autoencoder’s positive impact on feature rep-
resentation. In most cases, the proposed model outperforms individual classifiers. The en-
coded representations from the autoencoder contribute to improved accuracy, precision,
recall, and f1 score, highlighting the effectiveness of the dimensionality reduction stage.
Temporal factors are crucial for assessing the performance of the proposed model for AIDS-
IoT. Beyond standard metrics like accuracy, precision, recall, and f1 score, the time required
for detection is an important consideration, especially in real-time or resource-constrained
scenarios like those seen in IoT. The reported time values in Tables 5, 7 and 8 indicate the
computational efficiency of each configuration. Lower time values are desirable, especially
in applications requiring quick responses. The DNN classifier consistently demonstrates
competitive time efficiency across various autoencoder configurations, reinforcing its suit-
ability for real-time or resource-limited scenarios.

Electronics 2025, 14, 104 19 of 25

To comprehensively assess the effectiveness of the autoencoder on individual classes
(normal and abnormal), we meticulously compiled the evaluation metrics for each class
across various classifiers and distinct dimension settings.

The Figure denoted as Figure 7 illustrates these evaluations. For instance, in Figure 7a,
“DNN-8” denotes the DNN configuration with eight dimensions, and “DNN-10” denotes
the DNN with ten dimensions. Precision-0, recall-0, and f1-0 correspond to the precision,
recall, and f1 score metrics for the “normal” class, while precision-1, recall-1, and f1-1
correspond to the precision, recall, and f1 score metrics for the “abnormal” class. Also, this
applies to Figure 7b–d for the other classifiers. In addition, Figures 8 and 9 illustrate the
ROC curve and confusion matrix for the proposed mode based on 20 dimensions.

0

10

20

30

40

50

60

70

80

90

100

I s o l a t i o n
F o r e s t

I s o l a t i o n
F o r e s t - 8

I s o l a t i o n
F o r e s t - 1 0

I s o l a t i o n
F o r e s t - 1 5

I s o l a t i o n
F o r e s t - 2 0

V
al

u
e(

%
)

Classifier- Num. Dimension

Precision-0 Recall-0 F1-0 Precision-1 Recall-1 F1-1

0

10

20

30

40

50

60

70

80

90

100

O C S V M O C S V M - 8 O C S V M - 1 0 O C S V M - 1 5 O C S V M - 2 0

V
al

u
e(

%
)

Classifier- Num. Dimension

Precision-0 Recall-0 F1-0 Precision-1 Recall-1 F1-1

0

10

20

30

40

50

60

70

80

90

100

S i g m o i d S i g m o i d - 8 S i g m o i d - 1 0 S i g m o i d - 1 5 S i g m o i d - 2 0

V
al

u
e(

%
)

Classifier- Num. Dimension

Precision-0 Recall-0 F1-0 Precision-1 Recall-1 F1-1

(a) (b)

(c) (d)

0

10

20

30

40

50

60

70

80

90

100

D N N D N N - 8 D N N - 1 0 D N N - 1 5 D N N - 2 0

V
al

u
e(

%
)

Classifier- Num. Dimension

Precision-0 Recall-0 F1-0 Precision-1 Recall-1 F1-1

Figure 7. In-depth analysis of class-wise metrics for (a) DNN, (b) Sigmoid, (c) OCSVM, (d) IF.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve (ROC)

AUC = 0.9922

Figure 8. Roc curve for the proposed model using 20-dimensional feature space.

Electronics 2025, 14, 104 20 of 25

Normal Attack
Predicted labels

N
or

m
al

A
tta

ck
Tr

ue
 la

be
ls

99 1

4 770,286

Confusion Matrix

100000

200000

300000

400000

500000

600000

700000

Figure 9. Confusion matrix for the proposed model using 20-dimensional feature space.

4.3.5. A Comparison with Previous Research

This section presents a comparison of the proposed OC-ASAE and DNN models with
several advanced approaches, emphasizing key performance metrics such as accuracy,
precision, recall, f1 score, and detection time. As demonstrated in Table 9, our model
delivers outstanding results, significantly outperforming many contemporary methods.

Our proposed model, integrating a One-Class Asymmetric Autoencoder (OC-ASAE)
with a DNN, demonstrates significant advancements over state-of-the-art IDS. It achieves
an accuracy of 99.9989%, surpassing the DNN model by Shareena et al. [46] and the
CNN model by Saba et al. [47] by about 5.8% and 7.1%, respectively. This outstanding
accuracy demonstrates the proposed model’s superior ability to handle complicated IoT
data compared with traditional techniques.

