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Abstract: In the rapidly evolving domain of large-scale retail data systems, envisioning
and simulating future consumer transactions has become a crucial area of interest. It offers
significant potential to fortify demand forecasting and fine-tune inventory management.
This paper presents an innovative application of Generative Adversarial Networks (GANs)
to generate synthetic retail transaction data, specifically focusing on a novel system architec-
ture that combines consumer behavior modeling with stock-keeping unit (SKU) availability
constraints to address real-world assortment optimization challenges. We diverge from
conventional methodologies by integrating SKU data into our GAN architecture and using
more sophisticated embedding methods (e.g., hyper-graphs). This design choice enables
our system to generate not only simulated consumer purchase behaviors but also reflects
the dynamic interplay between consumer behavior and SKU availability—an aspect often
overlooked, among others, because of data scarcity in legacy retail simulation models.
Our GAN model generates transactions under stock constraints, pioneering a resourceful
experimental system with practical implications for real-world retail operation and strategy.
Preliminary results demonstrate enhanced realism in simulated transactions measured
by comparing generated items with real ones using methods employed earlier in related
studies. This underscores the potential for more accurate predictive modeling.

Keywords: generative adversarial networks; deep learning; transaction embedding
representation; consumer behavior modeling

1. Introduction
Assortment planning, a cornerstone of retail operations [1,2] for many large-scale

chains, is fraught with complexities Rooderkerk and Kök [3]. Determining the optimal mix
of products a retailer should offer involves navigating a myriad of constraints, from limited
display space to procurement budgets and strategic vendor decisions. The foundation
for these decisions lies in merchandise categories, groups of stock-keeping units (SKUs)
(a unique code or identifier assigned to a specific product to track inventory, sales, and
manage stock levels) perceived as substitutes by customers Goyal et al. [4]. These decisions
span from long-term strategic choices, such as defining merchandise variety, to tactical
considerations like inventory levels and pricing [5].
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In the complex and dynamic field of retail, the ability to accurately model and under-
stand customer behavior is crucial for optimizing operations and enhancing the customer
experience, which further complicates the landscape [6]. While some consumers enter a
store with a specific product in mind, others are influenced by the retailer’s displayed SKUs,
ads, and discounts. Thus, a retailer’s sales volume becomes a function of demand, cus-
tomer preferences, and strategic and tactical decisions [7]. Despite the wealth of consumer
transaction data, many retailers still lean heavily on qualitative judgments. However, the
tide is turning, with the industry gradually embracing a more data-driven approach [8].

1.1. Problem Statement

Understanding and simulating customer behavior is paramount for optimizing opera-
tions and enhancing customer experience in the contemporary large-scale retail landscape.
Companies gather business-critical data in consumer relationship management (CRM) [9]
and enterprise resource planning (ERP) systems [10] to ensure smooth operations, better
compliance, and effective data governance. Effectively modeling collected data for tangible
commercial impact presents several challenges we aim to address with our research: data
scarcity, versatility, and privacy.

Data Scarcity and Versatility: While vast amounts of transactional data are available
through loyalty programs, more than half of consumers can be inactive members calling
out reward programs and irrelevant communication as primary reasons for inactivity [11]
This creates a fundamental difficulty in consumer behavior analysis as the collected data
cannot be generalized through repeated purchase patterns and are limited to the most loyal
customers, enabling their identification via point-of-sales transactional systems. One of the
recent studies [12] also finds that are least loyal to retailers and tend to choose them more
wisely than any other preceding generations [13], which also sets an additional challenge
for retail in the long-term and forces them to focus substantially on more advanced and
out-of-the-box analytical methods.

Privacy Considerations: As retailers increasingly rely on data-driven strategies to
optimize operations and customer experience, the ethical and legal implications of data
privacy become more pronounced. Collecting and analyzing consumer data, especially
through CRM and ERP systems [14] often involve sensitive information such as personal
identifiers, purchase history, and payment details. While these data are invaluable for
analytics and personalization, it poses significant risks if mishandled or subjected to
unauthorized access. According to a recent study on data privacy in the era of big data [15],
there is a growing concern about the potential misuse of such data, including unauthorized
resale, identity theft, and other forms of exploitation. This necessitates the implementation
of robust data governance frameworks that comply with privacy regulations, such as the
General Data Protection Regulation (GDPR) and European Parliament and Council of
the European Union [16], and incorporate advanced cryptographic and anonymization
techniques to safeguard consumer privacy. GAN models have been used to generate
synthetic data, ensuring privacy-preserving downstream tasks [17]. The challenge lies
in balancing the utility of the data for analytics purposes with the imperative to protect
consumer privacy, a concern we aim to address in our research.

