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Abstract: Two challenges in computer vision (CV) related to face detection are the dif-
ficulty of acquisition in the target domain and the degradation of image quality. Es-
pecially in low-light situations, the poor visibility of images is difficult to label, which
results in detectors trained under well-lit conditions exhibiting reduced performance in
low-light environments. Conventional works image enhancement and object detection
techniques are unable to resolve the inherent difficulties in collecting and labeling low-light
images. The Dark-Illuminated Network with Contrastive Language–Image Pretraining
(CLIP) and Self-Supervised Vision Transformer (Dino), abbreviated as DAl-CLIP-Dino is
proposed to address the degradation of object detection performance in low-light envi-
ronments and achieve zero-shot day–night domain adaptation. Specifically, an advanced
reflectance representation learning module (which leverages Retinex decomposition to
extract reflectance and illumination features from both low-light and well-lit images) and
an interchange–redecomposition coherence process (which performs a second decomposi-
tion on reconstructed images after the exchange to generate a second round of reflectance
and illumination predictions while validating their consistency using redecomposition
consistency loss) are employed to achieve illumination invariance and enhance model per-
formance. CLIP (VIT-based image encoder part) and Dino have been integrated for feature
extraction, improving performance under extreme lighting conditions and enhancing its
generalization capability. Our model achieves a mean average precision (mAP) of 29.6%
for face detection on the DARK FACE dataset, outperforming other models in zero-shot
domain adaptation for face detection.

Keywords: face detection; zero-shot day–night domain adaptation; DAl-CLIP-Dino

1. Introduction
In practice, the drastic degradation of the model’s test performance on non-distributed

data has led to severe limitations in its application [1]. Due to insufficient light and uneven
exposure in low-light environments, low-light images suffer from high image noise, low
signal-to-noise ratios, low contrast, and color distortion. Furthermore, in low-light envi-
ronments, image blurriness, insufficient dynamic range, and effects of reflections and light
patches may result in an insignificant difference between object and background, thereby
making detection ineffective, which greatly hampers the performance of models. This
performance decline could become a limiting factor in any critical application that relies
on visual information. Two common strategies are proposed to address this challenge,
including image enhancement methods to improve image visibility under low-light condi-
tions [2,3]; fine-tuning detectors are originally trained on well-illuminated images [4,5].
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Image enhancement methods are frequently effective, while they rely on a huge
number of low-light images collected in the real world. Current methods require training
with compared low-light and well-lit pictures [6], and they also require an increased
utilization of low-light visual data for the detection of dark objects [7]. Compared to
datasets with good lighting, low-light image datasets are difficult to collect [8]. Due to
low visibility, annotating bounding boxes is extremely challenging, and this hinders the
improvement of low-light picture enhancement and object detection. Common datasets
with good lighting include WIDER FACE [9], i.e., 32,203 images and 393,703 labeled faces,
whereas the DARK FACE dataset, under low-light conditions, contains only 10,000 images
and 81,560 faces.

To successfully handle the difficulty of object identification in low-light conditions, we
present a zero-shot day–night domain adaptation strategy. Operating within this model,
the object detector is trained in the brightly illuminated source domain and assessed in the
dimly lit target domain, without the input of any actual images. This method primarily
uses the disparity in illumination between the source and target domains to investigate the
influence of lighting variations on detection accuracy.

The proposed strategy is shown in Figure 1, where the zero-shot day–night domain
adaptation strategy adopts the Retinex [10] image decomposition method, which posits
that an image can be decomposed into reflectance and illumination components [11].
Reflectance represents the illumination-invariant information critical for low-light object
detection, while illumination affects the image’s visibility. We integrate this method into
established object detection frameworks, such as DSFD [12], by incorporating a module to
learn reflectance representation as a decoder. The redecomposition cohering loss enhances
the Retinex-based image decomposition process as a key technique. By introducing a two-
round decomposition process, where the reflectance is interchanged and redecomposed to
generate new reflectance, this approach ensures the coherence between the two rounds of
reflectance, thereby improving the stability and accuracy of the reflectance representation.
The main contributions of this paper are summarized as follows:

• ZSDA is engineered to effectively decode reflectance-based illumination-invariant
data from both naturally well-lit and synthetically produced low-light images. The
pre-trained RetinexNet [10] network is utilized to further enhance this module, with
specific illumination invariance enhancement strategies to boost its performance.

• The exchange–decomposition coherence process [13] is proposed to improve the
quality of image decomposition based on the Retinex theory. This process enhances re-
flectance consistency by introducing recomposition coherence loss during two decom-
position stages, thereby improving the stability and accuracy of image reconstruction.

• ZSDA allows the model to be trained solely on well-lit source domain images and
to perform precise evaluations in completely image-less low-light target domains,
which enhances adaptability and generalization of model under extreme lighting
variations. Additionally, we further enhance the model’s capabilities by merging
the image encoder of CLIP [14] (Contrastive Language Image Pre-training) and the
technology of Dino [15] (Self-Distillation with No Labels).