The proposed model achieves 99.2059% precision, surpassing the DNN model by
Shareena et al. [46] and the OC-CNN model by Tran et al. [48] by 4.2% and 7.9%, respec-
tively. Furthermore, it surpasses at minimizing false positives, with precision levels above
those of autoencoder-based techniques such as the OC-AE+OCSVM model by Dong and
Kotenko [49] and the DSAE model by Kalidindi and Arrama [50] by 25.84% and 10.81%,
respectively. These results demonstrate our model’s ability to detect precise anomalies,
which is crucial for reducing unnecessary alarms in IoT systems.

The proposed model’s recall of 96.2686% surpasses competing approaches, including
the Long Short-Term Memory (LSTM) by Sharma and Prasad [51], which achieves a recall
of 96.32%, and significantly outperforms the GRU and Recurrent Neural Network (RNN)
models by Alabsi et al. [52], which show limited accuracies of 69.50% and 69.30%, respec-
tively. This highlights our model’s ability to detect diverse threats while retaining effective
detection rates.

The f1 score of the proposed model of 97.6920% demonstrates its significant detec-
tion capacity without generating high false positives. Our model provides a more reliable
solution than LSTM-based [51,53], which often struggles to achieve this balance. Notably,
the detection time of 0.2746 s underscores the suitability of our approach for real-time IoT ap-
plications, outperforming CCNN’s 57.02 s [54] and establishing a benchmark for efficiency.

In contrast, existing methods face limitations that hinder their applicability and effec-
tiveness in IoT environments. While models like those proposed by Sharma and Prasad [51]
and Khanday et al. [53] focus on lightweight designs, their accuracies of 95.39% and 95%,
respectively, fall short of delivering the high detection rates necessary for IoT systems. Sim-
ilarly, Bojarajulu and Tanwar’s [54] CCNN model, despite addressing class imbalance with

Electronics 2025, 14, 104 21 of 25

SMOTE-ENC, achieves only 94.24% accuracy. Advanced approaches, such as the MRFM by
Xie et al. [55], offer a promising accuracy of 99.81% but lack comprehensive evaluations of
resource efficiency critical for IoT deployment. Additionally, autoencoder-based techniques,
like Liu et al.’s AE+MLP [56], exhibit lower precision and recall rates while effectively
learning compressed representations.

These limitations highlight the need for a model like ours, which addresses these
shortcomings and delivers unparalleled accuracy, precision, and efficiency. By surpassing
these limitations, our OC-ASAE+DNN model establishes itself as a robust solution for
intrusion detection in IoT networks, capable of meeting the demands of real-time, high-
performance anomaly detection.

Table 9. Comparative analysis of the proposed models with the state-of-the-art approaches.

Year Publication Technique Accuracy Precision Recall f1 Score Detection Time

2021 Liu et al. [56] AE+MLP - - - 95 -
2021 Shareena et al. [46] DNN 94.00 95.00 93.00 94.00 –
2022 Saba et al. [47] CNN 92.85 – – – –
2022 Tran et al. [48] OC-CNN - 91.3260 79.869 85.2140 -
2023 Dong&Kotenko [49] OC-AE+OCSVM 97.94 73.3700 92.24 81.73 -
2023 Kalidindi&Arrama [50] DSAE - 88.4 87.4 87.9 -
2023 Awajan [57] AE 91.56 - - 89.32 -
2023 Dina et al. [58] CNN 86.77 - - - -
2023 Dina et al. [58] FNN 91.55 - - - -
2023 Hou et al. [30] NAE + DNN 99.80 - - - -
2023 Khanday et al. [53] LSTM 95 - - - -
2023 Alabsi et al. [52] LSTM 97.8 - - - -
2023 Alabsi et al. [52] RNN 69.3 - - - -
2023 Alabsi et al. [52] GRU 69.5 - - - -
2024 Bojarajulu&Tanwar [54] CCNN 94.2446 96.33.3 - 96.3303 57.02474
2024 Xie et al. [55] MRFM 99.81 - - - -
2024 Sharma& Prasad [51] LSTM 95.39 94.12 96.32 95.23 -
2024 Proposed OC-ASAE+DNN 99.9989 99.2059 96.2686 97.6920 0.2746

Bold text indicates the proposed work.

