
Academic Editor: Sara Deilami

Received: 5 December 2024

Revised: 28 December 2024

Accepted: 31 December 2024

Published: 2 January 2025

Citation: Wang, G.; Li, H.; Yang, X.;

Lu, H.; Song, X.; Li, Z.; Wang, Y.

Multi-Objective Site Selection and

Capacity Determination of

Distribution Network Considering

New Energy Uncertainties and Shared

Energy Storage of Electric Vehicles.

Electronics 2025, 14, 151. https://

doi.org/10.3390/electronics14010151

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Multi-Objective Site Selection and Capacity Determination of
Distribution Network Considering New Energy Uncertainties
and Shared Energy Storage of Electric Vehicles
Guodong Wang 1, Haiyang Li 1, Xiao Yang 1, Huayong Lu 1, Xiao Song 2, Zheng Li 2 and Yi Wang 3,*

1 State Grid Henan Electric Power Company, Zhengzhou 450018, China; wanguodong1@ha.sgcc.com.cn (G.W.);
lihaiyang@ha.sgc.com.cn (H.L.); yangxiao6@ha.sgc.com.cn (X.Y.); luhuayong@ha.sgcccom.cn (H.L.)

2 State Grid Jiaozuo Electric Power Supply Company, Jiaozuo 454003, China; songxiao13@ha.sgcccom.cn (X.S.);
lizheng29@ha.sgcc.com.cn (Z.L.)

3 School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: yiwang@zzu.edu.cn

Abstract: In recent years, the share of renewable energy in the distribution network has
been increasing. To deal with high renewable energy penetration, it is important to improve
the energy efficiency and stability of the distribution network. In this paper, the optimal
configuration of a distribution network with a high proportion of new energy and electric
vehicles is investigated. Firstly, based on the copula theory, the clustered new energy data
are obtained by optimizing the wind and solar output scenarios. Secondly, the uncertainty
of renewable energy output is fully considered in the planning stage of the distribution net-
work. Subsequently, an improved multi-objective particle swarm optimization algorithm
is adopted to determine the optimal capacity and location of charging stations. Finally,
the IEEE 33-node distribution network is used for case analysis. Through the comparison
of network loss, voltage change, and other related parameters, the advantages of shared
energy storage characteristics of electric vehicles in smoothing the uncertainty of the high
proportion of new energy are verified.

Keywords: distribution networks; electric vehicle; multi-objective particle swarm optimization;
uncertainty; renewable energy; Frank copula function; CNN; Bi-LSTM; site selection;
capacity determination

1. Introduction
With the increasing proportion of distributed generation (DG) involved in the active

distribution network (ADN) at the power supply end, the load peak-to-valley difference of
each node is increasing. An advanced distribution network has the ability to combine and
control various distributed energy resources (distributed power, controllable load, energy
storage, demand-side management, etc.). At the same time, the uncertainty of DG output
increases the risks and challenges of ADN optimal scheduling. The potential risk can be
reduced as much as possible by predicting the output of DG. In addition, the utilization
of electric vehicle (EVs) as energy storage devices can suppress the impact of the voltage
and load fluctuations of ADN to a certain extent. Therefore, the topics of multi-objective
site selection and the capacity determination of ADN with new energy and shared energy
storage in EVs are worthy of further study.

DG owns an inexhaustible nature, is absent of carbon emissions, and has been widely
used in ADNs in recent years [1–3]. However, compared with the characteristics of stable
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output of traditional energy sources such as coal, the output of DG is highly uncertain
due to the influence of various factors [4–6]. Since DG can help ADNs to deal with the
problem of supply and demand imbalance, some scholars have conducted research on
the combination of ADNs with DG and added DG to nodes with insufficient loads in
ADNs [7,8]. Considering the security risks and frequency modulation performance of DG,
a multi-timescale scheduling strategy was designed and investigated in references [9–11].
In references [12,13], in order to deal with the issue of DG output uncertainty, the typical
scenario of wind speed was investigated by combining the Elbow method with the K-means
clustering algorithm. In references [14,15], the SVG equipment is used to dynamically
regulate voltage to deal with reactive power programming problems under large-scale DG.
Reference [16] analyzes the correlation between wind turbines and photovoltaic equipment,
where a two-layer opportunity constraint model was established with the optimal power
flow as the optimization goal. Undoubtedly, the above methods have played a positive role
in improving the stability of the new energy distribution network. However, most of above
studies do not take into account the influence of the uncertain output prediction of new
energy, or the siting and capacity determination of energy storage devices, in stabilizing
DG output fluctuations.

