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Abstract: Lithium-ion batteries are commonly employed in energy storage because of
their extended service life and high energy density. This trend has coincided with the
rapid growth of renewable energy and electric automobiles. However, as usage cycles
increase, their effectiveness diminishes over time, which can undermine both the system’s
performance and security. Therefore, monitoring the state of charge (SOC) and state of
health (SOH) of batteries in real time is particularly important. Traditional SOC calculation
methods typically treat SOC and SOH as independent variables, overlooking the coupling
between them. To tackle this issue, the paper introduces a joint SOC-SOH estimation
approach (BiLSTM-SA) that leverages a bidirectional long short-term memory (BiLSTM)
network combined with a self-attention (SA) mechanism. The proposed approach is
validated using a publicly available dataset. With the SOH taken into account, the MAE
and RMSE of the SOC are 0.84% and 1.20%, showing notable increases in accuracy relative to
conventional methods. Additionally, it demonstrates strong robustness and generalization
across datasets with multiple temperatures.

Keywords: SOC estimation; SOH estimation; lithium-ion battery; BiLSTM; SA

1. Introduction
In the current clean and efficient energy sector, lithium-ion batteries are becoming

increasingly important due to their superior energy density and extended service life [1].
This trend has coincided with the rapid growth of renewable energy and electric auto-
mobiles. Lithium-ion batteries are a key element in systems for storing energy, and they
degrade with increasing usage cycles in practical applications. Their performance and
lifespan directly affect the reliability of batteries and the safety of the system, leading to
reduced system performance and potential safety risks during operation [2]. Therefore, the
accurate monitoring and management of the operating state of it are crucial to ensuring
its safety, reliability, and efficient performance. The state of charge (SOC) and the state of
health (SOH) are critical variables that define the operational state of a battery [3]. SOC
stands for the present capacity as a percentage of its maximum capacity, directly correlating
to its immediate performance. SOH represents the degree of a battery’s aging compared to
a new one, directly influencing its long-term performance and service life [4].

Reliable SOC and SOH estimation is a fundamental component of the battery manage-
ment system (BMS), as the preciseness of their estimation immediately impacts the security,
effectiveness, and lifespan of the battery and helps to precisely gauge the remaining driving
range of the vehicle, providing drivers with reliable range information [5]. Although
several approaches have been employed to forecast SOC and SOH, current BMSs still have
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a difficult time handling the intricacies of battery decline. In particular, as the battery ages,
changes in SOH have an impact on how accurately SOC is estimated. As the number of
lithium battery cycles increases, SOH gradually decreases, and the battery’s maximum
usable capacity changes. Both of these elements affect how accurate SOC estimation is.
In addition to improving SOC estimation accuracy, precise SOH estimation enables the
early identification of battery cells with significant capacity degradation, preventing per-
formance loss or safety risks caused by uneven aging [6,7]. Therefore, considering the
effect of SOH on SOC is crucial when estimating SOC. By jointly estimating both SOC
and SOH, we can not only improve SOC estimation accuracy but also reduce performance
degradation and mitigate potential safety hazards. With electric vehicles, this is particularly
important, where the timely replacement of severely degraded batteries can prevent traffic
accidents caused by battery failures, thereby safeguarding vehicle safety and reliability [8].
Estimating SOC and SOH together is significant so as to optimize BMS performance, im-
prove battery efficiency, and enhance user safety. It not only contributes to better battery
performance but also directly impacts the vehicle’s safe operation and the overall driving
experience.

Traditional SOC estimation methodologies fall into three main categories: model-
based [9], open-circuit voltage (OCV) [10], and Coulomb counting methods [11]. Coulomb
counting forecasts SOC by tracking the charging and discharging currents of the battery, as
well as its total charge. However, due to factors like battery self-discharge, sensor inaccura-
cies, and temperature fluctuations, this method is susceptible to cumulative errors, which
can progressively increase, particularly during long-term use [12]. Through voltage mea-
surement of the battery, the OCV method calculates SOC under static conditions. However,
it needs the battery to remain idle for a while without load to allow voltage stabilization,
which limits its practical applicability. The complexity and high computational demands of
model-based methods also restrict their use in real-time, online applications [13]. The two
main categories of traditional methods to estimate SOH are direct calculation and model-
based methods [14]. Direct calculation approaches often require stringent experimental
and hardware conditions, making them inappropriate for online real-time monitoring. Ap-
proaches based on models, on the other hand, typically involve complex model parameter
fitting and require a significant quantity of experimental data, which increases both the
cost and the difficulty of their implementation [15].