5. Discussion
Combining the DNN classifier with the Asymmetric Autoencoder with one-class

learning generates a hybrid model that outperforms IoT-based IDS. This combination
captures essential features with highly effective accuracy, precision, recall, and f1 score,
making it a reliable approach for high-dimensional data and class imbalance concerns
in IoT networks. The model’s computational efficiency is seen in its optimal detection
time of 0.2746 s, making it ideal for real-time IoT applications that need quick detection.
This effective balance of high-performance metrics and detection time demonstrates its
suitability for implementation in resource-constrained environments.

DNNs have significant advantages for IoT-based IDS applications, mainly when
dealing with high-dimensional numerical data, unlike models as sequential as RNNs,
LSTMs, and GRUs, or as convolutional as CNNs, which have specific applications in tasks
involving temporal or spatial data. RNNs, LSTMs, and GRUs are designed to handle
time series data but are less effective for IoT data, which typically lack strong sequential
dependencies. While CNNs excel in image or spatial data processing, they are more complex
and computationally intensive when applied to high-dimensional numerical data. DNNs,
on the other hand, offer a simpler and more efficient solution, avoiding issues like the
vanishing gradient problem found in RNNs and providing a streamlined approach for
anomaly detection in IoT environments.

Furthermore, the OC-ASAE improves DNN performance by focusing on the most
significant features, reducing complexity, and addressing class imbalance concerns, which
are crucial in IoT. This combination ensures the model generalizes well to unseen data,
offering scalability and reliability for intrusion detection in IoT networks. Experimental

Electronics 2025, 14, 104 22 of 25

results confirm the superiority of the proposed OC-ASAE-DNN-based IDS model over other
state-of-the-art architectures. With a detection time of just 0.2746 s, the model outperforms
more complex models like LSTM and GRU, which demand more excellent computational
resources without offering proportional improvements in performance. Precision–recall
curves were utilized to optimize anomaly detection thresholds, resulting in a balanced trade-
off between precision and recall and minimizing false positives and negatives. Compared
with models such as GAN-based approaches like CTGAN, which are more suited for
synthetic data generation than anomaly detection, the DNN-based approach excels in both
performance and efficiency. The proposed model significantly surpasses traditional and
advanced models, such as those developed by Sharma and Prasad [51], Bojarajulu and
Tanwar [54], and Xie et al. [55], particularly in detection accuracy, precision, and recall.

While the detection time of 0.2746 s is optimal for most IoT applications, such as
smart homes and industrial networks, further optimization will be necessary for do-
mains with stricter real-time requirements, such as automotive systems governed by IEEE
802.1 standards [59].

6. Conclusions
Securing IoT devices in today’s interconnected world is of significant concern. As the

IoT network expands, robust security procedures must be proposed to safeguard the
devices and data on this network. Intrusion Detection Systems effectively identify any
deviation from normal behavior. Integrating IDS into IoT networks strengthens security,
protects sensitive data, and ensures the integrity and privacy of IoT devices and users.

This paper advances the state of the art by presenting a lightweight AIDS for IoT
devices. This model contains several stages: datasets, preprocessing, dimensionality re-
duction, and anomaly detection. The first stage aims to select a real-time dataset for our
model. Then, we proceed with suitable preprocessing techniques that include encoding and
normalization. We employ a one-class asymmetric stacked autoencoder for dimensionality
reduction, which helps efficiently reduce the dataset’s dimensionality. Finally, the DNN is
trained using a one-class approach, and a threshold is adjusted using the precision–recall
curve to detect deviations from normal behavior. The proposed model can accurately iden-
tify abnormal traffic and solve the high imbalance problem in the dataset. It outperformed
other attempts with an accuracy equal to 99.9989%, an f1 score equal to 97.6920%, and a
detection time of 0.2746 s.

In the future, we aim to expand the classification capabilities to identify specific types
of detected assaults at a secondary classification level, enhancing our detection model’s
granularity and interpretability. These will improve the overall performance and introduce
a more nuanced understanding of the detected anomalies.