• The generalization ability of the CLIP (VIT-based image encoder part) and the self-
supervised learning characteristics of Dino ae used to jointly improve the model’s
capacity to capture details in low-light environments and understand complex scenes;
this enables the model to more accurately recognize and process images in dim lighting
conditions, improving the accuracy and reliability of object detection.

The remainder of paper is organized as follows: Section 2 provides a comprehensive
overview of the related work in the field, focusing on key areas such as object detection,
low-light images, and zero-shot domain adaptation. The methodology for zero-shot day–
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night domain adaptation for face detection is provided in Section 3, detailing the innovative
approaches and techniques employed. The analysis of the experiments and results is
described in Section 4.
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Figure 1. Framework Outline of the Methodology.

2. Related Work
2.1. Object Detection

Detectors are primarily categorized into two types: single-stage and two-stage. Single-
stage detectors, such as SSD [16], YOLO [17], and FCOS [18], are designed to simplify
the detection process, directly predicting the bounding boxes and categories of objects in
one pass, which enhances processing speed. In contrast, two-stage detectors like Faster
R-CNN [19] and R-FCN [20] focus more on accuracy. The initial step involves generating
candidate areas; subsequently, classification and bounding box regression are performed on
these regions to achieve more precise detection results. Face detectors [12,21–23] mostly use
the single-stage approach, which efficiently outputs both bounding boxes and class scores
simultaneously. Additionally, current research continuously explores more efficient model
architectures [24], improved anchor sampling techniques [25], and feature enhancement
technologies [26] to boost detection performance. Recently, transformer-based detection
models such as DETR [27] and its derivatives have significantly enhanced overall object
detection capabilities through global context optimization and an end-to-end training
architecture, demonstrating substantial performance improvements.

Object detection techniques have made great strides due to the widespread use of
datasets such as COCO [28] and Open Images [29], as well as face detection-specific datasets
such as WIDER FACE. These datasets provide a wealth of material for researchers to train,
test and refine detection models.

2.2. Processing of Low-Light Images

The advancement of deep learning technologies has fostered breakthroughs in low-
light image-enhancing technology, which primarily encompass two approaches. One
approach involves enhancement via reflectance, exemplified by [2], who modeled both
reflectance and illuminance degradation using a transformer structure. The other approach
involves enhancing images by adjusting lighting through reconstruction, such as [10], who
utilized a Retinex decomposition model for light enhancement and denoising, addressing
noise based on reflectance and illuminance mapping [30], and optimizing the process
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based on the Retinex model, employing a cooperative dual-layer search strategy to find the
desired network structure.

Common low-light image target detection is mainly classified into three categories: the
first category of methods is low-light enhancement methods, which are used to generate
bright images to achieve the purpose of visual enhancement; the second category of meth-
ods is the training process of the detection model, i.e., the integration of image enhancement
techniques to be used to improve the performance of object detection; the last category of
methods comprises low-light detector learning strategies, including multi-model merg-
ing [31], multi-task auto-coding [7], and unsupervised domain-adaptive framework [5],
which improve the direct detection ability of the detector in low-light conditions. This
enables them to achieve the improvement of the detection model’s direct detection ability in
low-light conditions and make the detector performance more robust in low-light environ-
ments. Within these methodologies, strategies tailored to specific domains have garnered
significant attention. As an example, ref. [32] presents a detection framework specifically
designed for nighttime conditions. By incorporating vehicle-specific features such as head-
lights and taillights, in combination with a multi-level fusion network and hierarchical
labeling, this approach addresses the limitations of conventional enhancement techniques
and domain-centric detection methods. Its innovative application of highlight information
offers a robust solution for vehicle detection under low-light conditions, thereby expanding
the scope and effectiveness of this class of methods.

2.3. Zero-Shot Domain Adaptation

Domain-invariant representation aims to transfer information from the source domain
to the destination domain, particularly when the target domain has a scarcity or absence of
annotated data. The core is constructing domain invariant representations and adopting
various strategies to reduce the feature distribution differences between domains.

Unsupervised domain adaptation (UDA) primarily includes methods such as adver-
sarial learning [11], self-training [33], entropy minimization [34], and generative-based
adaptation [35]. These methods achieve effective knowledge transfer by reducing domain
discrepancies at the input, feature, or output levels. However, some approaches designed
to mitigate negative migration effects still rely on data from the target domain. In contrast,
zero-shot domain adaptation (ZSDA) presents more complex scenarios by requiring solu-
tions to domain distribution discrepancies in the complete absence of target domain data.
This approach highlights key challenges in domain adaptation research and provides inno-
vative solutions. In particular, the introduction of physical prior processing underscores the
significance of novel methodologies in zero-sample settings without target domain images.
These advances not only deepen our understanding of cross-domain knowledge transfer
but also offer new pathways to tackle adaptation challenges in practical applications. Fur-
thermore, generative models like coupled generative adversarial networks (CoGANs) [36]
and variational autoencoders (VAEs) [37] have been used in ZSDA to reconstruct target
domain samples, but these approaches come with substantial computational costs.