Data-driven methods have garnered major attention in SOC and SOH estimation
due to the considerable variation in parameters across different battery types under di-
verse conditions, which complicates the identification of numerous parameters in battery
models [16,17]. In the context of a data-driven methodology, advanced computational
approaches like machine learning and deep learning are employed. These approaches can
be used to detect and analyze complex nonlinear relationships in batteries [18]. Their key
advantage is their capacity to adjust to changes in battery characteristics, which enhances
the precision and robustness of SOC and SOH estimation and demonstrates greater adapt-
ability in practical applications. Especially when handling complex working conditions,
data-driven methods can effectively adapt to changing environments and usage scenarios,
demonstrating strong robustness and adaptability. In contrast to traditional methodologies,
these data-driven techniques do not depend on complex model architectures or exact
physical equations. Rather, they utilize models developed through training on extensive
datasets, enabling them to provide highly precise estimations. Models like support vector
machines, XGBoost, and neural networks have been used extensively for SOC and SOH
estimation [19–22]. Bian et al. [23] introduced a stacked BiLSTM model, which exhibited
remarkable accuracy in estimating the SOC across diverse ambient temperature scenarios.
Eddahech et al. [24] used FNN for SOC estimation, and their results enabled the estima-
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tion of the battery’s end voltage. Yang et al. [25] used a recursive neural network for
SOC estimation, achieving good accuracy when validated under dynamic load conditions.
Zhang et al. [26] showed good accuracy under dynamic load conditions by estimating
SOC under complex conditions using a traditional BP neural network. Zhong et al. [27]
suggested a recursive neural network estimation method using the Kalman filter, achieving
lightweight SOC estimation. Park et al. [28] applied wavelet transforms in combination
with long short-term memory (LSTM) to estimate SOH using LSTM in combination with
CNN. Qian et al. [29] pitched a multi-source Seq2Seq model for the accurate long-term
prediction of lithium-ion SOH when loaded dynamically. Yang et al. [30] put forward
a SOC estimation method via bidirectional LSTM networks improved by the Bayesian
optimization algorithm. Van et al. [31] put forward a methodology for estimating SOH and
internal resistance that makes use of LSTM networks.

However, the connection between SOC and SOH is ignored by most SOC and SOH
estimation techniques in the aforementioned research. In actuality, the decrease in SOH
that comes with lithium-ion battery aging and extended use inevitably impacts how precise
SOC estimation is. SOC and SOH are interdependent, influencing each other dynamically.
To address these limitations, a joint estimation approach is proposed. The combined SOC-
SOH estimation method accounts for the intricate connection between SOC and SOH and
adapts to changes in the battery’s health condition to produce more precise SOC and SOH
forecasts. Therefore, it is important to effectively integrate the time-scale characteristics
of SOC and SOH, as well as their coupling relationship, in the estimation process. For
real-time parameter updating and identification within an equivalent circuit model, Lai
et al. [32] introduced a joint SOH-SOC strategy that uses the FFRLS. However, it is highly
reliant on the model’s precision, which limits its ability to fully achieve real-time SOC
estimation. The enhanced firefly algorithm-optimized particle filtering technique for joint
SOC and SOH estimation was presented via Wu et al. [33] using a second-order RC
equivalent circuit model (2RCECM) and RLS for battery parameter recognition. However,
the battery’s complex nonlinear characteristics might not be adequately captured by the
2RCECM, which may limit the model’s adaptability under various operating circumstances.
Fang et al. [34] proposed a distributed optimal Kalman consensus filter for SOC and SOH
estimation. Nevertheless, it does not adequately account for the various uncertainties and
complexities encountered in practical applications, which limit the broader applicability of
the results.