With the increasing proportion of new energy in ADN systems, the fluctuation un-
certainty of DG output brings the problems of load-side power balance and new energy
curtailment to the system. By strengthening the nonlinear rules of input DG data, ref-
erence [17] further improved the prediction accuracy of DG output. In reference [18], a
wind and solar output scenario model considering K-means clustering was established for
systematic planning research. Based on this, it was noticed that energy storage devices
have the effect of stabilizing DG output. With the continuous increase of EV ownership,
the role of energy storage devices based on the dispatchable potential of EV clusters is
prominent. In reference [19], a potential model of EV cluster schedulable was established
to assist ADNs in achieving peak and frequency regulation. In 4eference [20], to reduce the
operating cost of the system, a bidding model for charging stations was constructed to fully
tap the dispatchable potential of EV clusters. In reference [21], the EV cluster was utilized
as the energy storage devices to participate in the ADN scheduling process. However, due
to the output uncertainty of the EV cluster, it was necessary to further process the output of
the EV cluster.

Based on the above discussion, it can be observed that most existing studies only
consider the influence of the location of distributed power supply on the active distribution
network system. Regarding how to reduce the influence of DG, the existing literature
mainly deals with the addition of energy storage devices, which does not consider the
uncertainty of DG. As an emerging unit of energy use, electric vehicles can also play the
role of mobile energy storage, which can provide maximum flexibility and reduce costs
compared to traditional energy storage components. In addition, the electric vehicle group
has a relatively clear time pattern, which is consistent with the output of wind turbines and
photovoltaic cells. Therefore, the questions of how to analyze the impact of electric vehicle
integration on ADNs and then smooth the uncertainty of DG through electric vehicles are
worthy of further study.

To deal with these issues, in this paper, we propose a novel multi-objective site selection
and capacity determination of distribution networks considering new energy uncertainties
and the shared energy storage of electric vehicles. Firstly, based on the kernel density
estimation and Frank copula function, the wind and solar output scenarios are generated
to reduce the influence of DG uncertainty. Secondly, the CNN-BiLSTM method is used to
process the data of EV clusters. Subsequently, a multi-objective site selection and capacity
determination model is established for EV charging stations based on the dispatchable
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potential of EV clusters. Then, the multi-objective particle swarm optimizer (MOPSO) is
used to optimize the vulnerability, network loss, and optimal capacity of the energy storage
of ADN. Finally, the effectiveness and advantages of the proposed method are verified by
extensive tests under different scenarios.

The rest of this paper is organized as follows: In Section 2, the scheduling model of
ADNs is established. In Section 3, the DG output prediction model is developed, which
includes DG and copula functions. Then, Section 4 describes the model of EV cluster
scheduling. Subsequently, Section 5 presents extensive test results under various situations.
Finally, conclusions are drawn and future work suggestions are proposed in Section 6.

2. ADN Scheduling Model Considering Multi-Objective Optimization
Due to the large number of parameters in the ADN model compared with the tra-

ditional research scheme that takes a single variable as the target for optimization, this
paper considers the multi-objective optimization algorithm to reflect the specific situation
of ADNs more reasonably.

The access of DG will have a significant impact on the voltage stability, network loss,
and power quality of ADNs. The changes in power quality will directly affect the stability
of the system voltage, which in turn will exacerbate the fluctuation of load [22–24]. Energy
storage and other devices can stabilize the influence of DG by adjusting their own output
when DG’s output fluctuates to achieve the purpose of peak shaving and valley filling.
However, the upfront investment of energy storage equipment in the early planning stage
of ADNs is expensive. Therefore, the question of how to plan the location of energy storage
is an urgent problem to be solved. To deal with the issue, this paper establishes an ADN
multi-objective optimal scheduling model for node voltage fluctuations and network losses,
with an optimal energy storage device capacity as the goal.