Research has focused on the study of learning in dark environments, specifically object
segmentation and detection. This research falls under the umbrella of domain transfer
learning, which is further separated into two categories: domain adaptation (DA) and
domain generalization (DG). Domain adaptation (DA) strategies include training models
using well-illuminated data from a source domain in order to adapt to low-light data
from a target domain. Common techniques involve the creation of low-light pictures
through synthesis [7,38], aligning distributions in well-lit and low-light domains through
self-supervised learning [5], merging components from both domains [11,34], and other
multi-stage strategies [39–41]. DG, unlike DA, generalizes to unknown domains without
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prior knowledge of the target domain [42]. Zero-shot day–night domain adaptation is a
method that addresses low-light settings. It focuses on a particular example of domain
adaptation (DA) when genuine low-light data are not available, but the target domain is
recognized as a low-light environment.

The DAI-Net [13] framework incorporates Retinex theory to achieve robust domain-
invariant representation learning. Advanced feature extraction modules, such as the
CLIP [14] image encoder and DINO [15], are integrated into the framework. The CLIP
image encoder leverages large-scale multimodal pre-training to provide powerful global
semantic understanding, while DINO extracts fine-grained, self-supervised features, en-
abling the model to maintain stable feature representations under varying illumination
conditions. This integration enhances the framework’s ability to bridge the illumination
gap between well-lit and low-light environments, addressing key challenges in ZSDA tasks
by ensuring effective feature alignment and strong generalization without relying on real
target domain data.

Despite significant advancements in object detection, low-light image processing, and
domain adaptation, existing methods face several limitations:

• Global and local feature extraction imbalance: models often fail to balance global and
local feature extraction, resulting in incomplete feature representations, particularly in
low-light environments.

• Feature degradation in low-light conditions: severe lighting variations lead to de-
graded feature quality, while current methods lack robust illumination-invariant
feature modeling.

• Weak domain-invariant feature learning: insufficient mechanisms for domain-invariant
representation learning hinder performance in zero-shot domain adaptation tasks.

• Limited generalization: adapting to complex scenarios, such as day–night transitions,
remains a challenge due to inadequate integration of global and local features.

To address these challenges, this work builds upon the DAI-Net framework, integrat-
ing Retinex theory with advanced feature extraction capabilities provided by the CLIP
image encoder and DINO. This approach effectively resolves the aforementioned issues,
achieving robust feature alignment, illumination invariance, and superior performance in
zero-shot domain adaptation tasks.

3. Method
The task at hand involves training an object detector using a well-illuminated picture

and then applying it to a low-light image. This is known as a zero-shot day–night domain
adaptation issue, where the objective is to adapt the detector from a well-lit source do-
main to a low-light target domain. The primary difficulty lies in the variation in lighting
conditions, which leads to a decline in image quality [2,43].

An approach focusing on obtaining cross-domain invariant representations was
adopted, namely via learning light-invariant information or reflective representations
in the zero-shot domain adaptation configuration, to address this challenge. Figure 1 dis-
plays the framework. A pair of well-lit images In and their respective artificially generated
low-light images Il are input into our framework. The pre-trained Retinex decomposi-
tion network (shown by the bottom gray block) is frozen during training and utilized
primarily to infer pseudo-ground truths for reflectance and illumination, R̂l , R̂n, L̂l , L̂n, to
oversee the reflectance decoder. Specifically, the pseudo-ground truths for illumination
and the initial batch of reflectance forecasts, Rl

1, Rn
1 , are passed into the proposed exchange–

recomposition–consistency process in the right module to reconstruct and redecompose
the second round of reflectance predictions, Rl

2, Rn
2 , and to compute the redecomposition

consistency loss Lrc. The input images first undergo enhancement through a low-light
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enhancement module (indicated by the purple dashed block) before being processed in
the backbone network (light blue block) for global feature extraction g f and local feature
extraction gb, producing richer and more semantically meaningful feature representations.
These features are aligned using the Mutual Feature Alignment Loss Lm f a (blue arrow). The
CLIP and Dino models (represented as yellow and purple blocks, respectively) are utilized
for extracting specific types of features. The reflectance features, Rl , Rn, are input into the
reflectance decoder (light yellow block) to reconstruct the reflectance images R̂l , R̂n and
compute the reflectance loss Lre f and the redecomposition consistency loss Lrc (indicated
by brown and red labels, respectively). The first round of prediction results, Rl

1, Rn
1 , are

exchanged and the second round of predictions, Rl
2, Rn

2 , is generated in the redecomposition
process, where the redecomposition consistency loss Lrc is calculated. Finally, the outputs
for the detection tasks are processed through the neck and head module (green block). The
implementation process is shown in Algorithm 1. The CLIP (VIT-based image encoder part)
can learn powerful feature representations from large-scale multimodal data, exhibiting
excellent generalization capabilities. Dino, through its unsupervised learning method of
self-distillation, extracts robust image features from unlabeled data, enabling the model to
maintain stable feature representations under varying lighting conditions.