With the aim of resolving the issues mentioned above, this paper proposes an approach
to the joint estimation of SOC-SOH, BiLSTM-SA, which incorporates bidirectional long
short-term memory (BiLSTM) network with the self-attention mechanism (SA). BiLSTM-SA
utilizes data from multiple cycles to capture the long-term decay characteristics of the
battery so as to perform SOH estimation. It then combines the long-term information
of the SOH estimation to achieve SOC estimation on the input features based on each
discharge cycle, which not only effectively utilizes the influence of SOH changing capacity
of the battery but also ensures the real-time nature and accuracy of the SOC estimation.
Furthermore, the joint estimation of SOC-SOH is validated on a dataset containing multi-
ple temperatures and different operating conditions, which fully considers the battery’s
performance fluctuations across various environmental conditions. This ensures that the
model can adapt to the various challenges the battery may encounter in real-world use,
such as extreme temperatures, rapid charging and discharging, and load variations, thereby
increasing its ability for generalization and robustness. Therefore, the proposed BiLSTM-SA
enhances both the model’s estimation precision and its reliability in practical applications.
The following are the contributions made by this paper:
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1. The introduction of a segmented training strategy and the realization of joint SOC and
SOH estimation through shared parameters effectively capture the interdependence
between these two state variables, while reducing model complexity.

2. An estimation model is designed using BiLSTM to capture the bidirectional depen-
dencies in battery time series data. The model’s estimation accuracy for SOC and
SOH is significantly improved by highlighting the key local features through the SA.

3. Addressing the differences in time scales between SOH and SOC, the proposed es-
timation strategy combines the short-term dynamic behavior and lengthy decay
characteristics of the battery, focusing on real-time state estimation within each dis-
charge cycle. This approach effectively adapts to changes in different time scales and
boosts both the preciseness and timeliness of the estimation.

2. Materials and Methods
2.1. Bidirectional Long Short Term Memory Network

LSTM networks control the flow of information through gating mechanisms, allowing
them to selectively store, read, and discard information. These networks are effective in
capturing long-term dependencies and, in some ways, alleviating the challenges of gradient
vanishing and explosion that recurrent neural networks (RNNs) may face when processing
long sequential data [35]. The LSTM network consists of multiple memory cells, each of
which contains ft forget gates, it input gates, and ot output gates:

ft = σ(W f · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ot = σ(Wo · [ht−1, xt] + bo) (3)

In Equation (1), σ is the sigmoid activation function, W is the weight matrix, ht−1 is
the previous moment’s hidden state, xt is the present input, and b is the bias.

While the input gate determines whether the current input data should be retained in
the memory cell, the forget gate primarily determines how much of the previous memory
should be thrown out. The memory cell determines which information to discard and
which to retain for the next time step according to the decisions made by both the forgetting
and input gates. The output gate controls the amount of information that is passed from
the memory cell to the hidden state, which is then used as the output for the current time
step and passed to the next time step or layer. The final output value is calculated by
multiplying the output gate’s result by the state of the memory cell. However, standard
LSTMs can only process data in a unidirectional manner, typically from the beginning to the
end of the sequence. This limits their ability to capture dependencies that may span across
different time steps, restricting their understanding of the full context within the sequence.
To overcome this constraint, the BiLSTM network introduced by Graves et al. [36] utilizes
two distinct LSTM layers at each time step: one for processing the sequence in a forward
direction (from beginning to end), and the other for processing it in reverse (from end to
beginning). Figure 1 illustrates the architecture of the BiLSTM.

The core idea behind BiLSTM is to capture bidirectional dependencies in a sequence
by combining the outputs from both the forward and backward LSTM layers. This bidi-
rectional mechanism allows the model to integrate contextual information from both
directions, thereby capturing complex dependencies in sequences more comprehensively.
It consequently greatly improves the model’s comprehension and forecasting capabilities
for time-series data. In the joint SOC-SOH estimation task presented in this paper, BiLSTM
enables more accurate joint estimation by capturing important temporal dependencies in
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the battery discharge process and effectively combining both short-term and long-term
features within the battery sequence data.