(1) Node voltage fluctuation: According to Reference [10], voltage stability is an impor-
tant indicator of power system stability. The access of DG will influence the node
voltage of system by affecting the balance of reactive power. In this paper, the sum
of node voltage fluctuations is selected as the objective f1, which is expressed in
Equation (1):

f1 =
Nbus

∑
i=1

T

∑
j=1

∣∣Vij − Vi
∣∣, (1)

where Nbus represents the total number of nodes; T stands for 24 h; Vij is the voltage
between the nodes; and Vi denotes the standard voltage.

(2) Network loss: After large-scale DG is connected, the reactive power of the power
system may be insufficient. If the access location of the DG is far away from the main
line of the ADN, the electrical distance will increase, which in turn leads to an increase
in the network loss of system. The objective function f2 represents the sum of the
network losses of the ADN system, which can be expressed as Equation (2)

f2 = closs

T

∑
t=1

∑
ij∈Eline

Iij,t
2rij, (2)

where closs denotes the unit network loss cost; Eline represents the set of branches in
the ADN; Iij,t means the branch current; and rij indicates the branch resistance.

(3) Energy storage system capacity: In the early construction stage of ADN, to avoid the
large investment and the low utilization rate of energy storage capacity, the capacity
allocation of the energy storage device should be considered in advance based on
its economic benefits. Therefore, the total capacity of the energy storage device is
selected as the objective function. Based on this, the cost, contribution to network loss,
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and voltage stability can be balanced by a multi-objective algorithm. f3 is the objective
function of the optimal capacity of the energy storage system, which is presented in
Equation (3)

f3 =
2

∑
j=1

t0+n∆t

∑
ij∈Eline

Pcha(j)/Pdis(j)∆t, (3)

where t0 denotes the time when charging starts; Pcha/dis represents the charging and
discharging power; and ∆t indicates the charging and discharging time of the energy
storage device.

When determining the location and capacity of EV charging stations in ADN, it is
necessary to optimize the location and power of EV charging stations. In addition, the
network loss and node voltage fluctuation of ADNs should be also taken into account.
Then, an ADN model with multi-objective optimization is established.

3. DG Output Prediction Model
In recent years, the number of wind turbines and photovoltaic units operated by ADN

systems increased [25]. Although the addition of DG can reduce the output of gas units in
the system and thus reduce the carbon emissions of the system, the impact of the fluctuation
of DG output on ADNs cannot be ignored [26]. In order to reduce the adverse impact
of DG output uncertainty, the influence of randomness and correlation of DG should be
considered before it is put into ADNs [27].

At present, some scholars have studied the randomness of the output of wind turbines
and photovoltaic units. There are mainly two schemes to deal with the issue: (1) assuming
that the wind speed obeys the Weibull distribution and the light intensity obeys the Beta
distribution, then the historical results can be utilized to obtain the estimation of wind
speed and light intensity. However, this scheme only carries out reliability evaluation and
analysis, which cannot be applied to calculate the annual cost because it ignores the time
scale of DG data. (2) Based on the day-ahead output prediction data of wind speed and
light intensity, the stochastic analysis of wind speed and photovoltaic power is realized
by the error sampling of the data. However, the prediction limitations of this scheme are
obvious; further processing is needed for the predicted steps.

Firstly, the non-parametric kernel density estimation method is used to fit the historical
data of DG, and the kernel density estimation expressions of wind turbines and photovoltaic
units are obtained, which can be expressed as follows:

f̂ (x) =
1

nh

T

∑
t=i

K(
x − Xi

h
), (4)

Equation (4) represents the specific process of WT and PV generation, where n is the
sample size; h is the width of the window; K(·) is a kernel function; x is the output of hourly
PV/WT; and Xi denotes the output of hourly PV/WT of the i-th day. This method does not
need to assume the distribution of historical data, and its advantage is that the output data
of DG units can be directly processed to obtain the output probability density function of
DG units in each period of the day.