Models can be trained effectively on well-lit images and be extended to low-light
scenes through this approach, resulting in zero-shot day–night domain adaptation in object
identification.

Algorithm 1 Algorithm for framework outline of the methodology.

Input: Well-lit image In, artificially generated low-light image Il

Output: Refined reflectance predictions Rn
2 , Rl

2
1: Initialization:

Decompose In and Il into reflectance and illumination:
[Ln, Rn]← Retinex_Decomposition(In)
[Ll , Rl ]← Retinex_Decomposition(Il)

2: Step 1: Feature Extraction
Extract features using backbone and auxiliary encoders:

g f , gb ← Backbone(In, Il) // Global and local features
clip_features← CLIP_Image_Encoder(In, Il) // Semantic features
dino_features← DINO(In, Il) // Self-supervised features

Combine features:
combined_features← Concatenate(g f , gb, clip_features, dino_features)

Align all features using mutual feature alignment loss (Lmfa).
3: Step 2: Reflectance Reconstruction

Perform initial reflectance decoding:
[Rn

1 , Rl
1]← Reflectance_Decoder(combined_features)

Apply exchange–recomposition process:
[Rn

2 , Rl
2]← Exchange_Recomposition(Rn

1 , Rl
1)

Compute redecomposition consistency loss (Lrc).
4: Step 3: Final Output

Return refined reflectance predictions:
5: return Rn

2 , Rl
2

3.1. Lighting Invariance Enhancement

Here, we revisit the Retinex theory [44], which posits that an image I can be decom-
posed into two constituents: reflectance R and illumination L (I = R·L). In this context,
illumination affects the visibility of the image while reflectance remains constant. In
zero-shot day–night domain adaptation for object detection, reflectance is considered an
illumination-invariant counterpart, which is crucial for illumination-invariant detectors.
Reflectance indicates that the learning module is fused to be used to enhance the detector’s
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capacity to adjust in low-light environments. The front end of the detector’s backbone
g f is used to encode shallow information and branch out into a reflectance decoder. To
stabilize the training of the decoder, the pre-trained Retinex network was utilized to gen-
erate pseudo-ground truths for reflectance and illumination. An illumination invariance
enhancement scheme, which operates at the feature level, has been employed to enhance
the detector’s illumination invariance. To acquire feature representations that are not af-
fected by changes in lighting, we stipulate that the output features F extracted from g f and
input into the reflectance decoder remains consistent between well-lit and low-light images.
To achieve this, we employ a mutual feature alignment loss, which explicitly matches the
features from well-lit (Fn) and low-light (Fl) conditions:

Lm f a = KL(Fn ∥ Fl) +KL(Fl ∥ Fn) (1)

whereKL(.∥. ) represents the Kullback–Leibler (KL) divergence, Fn and Fl were the features
from well-lit and low-light images extracted by g f . These features were flattened and
spatially averaged before being used to calculate the loss.

3.2. Low-Light Image Reconstruction

An image decomposition process is employed to further enhance reflectance learning.
Given a set of low-light image Il and a well-lit image In, a typical Retinex-based image
decomposition algorithm [2,10] decomposes them into their respective reflectance and illu-
mination, i.e., low-light reflectance Rl

1 and illumination Ll for Il , and well-lit reflectance Rn
1

and illumination Ln for In. Ideally, the low-light reflectance Rl
1 and the well-lit reflectance

Rn
1 should be interchangeable, and when combined with their respective illuminations,

Ln and Ll , they should be able to reconstruct In and Il , respectively. Utilizing this inter-
changeability, we added a constraint to strengthen image decomposition and reflectance
representation learning.

Initially, swap the reflectance between well-lit and low-light images and reconstruct the
images, such that Il

2 = Rn
1 · Ll , In

2 = Rl
1 · Ln. Then, the reconstructed images undergo a sec-

ond round of decomposition. Our DAI-Net focuses on learning the illumination-invariant
part of the image (i.e., the reflectance); hence, we use the same reflectance decoding branch
in DAI-Net to decompose the reflection Rn

2 and Rl
2 from the reconstructed images In

2
and Il

2. To ensure consistency across the two decomposition processes, we introduce a
redecomposition coherence loss.

Lrc =
∥∥∥Rn

1 − Rl
2

∥∥∥
1
+

∥∥∥Rl
1 − Rn

2

∥∥∥
1

(2)

The redecomposition coherence loss, compared to basic penalty losses, more effectively
leverages the interchangeability of reflectance. This enhancement increases both the stability
and accuracy of reflectance representation learning. Utilizing this approach allows us to
significantly enhance the learning of reflectance in low-light conditions and substantially
improve overall detection performance.