LSTM LSTM LSTM

LSTMLSTMLSTM

yt−1 yt yt+1

yt+1ytyt−1

σ σ tanh σ

+

XX

X

tanh

LSTM

Figure 1. BiLSTM structure diagram.

2.2. Self-Attention Mechanism

SA is widely used in natural language processing and computer vision to capture
correlations within sequences [37]. The core idea is to enable the model to process inputs at
each time step by considering not only local neighborhood information but also focusing on
other parts of the same input sequence. By extending beyond the local scope, this flexibility
allows the model to capture global dependencies between elements. Additionally, the SA
offers the advantage of not requiring sequential processing of the input sequence; instead,
all elements in the sequence can be processed simultaneously. The model can adjust the
attention weights dynamically across various time steps, giving greater focus to important
steps while disregarding less relevant ones [38]. Figure 2 illustrates the structure of the SA.
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Figure 2. Self-attention structure diagram.

First, the inputs are transformed into three sets of vectors: query (Q), key (K), and
value (V). The similarity is then calculated using the dot product between Q and K,
followed by the normalization of the similarity scores to obtain the attention weights. Next,
these attention weights are applied to the value vectors, and the resulting output is the
weighted total of the value vectors:

Q = XWq, K = XWk, V = XWv (4)

In Equation (4), Wq, Wk and Wv are learnable weight matrices. Following the creation
of these vectors, the dot product of Q and K is used to calculate their similarity:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

In Equation (5), dk is the key’s dimension, utilized for scaling the dot product to avoid
the issue of vanishing gradients or gradient explosions brought on by excessively high
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dot product values. The so f tmax function normalizes the similarity scores to obtain the
attention weights and then performs a weighted summation on each value vector V to
obtain the final output:

Output = Attention(Q, K, V) (6)

2.3. SOC-SOH Joint Estimation Model

This paper proposes the BiLSTM-SA model for joint SOC-SOH estimation in lithium-
ion batteries. Although BiLSTM can efficiently deal with time-series data, it still suffers
from a certain limitation when faced with long sequences or the task that needs to give
different attentions to different parts of the sequences. certain limitations. Through the SA,
the joint SOC-SOH model can not only focus on the important time steps in the battery
discharge process but also analyze the interactions between different time steps through
a globalized perspective. Compared with the traditional sequence modeling method,
the incorporation of the SA makes the model more flexible and efficient in dealing with
nonlinear and complex time-dependent problems, thus improving the prediction accuracy
of SOC and SOH.

In the model design, through its bidirectional processing mechanism, BiLSTM lever-
ages both forward and backward dependencies to efficiently capture the global information
in the time-series data. The addition of SA further strengthens the capacity of the model to
recognize and extract characteristics from significant time steps. By dynamically modifying
the weight allocation to various time steps, SA helps the model in concentrating on the
most pertinent data, improving its performance on nonlinear time-series tasks. Figure 3
shows the BiLSTM-SA model structure.

SelfAttention

LayerNorm

Temp SOC SOH

… … … … …

Input

BiLSTM

SOC
Multi-Layer Perceptron Multi-Layer Perceptron

Multi-Layer Perceptron

Regression Head Regression Head

Figure 3. BiLSTM-SA structure diagram.

In the BiLSTM-SA model, the model inputs include voltage, current, temperature,
and power, and through the shared BiLSTM layer and SA, it extracts temporal features
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during the battery’s discharge process. The SA further enhances the model’s focus on
key time points, increasing the SOC and SOH estimations’ accuracy. SOH predictions
and provisional SOC values are obtained through two independent fully connected layers,
which share the underlying features to capture the coupling between SOC and SOH,
despite their separate prediction branches. To refine the SOC prediction, the SOH estimate
is introduced as an additional feature, providing more accurate SOC predictions through
a new fully connected layer. By incorporating the long-term degradation information
from SOH estimation, the shared feature extractor captures the coupling between SOC
and SOH more effectively. This shared information strengthens the model’s perception of
the battery’s overall state while raising the stability and precision of the SOC estimation.
Figure 4 displays the overall structure of the model.