Then, the optimal copula joint probability distribution was used to generate the annual
output scenarios of wind turbines and photovoltaic units. Due to the large number of types
of copula functions, it is necessary to distinguish and select the goodness of fit according to
the actual situation of the model. Since the output of DG usually has a negative correlation
and complementarity, the Frank copula function is selected to describe the wind–solar
correlation. The Frank copula function is an improvement on the copula function. Frank
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copula can work with both non-negative and negative correlations of variables [28]. In
general, the joint probability of a wind scene can be expressed as follows:

Fn(xi, yi) = C(FXi (xi), FYi (yi)), (5)

Equation (5) represents the probability function of the joint output of the wind and
solar; Where C(·) denotes a copula connection function; FXi (xi), FYi (yi) are the probability
functions for wind turbines and photovoltaics, respectively. The specific process of the
Frank copula function is shown in Figure 1.
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Figure 1. Generation of wind and photovoltaic daily curve.

After that, the Frank copula function of each period is sampled. Then, the output of
each period can be calculated according to the joint probability distribution function of
sampling results and DG output. Finally, a typical daily curve is generated considering DG
correlation and randomness.

4. Exploration of Schedulable Potential of EV Fleets
In this subsection, the shared energy storage characteristics of EV clusters are taken

into account [29]. At first, the data processing method for EV clusters is developed. Then,
the schedulable potential model for EV clusters is established.

4.1. Data Processing Process of EV Cluster

Via the cluster processing of electric vehicles, the prediction error can be significantly
eliminated. However, the historical data bias of EVs is still one of the reasons for the error.
To deal with this issue, a method to process the historical data of EV clusters is developed
by combing the convolutional neural networks (CNNs) with bi-directional long short-term
memory (Bi-LSTM), which can effectively its error. CNN processes the initial data through
local connection and weight sharing, which effectively reflects the data characteristics. At
the same time, the number of parameters in the training process is greatly reduced, which
is convenient for extracting the feature information of the data [30]. A schematic diagram
of the CNN process is shown in Figure 2.

Compared with traditional LSTM, Bi-LSTM displays a reverse LSTM process, which
can better connect historical data with future data [17]. CNN-Bi-LSTM can further explore
the relationship between the current data and the data at each time point to improve the
prediction accuracy. After knowing the maximum charge/discharge power of EVs and the
historical data of SOC, the data are divided into training groups and test groups. Firstly,
the data of the training group were used to explore the internal connection, and secondly,
the data of the test group were used to verify the accuracy. The schematic diagram of the
Bi-LSTM method is shown in Figure 3.
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4.2. Establishment of the Schedulable Potential Model for EV Clusters

Compared with a single-EV model, the multi-type EV cluster model in an electric vehicle
station (EVS) can better reflect the state of the actual EV. Assuming that each type of EV
has a fixed arrival and departure time Tarrive/Tleave and state of charge (SOC) S0, a potential
energy storage model for EVS cluster dispatchable can be established. The SOC constraints
and charge–discharge power constraints of an EV can be expressed as [31,32] follows:

SEVS
t = SEVS

t−1 +
T

∑
i=1

N

∑
n=1

ηPcha −
T

∑
i=1

N

∑
n=1

Pdis
η

, (6)

SEVS
T = SEVS

exp , (7)

SEVS
min ≤ SEVS

t ≤ SEVS
max, (8){

0 ≤ Pcha ≤ Pcha,max

0 ≤ Pdis ≤ Pdis,max
, (9)

Equation (6) represents the total SOC of the EV in the charging station. The charging
and discharging status of the EV is determined using historical data. Equation (7) represents
the expected SOC of the EVS. Equation (8) denotes the upper and lower limits of the SOC
allowed by EVS. Equation (9) indicates the upper and lower limits of EVS charge and
discharge power. Here, SEVS

t indicates the power level of the EVS at time t; N denotes the
total number of EVs; η means the charge–discharge efficiency; Pcha represents the charging
power; Pdis represents the discharging power; SEVS

exp is the expected amount of power; SEVS
min

and SEVS
max are the allowable scope of SOC; and Pcha,max and Pdis,max are the allowable range

of charge and discharge power, respectively [33].
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5. Case Analysis
In this paper, the IEEE33-node ADN system is used for scenario analysis, and the

detailed parameters are shown in Reference [18]. The total load is 3715 kw + j2300 kvar,
and the rated voltage of the system is 12.66 kV. The flowchart of the algorithm in this paper
is shown in Figure A1 of the Appendix A.