Author Contributions: Conceptualization, A.G.A., N.A.S., M.M.E.-G. and N.A.H.; methodology,
A.G.A., N.A.S., M.M.E.-G. and N.A.H.; software, A.G.A.; validation, N.A.S., M.M.E.-G. and N.A.H.;
formal analysis, A.G.A.; investigation, N.A.S., M.M.E.-G. and N.A.H.; resources, A.G.A.; data curation,
A.G.A.; writing—original draft preparation, A.G.A., N.A.S. and N.A.H.; writing—review and editing,
A.G.A., N.A.S., M.M.E.-G. and N.A.H.; visualization, A.G.A. and N.A.S.; supervision, N.A.S., M.M.E.-
G. and N.A.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset analyzed during the current study, BoT-IoT dataset https://unsw-my.
sharepoint.com/:f:/g/personal/z5131399_ad_unsw_edu_au/EjlBDf2KODxPgXmqbO3MxxsBBVARCKZxGUG4
7OiFHb_AnQ, accessed on 1 September 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

https://unsw-my.sharepoint.com/:f:/g/personal/z5131399_ad_unsw_edu_au/EjlBDf2KODxPgXmqbO3MxxsBBVARCKZxGUG47OiFHb_AnQ
https://unsw-my.sharepoint.com/:f:/g/personal/z5131399_ad_unsw_edu_au/EjlBDf2KODxPgXmqbO3MxxsBBVARCKZxGUG47OiFHb_AnQ
https://unsw-my.sharepoint.com/:f:/g/personal/z5131399_ad_unsw_edu_au/EjlBDf2KODxPgXmqbO3MxxsBBVARCKZxGUG47OiFHb_AnQ

Electronics 2025, 14, 104 23 of 25

References
1. Koohang, A.; Sargent, C.S.; Nord, J.H.; Paliszkiewicz, J. Internet of Things (IoT): From awareness to continued use. Int. J. Inf.

Manag. 2022, 62, 102442. [CrossRef]
2. Mohammed, R.J.; Abed, E.A.; Elgayar, M.M. Comparative study between metaheuristic algorithms for internet of things wireless

nodes localization. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 660–668. [CrossRef]
3. Nimodiya, A.R.; Ajankar, S.S. A Review on Internet of Things. Int. J. Adv. Res. Sci. Commun. Technol. 2022, 113, 135–144. [CrossRef]
4. Hussain, F. Internet of Things: Building Blocks and Business Models; Number 978-3; Springer: Berlin/Heidelberg, Germany, 2017.
5. Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges.

IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [CrossRef]
6. Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Emerging IoT domains, current standings and open research challenges: A review. PeerJ

Comput. Sci. 2021, 7, e659. [CrossRef]
7. Jeyanthi, D.; Indrani, B. Intrusion Detection System Intensive on Securing IoT Networking Environment Based on Machine

Learning Strategy. In Intelligent Data Communication Technologies and Internet of Things; Springer: Berlin/Heidelberg, Germany,
2022; pp. 139–157. [CrossRef]

8. Mishra, N.; Pandya, S. Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A
systematic review. IEEE Access 2021, 9, 59353–59377. [CrossRef]

9. Hikal, N.A.; Elgayar, M. Enhancing IoT botnets attack detection using machine learning-IDS and ensemble data preprocessing
technique. In Internet of Things—Applications and Future; Springer: Berlin/Heidelberg, Germany, 2020; pp. 89–102. [CrossRef]

10. Heidari, A.; Jabraeil Jamali, M.A. Internet of Things intrusion detection systems: A comprehensive review and future directions.
Clust. Comput. 2023, 26, 3753–3780. [CrossRef]

11. Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput.
2018, 7, 21. [CrossRef]

12. Jyothsna, V.; Prasad, R.; Prasad, K.M. A review of anomaly based intrusion detection systems. Int. J. Comput. Appl. 2011, 28, 26–35.
[CrossRef]

13. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

14. Ghafir, I.; Husak, M.; Prenosil, V. A survey on intrusion detection and prevention systems. In Proceedings of the Student
Conference Zvule, IEEE/UREL, Brno University of Technology, Zvůle, Czech Republic, 25–27 August 2014; Volume 1014.