3.3. CLIP (VIT-Based Image Encoder) Framework

CLIP is a pre-trained model that pairs images with text through contrastive learning,
which can learn features in high-dimensional spaces that exhibit strong generalization
capabilities. The image encoder part of the integrated pre-trained CLIP model is used
for feature extraction to enhance the performance of the strong detector under different
lighting conditions.

The image encoder of CLIP is a neural network designed to extract deep visual features
from images. Typically, CLIP’s image encoder is pre-trained on large-scale visual datasets,
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enabling it to capture a wide range of visual concepts and object features. In principle,
the CLIP (VIT-based image encoder part) employs either a convolutional neural network
(CNN) or a vision transformer (ViT) as its primary architecture, depending on the specific
version of the CLIP model. In this paper, we utilize the ViT as its main structure. As
depicted in Figure 2, the ViT model processes images as sequences of patches embedded
with positional information, which were fed into a transformer architecture for feature
extraction. The self-attention mechanism within the ViT focuses on the significance of each
image patch; its self-attention architecture generates outputs based on queries, keys, and
values—these three components were derived through linear transformations of the inputs:

Attention(Q, K, V) = so f t max(
QKT
√

dK
)V (3)

The dimensionality of the keys is denoted as dK, and similarly, the ViT model incorpo-
rates a multi-head attention mechanism, projecting n times, where dK = dV = d mod el/h,
with each projection calculated in parallel, enhancing computational efficiency. These
networks, through extensive learning from a vast array of image data, were capable of
recognizing and understanding the contents within images, ranging from simple textures
and shapes to complex scenes and object interactions.

To simplify the training process, a CLIP (VIT-based image encoder part) is integrated,
which can improve the detection performance by exploiting advanced visual features,
thus showing better adaptability and accuracy when dealing with extreme lighting or
visually varying scenarios, improving the robustness of the model and the generalization
of the features.

Input

Linear 

Projection of 

Flattened 

Patches

Patch + Position

Embedding

Extra learnable

Transformer 

Encoder
MLP
head
MLP

head

Transformer Encoder

Embedded

Norm

Multi-Head

Attention

MLP

Norm

Figure 2. Structural overview of CLIP (VIT-based image encoder part): Images are put into the frame-
work, where they are first divided into fixed-size patches. These image patches are then flattened
and transformed into fixed-length feature vectors through linear projection. After incorporating posi-
tional embeddings and learnable embeddings, these feature vectors are processed by the transformer
encoder, generating richer and more semantically meaningful feature representations. Finally, the
feature vectors processed by the transformer encoder are passed through a multi-layer perceptron
head (MLP head) to produce outputs for specific tasks, such as classification or detection.

3.4. DINO Framework

To further enhance the model’s performance under extreme lighting conditions, Dino
(Self-Distillation with No Labels) models were integrated. Dino is a self-supervised learning
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technique that leverages label-free knowledge distillation to conduct self-supervised pre-
training of visual features, thereby enhancing the model’s robustness and adaptability.

The Dino model’s fundamental concept, as seen in Figure 3, is training a student
network to replicate the output of a teacher network via self-supervised learning. The
teacher network is generated using the exponential moving average (EMA) of the stu-
dent network. In practice, input images are progressively processed by different student
networks, gradually learning high-quality visual features.

In the Dino model, the outputs generated by the teacher and student networks are
represented as probability distributions normalized by a softmax function. The specific
formula for the output probability distribution of the teacher network is as follows:

Pt(x) =
exp(gθs(x)

/
Tt)

∑K
k=1 exp(gθs(x)

/
Tt)

(4)

Student network output probability distribution:

Pt(x) =
exp(gθs(x)

/
Ts)

∑K
k=1 exp(gθs(x)

/
Ts)

(5)

where Ts represents the temperature parameter of the student network’s output, which
controls the sharpness of the probabilistic distribution of the student network’s output.
Tt denotes the temperature parameter of the teacher network’s output, used to regulate
the sharpness of the probabilistic distribution of the teacher network’s output. The loss
function is:

min
θs

H(Pt(x), Ps(x)) = −∑ Pt(x) log Ps(x) (6)

Through this approach, the student network progressively aligns with the output of
the instructor network to learn high-quality feature representations. Specifically, the Dino
model learns high-quality features from unlabeled image data, which exhibit strong consis-
tency under various lighting conditions, enhancing the model’s generalization capabilities.