In the example of this study, the wind turbines are installed at nodes 20 and 14, and
the photovoltaic units are installed at nodes 9 and 30. The Frank copula function is used to
predict the historical data of wind and solar output, and the typical sunrise force curves of
the two are extracted, as shown in Figure 1. The number of system nodes that can connect
to EVS energy storage ranges from 2 to 33, the maximum number of nodes that can be
connected to EVS is 2, and the maximum installed power is 400 kW.

Firstly, the scenario generation of wind turbine PV and the data of EV cluster are
processed [30,34,35]. The DG output probability density curve obtained from the Frank
copula function is shown in Figures 4 and 5. Based on the DG output prediction model
established in Section 3, 500 wind–solar complementary scenarios are generated. Then, the
generated new energy output scenarios can be reduced, and the corresponding probability
of each scenario can be calculated.
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According to Figures 4 and 5, it can be seen that the results generated by the DG
scenario can more accurately generate the randomness and correlation of the DG unit
output in the selected area. The DG data processed through the above data are conducive
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to the overall planning of the ADN system in the early stage of construction, and further
improve the operational reliability of the AND system.

As can be seen from Figure 6, after using the CNN-BiLSTM model to mine and predict
the rules of the historical data of EV clusters, the accuracy is improved to be higher than
that of the non-predicted scenario and other initial algorithms, which can meet the actual
needs of ADN planning well.
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In order to verify the effectiveness of the proposed method, the following four scenar-
ios are selected for comparison:

scenario 1: DG is not connected.
scenario 2: Access to DG without energy storage.
scenario 3: Connect to DG and add EVS energy storage.
scenario 4: Connect to DG and add normal energy storage.

Table 1 shows the results of the multi-objective functions in the four scenarios. As
can be seen from Table 1, the vulnerability of the ADN network in scenario 2 is improved
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compared with that in scenario 1; scenario 3 reduces the network vulnerability compared
with scenario 2 and further reduces the network loss of the system compared with scenario 1.
Compared with scenario 3, the voltage fluctuation rate and network loss of scenario 4 are
improved. These results show that EVS energy storage can better stabilize the influence of
DG output on voltage fluctuation compared with ordinary energy storage.

Table 1. A comparison of objective functions under three scenarios.

scenario 1 scenario 2 scenario 3 scenario 4

Target 1 0.319736 0.369132 0.36345 0.36784
Target 2 1.657225 0.947059 1.170143 1.268574
Target 3 / / 2.565299 2.325875

Figure 7 shows the voltage curve for scenarios 1–3. Comparing and analyzing the
node voltage curves of the three scenarios, it can be seen that, compared with scenario 1
without DG, the voltage fluctuation of scenario 2 is significantly improved after considering
DG, indicating that the access of DG has a large impact on the voltage of the ADN system.
In scenario 3, the voltage stability of the ADN system is significantly improved after the
energy storage model with the dispatchable potential of EV clusters is added. Taking
the voltage of node 16 as an example, the voltage deviation of node 16 in scenario 3 is
9.4% compared with that of node 16 in scenario 1, and the voltage deviation of node 16 in
scenario 2 compared with node 16 in scenario 1 is 40%, which fully verifies the effectiveness
of the proposed scheme.

Electronics 2025, 14, x FOR PEER REVIEW 10 of 15 
 

 

(a) scenario 1. 

(b) scenario 2. 

 
(c) scenario 3. 

Figure 7. Node voltage curves for different scenarios. 

Figure 8 shows the output curve of EV cluster energy storage in scenario 3. From the 
data in the figure, it can be observed that the two energy storage devices maintain the 
SOC range during the period of 10:00–15:00, with high DG outputs used to cope with the 
impact of DG output uncertainty. When the DG output is high, the energy storage device 
conducts a charging process to absorb the additional output of the DG. A discharge oper-
ation is carried out when the DG output is low to compensate for the lack of DG output. 
Furthermore, the effectiveness of the proposed scheme in this paper is verified in stabiliz-
ing DG fluctuations. 

Figure 7. Cont.



Electronics 2025, 14, 151 10 of 14

Electronics 2025, 14, x FOR PEER REVIEW 10 of 15 
 

 

(a) scenario 1. 

(b) scenario 2. 

 
(c) scenario 3. 

Figure 7. Node voltage curves for different scenarios. 