Begin

Finding globally optimal parameters using the TPE
optimization algorithm in the Optuna framework

Training model

SOH is considered into SOC estimation , and SOC
estimation is trained again

Evaluate the model using the MAE and
RMSE evaluation metrics

End

 Acquire the data and perform
standardized preprocessing

Divide the dataset into a training set and a
test set

Constructing the BiLSTM-SA model

Customize the dataset and set the sliding
window size

Output Prediction

Figure 4. Model’s overall flowchart.

The specific implementation procedure for the proposed SOC-SOH joint estimation
model for lithium-ion batteries is outlined below.

Step 1: First, the raw data are read, and the sampling frequency is adjusted to 1 Hz to
reduce redundancy and increase processing efficiency. Then, the data are normalized to
eliminate differences in scale and range of values between variables. The standardization
formula is shown in Equation (7):

Xstandardized =
X − µ

σ
(7)

where X is the raw data value, µ denotes the average of the data, and σ stands for the
standard deviation of the data.

Step 2: Split the data into a training set and a testing set based on different driving
conditions to ensure that the model can learn and validate under multiple conditions.

Step 3: Load the processed data into the customized dataset class and apply the sliding
window approach with a window size of 50. This approach decomposes the discharge
cycle into smaller sub-sequences, each representing a specific segment of the cycle.

Step 4: In this step, the joint SOC-SOH estimation modeling is performed using
BiLSTM-SA. The model takes voltage, current, temperature, and power data as inputs.
These four features are processed through a shared feature extraction layer, which captures
common patterns across both SOC and SOH tasks. The model then branches into separate
pathways for the joint prediction of SOC and SOH. The predicted SOH is incorporated as a
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feature in the SOC prediction, allowing the final SOC estimate to account for the battery’s
aging process.

Step 5: The joint SOC and SOH estimation model based on BiLSTM-SA is trained
using the Adam optimizer. Hyperparameter tuning is conducted using the Optuna frame-
work, which employs the Tree-structured Parzen Estimator method based on Bayesian
optimization. The quantity of hidden layer neurons is optimized within the range [10, 100],
the count of hidden layers within [1, 5], and the learning rate within [1 × 10−5, 1 × 10−1].
After optimization, the final values selected are 42 hidden neurons, 4 hidden layers, and a
learning rate of 0.001. With this configuration, the model achieves robust SOH estimation,
and SOC estimation also shows promising results.

Step 6: SOC-SOH joint estimation for lithium-ion batteries is performed, designing a
joint learning model to simultaneously capture sequence-related information pertinent to
both SOH and SOC, and obtaining an optimal model for SOH estimation and a provisional
SOC model.

Step 7: Consider SOH in the SOC estimation and train the SOC model again.
Step 8: The trained model is utilized for joint SOC-SOH estimation, and the final

SOC-SOH predictions are evaluated and analyzed using performance metrics to assess the
model’s overall effectiveness.

3. Results
3.1. Datasets

This paper uses the LG HG2 battery dataset [39,40] created by Phillip Kollmeyer’s
team at McMaster University, for experiments focused on electric vehicle applications. The
experiments are conducted at six different ambient temperatures: 40 °C, 25 °C, 10 °C, 0 °C,
−10 °C, and −20 °C. The battery is charged to 4.2 V at a 1 C rate, followed by a 50 mA cutoff
current after each test. The dataset includes standard automotive driving cycles such as
US06, HWFET, LA92 and UDDS. US06 simulates high-acceleration EV conditions, HWFET
is tested at 60 mph, LA92 simulates urban driving in Los Angeles, and UDDS is suitable
for light-duty vehicle driving. Additionally, eight mixed cycles (Mixed 1 to Mixed 8) are
created from random combinations of four standard cycles. Data on battery voltage, current,
temperature, and consumption are recorded at a 0.1 s sampling rate. In this study, Mixed 1
to Mixed 8 (63%) at −10 °C to 25 °C are used as the training data, while US06, UDDS, LA92,
and HWFET (37%) are used for testing.