15. Thakkar, A.; Lohiya, R. A review on machine learning and deep learning perspectives of IDS for IoT: Recent updates, security
issues, and challenges. Arch. Comput. Methods Eng. 2021, 28, 3211–3243. [CrossRef]

16. Panigrahi, R.; Borah, S.; Bhoi, A.K.; Mallick, P.K. Intrusion detection systems (IDS)—An overview with a generalized framework.
In Proceedings of the Cognitive Informatics and Soft Computing, Balasore, India, 12–13 December 2020; pp. 107–117. [CrossRef]

17. Lin, K.; Xu, X.; Xiao, F. MFFusion: A Multi-level Features Fusion Model for Malicious Traffic Detection based on Deep Learning.
Comput. Netw. 2022, 202, 108658. [CrossRef]

18. Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Nafea, I.; Ghaleb, F.A.; Saeed, F.; Nasser, M. Anomaly-based intrusion detection systems in
iot using deep learning: A systematic literature review. Appl. Sci. 2021, 11, 8383. [CrossRef]

19. Talaei Khoei, T.; Kaabouch, N. A Comparative Analysis of Supervised and Unsupervised Models for Detecting Attacks on the
Intrusion Detection Systems. Information 2023, 14, 103. [CrossRef]

20. El-Gayar, M.M.; Alrslani, F.A.; El-Sappagh, S. Smart Collaborative Intrusion Detection System for Securing Vehicular Networks
Using Ensemble Machine Learning Model. Information 2024, 15, 583. [CrossRef]

21. Bakhsh, S.A.; Khan, M.A.; Ahmed, F.; Alshehri, M.S.; Ali, H.; Ahmad, J. Enhancing IoT network security through deep learning-
powered Intrusion Detection System. Internet Things 2023, 24, 100936. [CrossRef]

22. Yu, Y.; Long, J.; Cai, Z. Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw.
2017, 2017, 4184196. [CrossRef]

23. Aygun, R.C.; Yavuz, A.G. Network anomaly detection with stochastically improved autoencoder based models. In Proceedings of
the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 26–28 June
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 193–198.

24. Zhang, H.; Wu, C.Q.; Gao, S.; Wang, Z.; Xu, Y.; Liu, Y. An effective deep learning based scheme for network intrusion detection.
In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 682–687.

25. Mao, S.; Guo, J.; Li, Z. Discriminative autoencoding framework for simple and efficient anomaly detection. IEEE Access 2019,
7, 140618–140630. [CrossRef]

26. Ieracitano, C.; Adeel, A.; Morabito, F.C.; Hussain, A. A novel statistical analysis and autoencoder driven intelligent intrusion
detection approach. Neurocomputing 2020, 387, 51–62. [CrossRef]

http://doi.org/10.1016/j.ijinfomgt.2021.102442
http://dx.doi.org/10.11591/ijece.v12i1.pp660-668
http://dx.doi.org/10.48175/IJARSCT-2251
http://dx.doi.org/10.1109/COMST.2020.2986444
http://dx.doi.org/10.7717/peerj-cs.659
http://dx.doi.org/10.1007/978-981-16-7610-9_11
http://dx.doi.org/10.1109/ACCESS.2021.3073408
http://dx.doi.org/10.1007/978-981-15-3075-3_6
http://dx.doi.org/10.1007/s10586-022-03776-z
http://dx.doi.org/10.1186/s13677-018-0123-6
http://dx.doi.org/10.5120/3399-4730
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1007/s11831-020-09496-0
http://dx.doi.org/10.1007/978-981-15-1451-7_11
http://dx.doi.org/10.1016/j.comnet.2021.108658
http://dx.doi.org/10.3390/app11188383
http://dx.doi.org/10.3390/info14020103
http://dx.doi.org/10.3390/info15100583
http://dx.doi.org/10.1016/j.iot.2023.100936
http://dx.doi.org/10.1155/2017/4184196
http://dx.doi.org/10.1109/ACCESS.2019.2933602
http://dx.doi.org/10.1016/j.neucom.2019.11.016

Electronics 2025, 14, 104 24 of 25

27. Binbusayyis, A.; Vaiyapuri, T. Unsupervised deep learning approach for network intrusion detection combining convolutional
autoencoder and one-class SVM. Appl. Intell. 2021, 51, 7094–7108. [CrossRef]

28. Adeniyi, E.A.; Folorunso, S.O.; Jimoh, R.G. A Deep Learning-Based Intrusion Detection Technique for a Secured IoMT Sys-
tem. In Proceedings of the Informatics and Intelligent Applications: First International Conference, ICIIA 2021, Ota, Nigeria,
25–27 November 2021; Revised Selected Papers; Springer Nature: Berlin/Heidelberg, Germany, 2022; p. 50. [CrossRef]

29. Yao, W.; Hu, L.; Hou, Y.; Li, X. A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and
Ensemble Learning for IoT. Sensors 2023, 23, 4141. [CrossRef] [PubMed]

30. Hou, Y.; Fu, Y.; Guo, J.; Xu, J.; Liu, R.; Xiang, X. Hybrid intrusion detection model based on a designed autoencoder. J. Ambient
Intell. Humaniz. Comput. 2023, 14, 10799–10809. [CrossRef]

31. Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: Berlin/Heidelberg, Germany,
2019. [CrossRef]

32. Laurent, C.; Pereyra, G.; Brakel, P.; Zhang, Y.; Bengio, Y. Batch normalized recurrent neural networks. In Proceedings of the 2016
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 2657–2661.

33. Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022.
34. Adhikari, D.; Jiang, W.; Zhan, J.; Rawat, D.B.; Bhattarai, A. Recent advances in anomaly detection in Internet of Things: Status,

challenges, and perspectives. Comput. Sci. Rev. 2024, 54, 100665. [CrossRef]
35. Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [CrossRef]
36. Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the

MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, QLD, Australia, 2 December 2014;
pp. 4–11.

37. Mousa, A.K.; Abdullah, M.N. An improved deep learning model for DDoS detection based on hybrid stacked autoencoder and
checkpoint network. Future Internet 2023, 15, 278. [CrossRef]

38. Sun, Y.; Mao, H.; Guo, Q.; Yi, Z. Learning a good representation with unsymmetrical auto-encoder. Neural Comput. Appl. 2016,
27, 1361–1367. [CrossRef]

39. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [CrossRef]
40. Tajoddin, A.; Abadi, M. RAMD: Registry-based anomaly malware detection using one-class ensemble classifiers. Appl. Intell.

2019, 49, 2641–2658. [CrossRef]
41. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29, 345–374.

[CrossRef]
42. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [CrossRef]
43. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
44. Ozenne, B.; Subtil, F.; Maucort-Boulch, D. The precision–recall curve overcame the optimism of the receiver operating characteristic

curve in rare diseases. J. Clin. Epidemiol. 2015, 68, 855–859. [CrossRef] [PubMed]
45. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. [Dataset] Towards the development of realistic botnet dataset in the

internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]
46. P, J.; Shareena, J.; Ramdas, A.; AP, H. Intrusion detection system for iot botnet attacks using deep learning. SN Comput. Sci. 2021,

2, 205. [CrossRef]
47. Saba, T.; Rehman, A.; Sadad, T.; Kolivand, H.; Bahaj, S.A. Anomaly-based intrusion detection system for IoT networks through

deep learning model. Comput. Electr. Eng. 2022, 99, 107810. [CrossRef]
48. Tran, D.H.; Nguyen, V.L.; Nguyen, H.; Jang, Y.M. Self-Supervised Learning for Time-Series Anomaly Detection in Industrial

Internet of Things. Electronics 2022, 11, 2146. [CrossRef]
49. Dong, H.; Kotenko, I. Train Without Label: A Self-supervised One-Class Classification Approach for IoT Anomaly Detection. In

Proceedings of the International Conference on Intelligent Information Technologies for Industry; Springer: Berlin/Heidelberg, Germany,
2023; pp. 81–89.

50. Kalidindi, A.; Arrama, M.B. Botnet attack detection in IoT using hybrid optimisation enabled deep stacked autoencoder network.
Int. J. Bio-Inspired Comput. 2023, 22, 77–88. [CrossRef]

51. Sharma, T.; Prasad, S.K. Enhancing cybersecurity in IoT networks: SLSTM-WCO algorithm for anomaly detection. Peer-to-Peer
Netw. Appl. 2024, 17, 2237–2258. [CrossRef]

52. Alabsi, B.A.; Anbar, M.; Rihan, S.D.A. Conditional tabular generative adversarial based intrusion detection system for detecting
ddos and dos attacks on the internet of things networks. Sensors 2023, 23, 5644. [CrossRef]

53. Khanday, S.A.; Fatima, H.; Rakesh, N. Implementation of intrusion detection model for DDoS attacks in Lightweight IoT
Networks. Expert Syst. Appl. 2023, 215, 119330. [CrossRef]