Student

Teacher

ema

Softmax

centering Softmax

1X

2X

X

t
g

t
g

1P

2P

Figure 3. Structural overview of Dino: In this architecture, the input images X1 and X2 are individ-
ually input into the student network and the teacher network. Although both networks share the
same architecture, their parameters are updated independently. Specifically, the student network
processes the image X1, generates features, and converts them into a probability distribution via
a Softmax layer. The teacher network processes the image X2, generates features, and converts
them into a probability distribution P2 via a Softmax layer that includes a centering operation to
eliminate bias in the predictions. The centering operation stops the gradient, ensuring that gradients
are not back-propagated. During training, the instructor network’s parameters are adjusted using
exponential moving averages, ensuring that the teacher network provides a stable and accurate
supervisory signal. The objective is to narrow the gap between the probability distributions generated
by the student and teacher networks, hence improving the model’s capacity to generalize.
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3.5. Network Training

The network consists of two branches: detection and reflectance decoding. Regarding
the former, the detection loss utilized by the selected detector is denoted as Ldet. The
objective function for the reflectance decoding branch is comprised of three parts. The first
segment has two planned losses: Lm f a and Lrc. The other two parts are the reflectance
learning loss Lre f and the image decomposition loss Ldecom. The loss function for the
reflectance learning loss is defined as:

Lre f = MAE(R, R̂) + (1− SSIM(R, R̂)) (7)

The mean absolute error (MAE) measures the average absolute difference, while the
structural similarity index measure (SSIM) evaluates the perceptual similarity between
images. In practice, (R, R̂) is implemented as (Rl , R̂l) or (Rn, R̂n). The image decomposition
loss function is given by:

Ldecom = Lrecon + λsmoothLsmooth + λirLir (8)

This loss function strengthens reflectance learning through image decomposition
loss, which combines image reconstruction loss Lrecon, invariant reflectance loss Lir, and
illumination smoothness loss Lsmooth. The Lrecon component aims to reconstruct the input
image I from R · L̂, while Lsmooth and Lir are calculated between paired inputs. Specifically,
the invariant reflectance loss Lir is defined as:

Lir = MSE(Rl , Rn) + (1− SSIM(Rl , Rn)) (9)

where MSE is the mean squared error, adding to the robustness of the loss function by
assessing both error and similarity.

The overall loss function comprises these components to effectively enhance model
performance through accurate reflectance reconstruction and regularization of illumination
and reflectance properties across different lighting conditions.

L = Ldet + λm f aLm f a + λrcLrc + Lre f + Ldecom (10)

Each term and its corresponding regularization constant were determined based on
prior research and experimental validation:

The values for λm f a = 0.1 and λrc = 0.001 were determined through grid search
experiments on the WIDER FACE validation set. The grid search aimed to identify values
that optimized detection accuracy (mAP) while ensuring stable convergence of the training
process. λsmooth and λir are constants that were inherited from the Retinex-based image
decomposition model in [10], where λsmooth = 0.5 and λir = 0.01 have been widely used to
maintain reflectance consistency and illumination smoothness.

4. Experiment
In this section, the problem of face detection in dark environments is mainly dis-

cussed, and the performance of the proposed method is evaluated in detail under extreme
lighting conditions.

4.1. Datasets and Evaluation Indicators
4.1.1. Datasets

WIDER FACE is chosen as the source domain with good illumination, and the trained
model is tested on the target domain DARK FACE. These domains are denoted as WIDER
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FACE → DARK FACE (from source to target). The WIDER FACE dataset, which was
first released in 2015 (version 1.0), contains a total of 32,203 images selected from the
WIDER dataset, with annotations for 393,703 faces. Additionally, each face annotation
is accompanied by more detailed information covering various scenes, such as daily life,
outdoor activities, parties, and streets, with a range of lighting conditions, including both
good and insufficient lighting, as shown in Figure 4. In contrast, the DARK FACE dataset
focuses on face detection tasks in low-light environments and includes 6000 annotated
images as well as 9000 non-annotated images. This dataset aims to improve algorithm
performance for face detection under poor lighting conditions, as shown in Figure 5.

Figure 4. WIDER FACE.

Figure 5. DARK FACE.

4.1.2. Evaluation Indicators

In this study, the mean average precision (mAP) was used as the primary metric to
evaluate the performance of the model. mAP is a commonly used performance measure
in object detection tasks, as it comprehensively takes into account the model’s precision
and recall, thereby providing a thorough evaluation of the model’s detection capability.
Precision measures the proportion of samples predicted to be positive that are actually
positive. The formula is as follows:

Precision =
TP

TP + FP
(11)

where TP represents the number of true examples, and FP represents the number of false
positive examples. Recall measures the proportion of samples that are actually positive and
are correctly predicted to be positive. The formula is:

Recall =
TP

TP + FN
(12)

where FN denotes the number of false negative cases. Average precision (AP) is the area
under the precision–recall curve, calculated at different thresholds. It evaluates a model’s
performance by summarizing the trade-off between precision and recall across these thresh-
olds. mAP is for all classes of The average value of average precision, calculated as:

mAP =
1
N

N

∑
i=1

APi (13)
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where N is the total number of categories and APi is the average accuracy of the
i-th category.