3.2. Model Evaluation Methodology

Mean absolute error (MAE) and root mean square error (RMSE) are employed as
evaluation metrics to assess the precision of BiLSTM-SA for joint SOC-SOH estimation.
MAE is a frequently used metric to assess how well regression models predict outcomes.
By calculating the mean of these absolute differences, it displays the mean difference in
comparison with the expected and actual values, thereby indicating the average error in
the model’s predictions. The formula for MAE is

MAE =
1
n

n

∑
i=1

|yi − ŷi| (8)

In Equation (8), yi and ŷi are the actual and estimated values of each time step,
respectively, and nnn is the length of the sequence. A smaller MAE value indicates a
more accurate model prediction. Since MAE uses the absolute error, it is unaffected
by the direction of error and represents the average magnitude of the prediction errors.
Additionally, MAE is less sensitive to large deviations, so the overall error is not amplified
by a few extreme error points.
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RMSE is widely utilized to quantify the difference between predicted and reality
values. It is computed through first finding the mean squared error and then taking the
square root. The formula for RMSE is

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (9)

In Equation (9), yi is the actual value, ŷi is the estimated value, and n is the length of
the sequence. A more accurate model prediction is indicated by a smaller RMSE value.
RMSE gives more weight to larger errors because it squares each error term, allowing it to
reflect the overall fluctuation in the model’s prediction errors, especially for points with
larger errors. This characteristic enables RMSE to highlight the model’s performance when
dealing with data containing outliers. A thorough assessment of the proposed model’s
performance in SOH and SOC estimation, covering all aspects of estimation accuracy, is
conducted using these two evaluation criteria.

3.3. Experimental Results

To evaluate the suggested joint SOC-SOH estimation method’s efficacy, this section
systematically conducts experimental validation of the model’s performance on the test set.
All experiments were conducted using Python 3.11 and PyTorch 2.2.1.

3.3.1. Comparison of SOC Estimates Considering SOH and Without SOH

To capture the influence and coupling relationship of SOH on SOC estimation, we
validate the model’s performance with and without SOH consideration, analyzing both
conditions separately. Table 1 shows the SOC estimation performance with and without
SOH inclusion. At −10 °C, the RMSEs for the LA92, UDDS, and US06 cases decrease
from 1.32%, 1.72%, and 1.77% to 1.18%, 1.56%, and 1.31%, respectively. This indicates that
including SOH in low-temperature environments effectively reduces SOC estimation error.
At 0 °C, a similar trend is observed across all four conditions (HWFET, LA92, UDDS, and
US06). For instance, the RMSE decreases from 1.85% to 1.33% for the HWFET condition
and from 1.49% to 0.94% for the UDDS condition. Under higher-temperature conditions
(e.g., 10 °C and 25 °C), the improvement is less pronounced, though SOC estimates still
benefit from SOH consideration in some cases. At 10 °C, the RMSE for the HWFET case
decreases significantly from 2.45% to 1.13%. However, in other cases, such as US06, the
RMSE reduction is smaller. At 25 °C, SOC estimates for the LA92 and UDDS cases are also
notably improved with SOH consideration, with the RMSE for the LA92 case reduced from
0.65% to 0.43%.

Overall, the results in Table 1 demonstrate that incorporating SOH information can
effectively improve SOC estimation accuracy, with this effect being especially pronounced
in low-temperature environments. This finding verifies the coupling relationship between
SOH and SOC and suggests that including SOH information in SOC estimation allows for
greater capture of the battery’s health state, hence improving the estimation accuracy.

To intuitively demonstrate the model’s fitting effect when SOH is considered, we
compare the estimated SOC curves for the LA92 and US06 conditions at 10 °C and −10 °C,
as shown in Figure 5. The figure makes it clear that when SOH information is included
in the model, the estimated SOC curve approaches the actual SOC. This result indicates
that considering SOH enhances the ability of the model in capturing SOC trends, making
the estimation more accurate and stable. This improvement arises because SOH variations
are strongly connected to battery aging, temperature, and operating conditions, which
directly influence the battery’s available capacity and the characteristics of discharge. By
incorporating SOH into the SOC estimation process, the model better captures the dynamic
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internal state changes of the battery, thus generating SOC estimation curves that align more
closely with the actual values. In summary, the comparison results in Figure 5 further
validate the key role of SOH in SOC prediction. In addition to increasing the precision of
estimating SOC, taking SOH into account increases the model’s sensitivity to the battery’s
health condition, strengthening the estimation results.