54. Bojarajulu, B.; Tanwar, S. Customized convolutional neural network model for IoT botnet attack detection. Signal Image Video
Process. 2024, 18, 5477–5489. [CrossRef]

http://dx.doi.org/10.1007/s10489-021-02205-9
http://dx.doi.org/10.1007/978-3-030-95630-1_4
http://dx.doi.org/10.3390/s23084141
http://www.ncbi.nlm.nih.gov/pubmed/37112482
http://dx.doi.org/10.1007/s12652-022-04350-6
http://dx.doi.org/10.1007/978-1-4842-4470-8
http://dx.doi.org/10.1016/j.cosrev.2024.100665
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.3390/fi15080278
http://dx.doi.org/10.1007/s00521-015-1939-3
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
http://dx.doi.org/10.1007/s10489-018-01405-0
http://dx.doi.org/10.1017/S026988891300043X
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.jclinepi.2015.02.010
http://www.ncbi.nlm.nih.gov/pubmed/25881487
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1007/s42979-021-00516-9
http://dx.doi.org/10.1016/j.compeleceng.2022.107810
http://dx.doi.org/10.3390/electronics11142146
http://dx.doi.org/10.1504/IJBIC.2023.134981
http://dx.doi.org/10.1007/s12083-024-01712-z
http://dx.doi.org/10.3390/s23125644
http://dx.doi.org/10.1016/j.eswa.2022.119330
http://dx.doi.org/10.1007/s11760-024-03248-4

Electronics 2025, 14, 104 25 of 25

55. Xie, L.; Yuan, B.; Yang, H.; Hu, Z.; Jiang, L.; Zhang, L.; Cheng, X. MRFM: A timely detection method for DDoS attacks in IoT with
multidimensional reconstruction and function mapping. Comput. Stand. Interfaces 2024, 89, 103829. [CrossRef]

56. Liu, T.; Sabrina, F.; Jang-Jaccard, J.; Xu, W.; Wei, Y. Artificial intelligence-enabled DDoS detection for blockchain-based smart
transport systems. Sensors 2021, 22, 32. [CrossRef]

57. Awajan, A. A novel deep learning-based intrusion detection system for IOT networks. Computers 2023, 12, 34. [CrossRef]
58. Dina, A.S.; Siddique, A.; Manivannan, D. A deep learning approach for intrusion detection in Internet of Things using focal loss

function. Internet Things 2023, 22, 100699. [CrossRef]
59. IEEE 802.1 Standards. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=

https://www.ieee802.org/1/files/public/docs2019/admin-messenger-TSN-Auto-flyer-2019.pdf&ved=2ahUKEwibv7
TwxcyKAxUJVaQEHeA3PRMQFnoECCcQAQ&usg=AOvVaw17qoxFpwSp0brZnpt5Qi2_ (accessed on 7 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.csi.2023.103829
http://dx.doi.org/10.3390/s22010032
http://dx.doi.org/10.3390/computers12020034
http://dx.doi.org/10.1016/j.iot.2023.100699
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ieee802.org/1/files/public/docs2019/admin-messenger-TSN-Auto-flyer-2019.pdf&ved=2ahUKEwibv7TwxcyKAxUJVaQEHeA3PRMQFnoECCcQAQ&usg=AOvVaw17qoxFpwSp0brZnpt5Qi2_
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ieee802.org/1/files/public/docs2019/admin-messenger-TSN-Auto-flyer-2019.pdf&ved=2ahUKEwibv7TwxcyKAxUJVaQEHeA3PRMQFnoECCcQAQ&usg=AOvVaw17qoxFpwSp0brZnpt5Qi2_
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ieee802.org/1/files/public/docs2019/admin-messenger-TSN-Auto-flyer-2019.pdf&ved=2ahUKEwibv7TwxcyKAxUJVaQEHeA3PRMQFnoECCcQAQ&usg=AOvVaw17qoxFpwSp0brZnpt5Qi2_

	Introduction
	Related Work
	Overview of Existing Methods
	Limitations of Existing Methods
	Addressing Existing Challenges

	 The Proposed Model
	Data Preprocessing
	Data Encoding
	Normalization

	Dimensionality Reduction
	Traditional Autoencoder
	Asymmetric Stacked Autoencoder

	Attack Detection
	Threshold Selection for OC-DNN
	Data-Driven Threshold Determination (DDTD) for Anomaly Detection

	Experimental Evaluation and Results
	Dataset Description
	 Performance Evaluation Metrics
	Classification Performance Metrics
	Resource Efficiency Metric

	Experimental Evaluation
	Analysis of ASAE Structure
	Performance of ASAE Against Traditional Autoencoders
	Performance of the Classifier
	Performance of the Proposed Model
	A Comparison with Previous Research

	Discussion
	Conclusions
	References