Figure 8 shows the output curve of EV cluster energy storage in scenario 3. From the 
data in the figure, it can be observed that the two energy storage devices maintain the 
SOC range during the period of 10:00–15:00, with high DG outputs used to cope with the 
impact of DG output uncertainty. When the DG output is high, the energy storage device 
conducts a charging process to absorb the additional output of the DG. A discharge oper-
ation is carried out when the DG output is low to compensate for the lack of DG output. 
Furthermore, the effectiveness of the proposed scheme in this paper is verified in stabiliz-
ing DG fluctuations. 

Figure 7. Node voltage curves for different scenarios.

Figure 8 shows the output curve of EV cluster energy storage in scenario 3. From
the data in the figure, it can be observed that the two energy storage devices maintain
the SOC range during the period of 10:00–15:00, with high DG outputs used to cope with
the impact of DG output uncertainty. When the DG output is high, the energy storage
device conducts a charging process to absorb the additional output of the DG. A discharge
operation is carried out when the DG output is low to compensate for the lack of DG
output. Furthermore, the effectiveness of the proposed scheme in this paper is verified in
stabilizing DG fluctuations.
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Figure 9 shows the final location of the EVS. After considering the site selection
and capacity setting model of EVS, the average voltage of node 13 is reduced by 29.5%
compared to the level before the consideration of EVS, and the average voltage of node 33 is
reduced by 21.5% compared to the level before the consideration of EVS. These test results
demonstrate the advantages of energy storage devices in smoothing out ADN voltage
fluctuations and verify the role of EVS in the substitution of energy storage devices.
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The above model can provide a preliminary scheme for EVS site selection and capacity
determination. However, the solution efficiency of MOPSO is slow and needs to be further
improved and the model does not take into account more practical issues such as EV
queuing times, which will be left for further study and discussion in the future.

6. Conclusions
To deal with the problems of ADN load fluctuation caused by DG access, a multi-

objective site selection and capacity determination method for distribution networks is
proposed. We consider new energy uncertainties and shared energy storage of electric
vehicles. The proposed method can reduce the uncertainty of ADN systems by introducing
energy storage devices based on EV clusters and predicting DG and EV data. The main
conclusions are as follows:

(1) The EV cluster energy storage device can better stabilize the voltage fluctuation of the
ADN system caused by the uncertainty of DG outputs. Compared with traditional
energy storage devices, EV cluster energy storage reduces the upfront construction
cost and improves energy utilization. After considering the site selection and capacity
setting model of EVs, the average voltage of node 13 is reduced by 29.5% compared
to the scenario without EVs, and the average voltage of node 33 is reduced by 21.5%
compared to the scenario without EVs.

(2) The probability density curve of DG output obtained based on the Frank copula
function can better reflect the actual situation of DG output and reduce the prediction
bias compared with the traditional prediction algorithm. The EV data predicted based
on CNN-BiLSTM can also reflect the actual situation of EV more realistically, reducing
the uncertainty of EV output. The CNN-BiLSTM algorithm used in this paper can
further reduce the data error of EV, which is 10.2% higher than the ordinary CNN
method and 8.3% higher than that of the Bi-LSTM algorithm.
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(3) The multi-objective distribution network siting and capacity setting model can op-
timize the ADN model with DG via the aspects of node voltage fluctuation and
ADN network loss, which further improves the feasibility compared with the single-
target model.

In future research, we will further study the multi-objective optimization algorithm
to improve the solution efficiency of MOPSO. In addition, the model combining EV path
planning and ADN networks will be also investigated to enrich the factors of EVS site
selection and capacity determination.
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Table A1. Sampling parameters of EV.

EV Tarrive Tleave S0

The Number
of EVs Within

1 Charging
Station

The Number
of EVs Within

2 Charging
Stations

The Number
of EVs Within

3 Charging
Stations

The Number
of EVs Within

4 Charging
Stations

1 N (18, 4) N (8, 4) U (0.4, 0.6) U (180, 210) U (180, 210) 0 U (380, 400)
2 N (21, 1) N (7, 1) U (0.2, 0.4) U (190, 220) U (90, 120) U (90, 120) 0
3 N (9, 2) N (17, 2) U (0.4, 0.6) 0 U (380, 400) U (380, 400) 0
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