Table 1. RMSE evaluation metrics table for SOC estimation with and without SOH under different
temperature conditions.

Temperature Evaluation Method Standard Without SOH With SOH

−10 °C RMSE (%)

HWFET 1.29 1.43
LA92 1.32 1.18
UDDS 1.72 1.56
US06 1.77 1.31

0 °C RMSE (%)

HWFET 1.85 1.33
LA92 1.15 0.81
UDDS 1.49 0.94
US06 2.43 1.40

10 °C RMSE (%)

HWFET 2.45 1.13
LA92 1.42 1.44
UDDS 1.18 1.22
US06 3.11 2.77

25 °C RMSE (%)
LA92 0.65 0.43
UDDS 0.92 0.72
US06 1.16 0.84

Total 1.48 1.20
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Figure 5. Comparison of SOC estimation curves with and without SOH for LA92 and US06 at 10 °C.
and −10 °C. The dashed lines indicate the zoomed-in regions for better clarity. (a) SOC estimation of
LA92 at 10 °C. (b) SOC estimation of US06 at 10 °C. (c) SOC estimation of LA92 at −10°C. (d) SOC
estimation of US06 at −10 °C. The dashed lines indicate the zoomed-in regions for better clarity.

3.3.2. SOC-SOH Estimation at Multiple Temperatures

Table 2 presents the MAE and RMSE values for the joint SOC-SOH estimation of the
BiLSTM-SA model under HWFET, LA92, UDDS, and US06 at multi-temperature. The
table shows that while prediction accuracy varies slightly with temperature and working
conditions, the model overall maintains high accuracy. At −10 °C, the MAE and RMSE
for the LA92 are 0.87% and 1.18%, correspondingly, indicating good estimation accuracy,
while the RMSE for the US06 case is the lowest at 1.31%. At 0 °C, the MAE and RMSE for
the LA92 decrease further to 0.59% and 0.81%, suggesting relatively low prediction error
and high robustness for this case. At 10 °C, the MAE for the HWFET case is 0.96%, while
the RMSE for the US06 rises to 2.77%, indicating a larger error fluctuation. At 25 °C, the
model achieves MAE and RMSE values of 0.34% and 0.43%, with the former representing
the smallest error for LA92 across all conditions and temperatures.

Table 2. SOC-SOH estimation experimental results.

Temperature Standard RMSE (%) MAE (%)

−10 °C

HWFET 1.43 1.14
LA92 1.18 0.87
UDDS 1.56 1.01
US06 1.31 0.90

−10 °C

HWFET 1.33 1.01
LA92 0.81 0.59
UDDS 0.94 0.67
US06 1.40 0.99

−10 °C

HWFET 1.13 0.96
LA92 1.44 1.26
UDDS 1.22 0.98
US06 2.77 1.95

25 °C
LA92 0.43 0.34
UDDS 0.72 0.56
US06 0.84 0.63

Total 1.20 0.84
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Figures 6 and 7 further demonstrate the broad applicability and robustness of the
SOC-SOH estimation method. The proposed BiLSTM-SA model requires only one set
of network parameters to accurately estimate SOC. Notably, the model performs best at
25 °C. This is because, at room temperature (25 °C), the battery’s cycling performance and
stability improve, and discharge characteristics are more stable, enhancing the SOC and
SOH estimation accuracy.
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Figure 6. SOC-SOH estimation of HWFET, LA92, UDDS, and US06 at −10 °C, 0 °C and 10 °C. (a) SOC
estimation at −10 °C. (b) SOC estimation at 0 °C. (c) SOC estimation at 10 °C.
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Figure 7. SOC-SOH estimation of LA92, UDDS, and US06 at 25 °C.

3.3.3. Model Comparison

To thoroughly verify the benefits of the BiLSTM-SA model in joint SOC-SOH estima-
tion, we conduct comparative experiments across various models.