4.2. Ablation Experiment

In this section, the various modules of the model are analyzed in depth through
ablation experiments, with special attention paid to the synergy between the CLIP (VIT-
based image encoder part) and the Dino self-supervised learning module. At the same time,
we have changed the loss function to improve the performance of the model, but the effect is
not ideal. We evaluate the impact of these modules on the overall performance of the model
by removing them one by one. The experimental results, as shown in Table 1, indicate
that when CLIP (VIT-based image encoder part) or Dino are used alone, the performance
of the model decreases due to the limitations of both. The average accuracy mean values
were 26.8% and 25.37%, respectively. However, when the two are combined, the overall
performance of the model is significantly improved, with an average accuracy value of
29.6%. The reason is as follows:

Table 1. Ablation experiment.

Method mAP (%)

Dainet + dino 25.37

Dainet + CLIP (VIT-based image encoder part) 26.81

Dainet + CLIP (VIT-based image encoder part) + dino 29.6

First of all, the CLIP (VIT-based image encoder part) is based on vision transformer
(ViT), which can effectively capture the global semantic information of the image. It has
unique advantages in overall scene understanding, especially when switching between
day and night scenes. By capturing global features, it can improve the global semantic
expression ability of the model. However, the ability of CLIP (VIT-based image encoder
part) to capture local details is relatively limited, and there are some shortcomings in
fine-grained feature extraction. This limitation stems from the pre-training objective of
the CLIP image encoder, which prioritizes extracting high-level global information while
lacking optimization for pixel-level or region-specific details. In low-light object detection
tasks, this limitation becomes particularly pronounced, as the model needs to accurately
capture subtle variations in the image to adapt to complex lighting conditions.

Secondly, as a self-supervised learning framework, the Dino module is good at cap-
turing local details in images. Especially in scenes with significant changes in lighting
conditions, Dino can learn detailed features related to lighting changes well. Although Dino
has advantages in local feature extraction, when used alone, it faces limitations due to the
lack of explicit supervision and global semantic alignment mechanisms. Its global feature
modeling ability is relatively weak, making it challenging to comprehensively represent
the overall contextual information of images.

When CLIP (VIT-based image encoder part) and Dino module are introduced at
the same time, their complementarity in feature extraction is fully exerted. CLIP (VIT-
based image encoder part) provides powerful global semantic features, ensuring that
the model can obtain comprehensive structural information in complex scenarios; Dino
strengthens the capture of local details, especially in scenes with drastic lighting changes.
Dino enhances the model’s perception of key details through fine-grained feature learning.
The combination of the two not only improves the overall feature representation ability of
the model, but also enhances the robustness of the model in day and night scene switching.
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4.3. Comparative Experiment

In the case of zero-shot domain adaptation, the dark scene is taken as the target
domain. The zero-shot day–night domain adaptation method [2,45] is directly applied to
DSFD detection, and this method is compared with CIConv [45], Sim-MinMax [43], and
DAI-Net [13].

We selected CIConv, Sim-MinMax, and DAI-Net as the objects of comparison in our
experiments for the following reasons: Firstly, CIConv is a traditional low-light detection
method based on local convolution, and its performance reflects the limitations of classical
approaches in day–night scenarios. Secondly, Sim-MinMax is a domain adaptation method
that achieves domain transfer by minimizing image differences between the source and
target domains, serving as a representative benchmark for cross-domain detection. Lastly,
DAI-Net is a network specifically designed for low-light scenarios, equipped with multi-
scale feature extraction and illumination variation handling capabilities, representing the
state-of-the-art in low-light object detection tasks.