Table 3 compares the overall performance of multiple models in the joint SOC-SOH
estimation. The BiLSTM-SA model outperforms all other models, with an MAE of 0.84%
and an RMSE of 1.20%. This indicates that the BiLSTM-SA model effectively reduces error,
resulting in higher precision and improved reliability in the SOC-SOH estimation. The
GRU and BiLSTM-MHA models also perform well, with MAEs of 0.84% and 0.87% and
RMSEs of 1.23% and 1.26%, respectively, being slightly inferior to BiLSTM-SA. The RNN
model shows relatively large errors, with an MAE of 1.19% and an RMSE of 1.63%. The
LSTM and BiLSTM models improve compared to the RNN, with MAE values of 0.97% and
0.96% and RMSE values of 1.35% and 1.34%, respectively, though they still lag behind the
BiLSTM-SA. The TCN-LSTM and LSTM-SA models show the poorest results, with MAEs
of 1.53% and 1.37% and RMSEs of 2.15% and 1.85%. Overall, the SA in BiLSTM allows
the BiLSTM-SA model to better capture key features, significantly improving estimation
accuracy. The findings indicate that the BiLSTM-SA model with SA has a clear performance
advantage in joint SOC-SOH estimation, providing excellent accuracy and reliability. This
further validates the effectiveness of SA in complex battery state estimation, enabling the
BiLSTM-SA model to better meet the prediction needs under multi-temperature conditions.

Compared with other models, BiLSTM-SA demonstrates stronger adaptability and
generalization in complex tasks, especially in scenarios where battery performance fluctu-
ates with time, temperature, and workload. Figures 8 and 9 show the comparison results
for LA92 and UDDS at 25 °C, 0 °C, and −10 °C. The figure reveals that the curve fitting
of BiLSTM-SA surpasses that of the other models, demonstrating its higher prediction
accuracy and stronger reliability.
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Table 3. Comparison experiment results.

Model MAE (%) RMSE (%)

RNN 1.19 1.63
LSTM 0.97 1.35

BiLSTM 0.96 1.34
GRU 0.91 1.29

BiGRU 0.98 1.34
TCN-LSTM 1.53 2.15
CNN-LSTM 1.29 1.72

LSTM-SA 1.37 1.85
GRU-SA 0.94 1.32

BiLSTM-CA 0.93 1.34
BiLSTM-MHA 0.87 1.26
BiLSTM-SA 0.84 1.20
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Figure 8. SOC-SOH estimation models for LA92 are compared at temperatures of 25 °C, 0 °C, and
−10 °C. The dashed lines indicate the zoomed-in regions for better clarity. (a) SOC estimation of
LA92 at 25 °C. (b) SOC estimation of LA92 at 0 °C. (c) SOC estimation of LA92 at −10 °C.
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Figure 9. SOC-SOH estimation models for UDDS are compared at temperatures of 25 °C, 0 °C, and
−10 °C. The dashed lines indicate the zoomed-in regions for better clarity. (a) SOC estimation of
UDDS at 25 °C. (b) SOC estimation of UDDS at 0 °C. (c) SOC estimation of UDDS at −10 °C.

4. Conclusions
In this paper, BiLSTM-SA models are trained on data at −10 °C, 0 °C, 10 °C, and 25 °C

temperatures and tested on the HWFET, LA92, UDDS, and US06 datasets. Comparative
analysis shows the clear advantages of the BiLSTM-SA model over traditional BiLSTM,
LSTM, and RNN models in SOC-SOH estimation. The BiLSTM-SA model captures com-
plex dependencies in the sequence data, and the SA enables the model to focus on key
information, significantly reducing SOC-SOH prediction errors. In terms of key metrics
like RMSE and MAE, the BiLSTM-SA model outperforms other models, further validating
its preciseness and robustness in joint SOC-SOH estimation. The model performs well on
a dataset covering various temperatures and operating conditions (e.g., different driving
cycles). This provides reliable technical support and a solid theoretical foundation for
applying BMS in complex situations in the real world. Future studies could concentrate on
multi-state joint estimation, exploring more sophisticated network architectures and opti-
mization algorithms to enhance the versatility of the model and effectiveness in a broader
range of situations. Additionally, combining feature engineering with data enhancement
strategies may further boost the model’s predictive capabilities under more challenging
conditions, driving continued advancements and the wider adoption of BMS solutions.
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