The main limitation of CIConv is its dependence on local convolution, difficulty in
capturing significant global lighting differences between day and night images, and insuffi-
cient ability to handle details under complex lighting conditions. Although Sim-MinMax
achieves domain adaptation by minimizing the image difference between the source do-
main and the target domain, it is not robust enough to drastic lighting changes during
day and night, resulting in insufficient generalization performance when dealing with
cross-domain scenes, especially in low-light environments. The performance is weak. In
addition, Sim-MinMax lacks effective capture of fine-grained features, making it difficult
for the model to accurately identify details in scenes with drastic lighting changes. The
DAI-Net network demonstrates excellent domain migration ability through effective multi-
scale feature extraction and low-light processing, especially when dealing with changes
in lighting conditions during the day and night, it can better capture and adapt to face
features. This lays the foundation for the robustness of the model in cross-domain tasks.
In order to further improve the performance of DAI-Net in the day–night adaptive face
detection task in the zero-sample domain, we introduce the CLIP (VIT-based image encoder
part) and the Dino self-supervised learning module based on DAI-Net. By adding CLIP
and Dino, the model has stronger global and local feature extraction capabilities. CLIP
(VIT-based image encoder part)s are good at capturing the global semantic information
of images, while Dino effectively captures local details and domain invariance features
through self-supervised learning. Through self-supervised learning, Dino can learn cross-
domain feature representations to deal with domain migration problems under different
lighting conditions such as day and night. Combined with the global features provided by
the CLIP (VIT-based image encoder part), Dino can effectively integrate the learned domain
invariant features with global context information, further enhancing the domain-adaptive
ability of the model. Based on multi-scale feature representation theory, the diversification
of feature space helps to improve the generalization ability of the model. In our approach,
the global features of CLIP are combined with the local features of Dino to enrich the
feature representation space of the model. This multi-scale feature fusion strategy enables
the model to better capture important information related to face detection from different
scales, especially in the complex environment of day and night scene, the model shows
higher robustness and generalization ability. Moreover, the Retinex-based reflectance repre-
sentation learning module adds another layer of adaptability by disentangling reflectance
from illumination through supervised and semi-supervised decomposition processes. This
module ensures that the model learns illumination-invariant representations, which remain
consistent under various lighting conditions. These representations allow the model to
focus on the stable, intrinsic features of the scene, enabling it to handle diverse lighting
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scenarios effectively. Based on multi-scale feature representation theory, the diversification
of feature space helps to improve the generalization ability of the model. In our approach,
the global features of CLIP are combined with the local features of Dino to enrich the
feature representation space of the model. This multi-scale feature fusion strategy enables
the model to better capture important information related to face detection from different
scales, especially in the complex environment of day and night scenes. The proposed
framework demonstrates its adaptability in diverse scenarios by capturing both global and
local features robustly, excelling particularly in low-light domains where precise feature
isolation is critical. The model shows higher robustness and generalization ability in such
challenging environments.

We compare the new model with the basic DAI-Net. Experimental results, as shown
in Table 2, show that after adding CLIP (VIT-based image encoder part) and Dino, the
performance of the model in diurnal adaptive tasks is significantly improved.

Table 2. WIDER FACE → DARK FACE test set using DSFD.

Method mAP (%)

CIConv [45] 18.4

Sim-MinMax [43] 25.7

DAI-Net [13] 28.0

ours 29.6

On the whole, these methods have certain limitations in the zero-sample day and night
adaptive task, which are mainly reflected in the insufficient ability to deal with illumination
changes, the imbalance between global and local feature extraction, and the lack of domain-
adaptive ability. Therefore, it is difficult for them to achieve good generalization results
in complex cross-domain tasks. In contrast, our model achieved an average accuracy of
29.6% in dark domain scenes, 11.2% higher than CIConv, 3.9% higher than Sim-MinMax,
and 1.6% higher than DAI-Net, as shown in Table 2,demonstrating stronger robustness and
domain adaptability, achieving optimal performance in current tasks.

Based on the findings from the ablation and comparative experiments, we can draw
the following conclusions: The ablation experiments reveal the individual limitations of
the CLIP image encoder and Dino when used in isolation, underscoring the necessity of
complementary techniques. The comparative experiments further highlight the perfor-
mance enhancements achieved by integrating these two components within the DAI-Net
framework. These consistent improvements in low-light object detection tasks validate the
critical role of leveraging both global and local features. Together, these findings provide
compelling evidence of the framework’s effectiveness and its superiority in addressing
zero-shot day–night domain adaptation challenges.

4.4. Visualization of Results

Figure 6 illustrates the results of face detection in dark environments. The upper
row displays images that have been manually brightened, while the lower row presents
the outcomes of face detection in the dark using the model architecture described in this
study. In the lower row, recognized faces are highlighted in yellow. Through comparative
analysis, it is evident that the dark domain detection method in this paper can still provide
stable and reliable detection results under low-light conditions, further demonstrating its
effectiveness and robustness in extreme lighting conditions.
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Figure 6. Visualization of results.

5. Conclusions
This paper addresses object detection in dark environments under the novel zero-shot

domain adaptation (ZSDA) setting for dark domains. We extended DAI-Net by integrating
the image encoder from the CLIP and Dino models, significantly enhancing performance
in extreme lighting conditions.

The integration of the CLIP model (VIT-based image encoder) and Dino model in-
troduces advanced visual features and highly consistent representations, ensuring robust
feature extraction across various lighting environments. Experimental results on the DARK
FACE dataset demonstrate that these enhancements greatly improve the model’s gener-
alization and resilience, enabling accurate object detection in complex lighting scenarios.
These findings validate the effectiveness and superiority of the proposed approach.

Future research could explore applying the framework to more complex domain shift
scenarios, such as adverse weather conditions, extreme occlusion, or domain variations
caused by sensor differences, to validate its adaptability and robustness. Additionally,
while this study focuses on object detection in dark environments, the framework shows
potential for expansion to other tasks, including semantic segmentation, instance segmen-
tation, and video object tracking under complex lighting conditions, further broadening
its applicability.
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