In light of these complexities and rapidly increasing data volumes, there is a pressing
need for advanced research in deep learning for assortment management. While retail trans-
actions provide valuable insights, they merely scratch the surface of the myriad of possible
transaction combinations. Delving deeper into this expansive realm of potential transac-
tions can reveal pivotal insights into aspects like product demand trends, shifting consumer
inclinations, pricing dynamics, and variations tied to seasons in a previously undiscovered
way. These data, encompassing transactional details, customer demographics, and product
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specifications, empower retailers to enhance customer service. Deep learning, with its
ability to process vast amounts of data and discern patterns that might be imperceptible to
traditional algorithms, offers a promising avenue for tackling the multifaceted challenges
of assortment planning. The sheer volume and granularity of retail data and the dynamic
nature of consumer preferences make it a prime candidate for applying deep learning
techniques. By leveraging deep learning, retailers can potentially achieve more accurate
demand forecasts [18] optimize inventory levels in real-time, and tailor assortments to
individual consumer preferences, thereby driving increased sales and profitability [19].

We believe our contribution—delivering a framework of transactional data generation
under stock constraints—unlocks additional opportunities in assortment optimization and
dynamic consumer behavior modeling. Existing methodologies [20] underline the intricate
nature of the assortment optimization problem. Its depth, focusing on the product mix
within a category, encapsulates the challenge of balancing the introduction of new products
against the potential cannibalization of sales from existing products [21]. Also, the sequen-
tial nature of purchases requires the consideration of evolving behaviors and enduring
patterns, adding layers of intricacy to modeling. Legacy approaches applied in traditional
retail cannot ensure the agility to address the pace of changing preferences [22]. Moreover,
despite the extensive volume of transactional data, individual customer interactions with
the vast array of products and broad assortments often result in sparse datasets [23]. It
renders many related tasks computationally intractable, highlighting the need for more
robust modeling methodologies.

1.2. Objectives and Contributions

Our innovative methodology authentically simulates sequences of customer product
baskets over time, leveraging a comprehensive dataset of customer transactions. Our
approach can simulate plausible individual customer transactions, offering a holistic view
of buyers’ behaviors. This capability paves the way for novel applications, from predicting
future purchases to facilitating research access to simulated datasets that mirror restricted
original data due to privacy constraints. We hypothesize that this solution can be beneficial
in estimating demand transference and its incrementality—we discuss these notions in
more detail in Section 5.

The primary objective of our research and the described study is to advance the
field of customer modeling by introducing innovative techniques for generating realistic
retail transactions under stock availability limitations. We aim to bridge the gaps between
traditional methods, ongoing research, and the evolving needs of the retail sector, ensuring
that the simulated data are authentic and reflective of real-world consumer behaviors. Our
key contributions are as follows:

• Enhanced Product and Consumer Representation: We introduce an innovative ap-
proach of combining SKUs with transactional data, performing a comparative analysis
of product embeddings using both the classic word2vec method [24] and the advanced
hyper-graph model [25]. Similarly, our research contrasts consumer embeddings gen-
erated through a recurrent neural network (RNN) [26] with those produced by Cleora,
offering a comprehensive perspective on representation efficacy.

• Innovative Use of GAN with Stocks Data: Combined with stock data availability,
our adoption of the classic GAN architecture for generative modeling pushes the
research in the field forward, ensuring that the generated data closely mirrors real-
world transactional patterns. To the best of our knowledge, variations in stock data
representation (weighted and unweighted embeddings) have been tested for the first
time in our research to uncover the impact on generated transaction accuracy in the
frame of the GAN architecture.
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Beyond theoretical contributions, our research has tangible, practical implications for
the retail sector. By generating authentic transactional data, retailers can gain actionable
insights, optimize inventory management, and enhance customer experiences.

2. Related Work
While GANs were initially popularized for image generation tasks, their applications

have expanded across various domains. For instance, they have been used for super-
resolution tasks to generate photo-realistic images at large upscaling factors [27]. In feature
learning, Context Encoders utilize GANs for inpainting, where the network learns to fill
in missing parts of images conditioned on their surroundings [28]. Moreover, GANs have
been employed for domain adaptation tasks, effectively bridging the domain gap between
different data distributions [29]. GANs have also been successfully employed in various
medical [30] and financial applications [31,32]—extending beyond their traditional visual
data domain.

To our knowledge, there are two most relevant and practical applications of GANs
in online [33] and offline [34] retail. Both studies use product and customer embeddings
to capture the semantic and sequential relationships between products and customers.
Product embeddings were derived from textual descriptions of products using a pre-
trained language model, while customer embeddings were learned from transactional data
using an autoencoder. The authors then trained a conditional GAN to generate a basket
of products for a given customer and week and an LSTM to update the customer’s state
after each basket. This way, they could sample over a distribution of a customer’s future
sequence of baskets, which could vary depending on the customer’s preferences, needs,
and behavior. The authors evaluated their method on a real-world retail dataset. They
showed that it could produce baskets similar to real baskets in product features, basket
sizes, and sequential patterns. They also showed that the generated baskets were hard to
distinguish from the real baskets by a classifier, indicating that their method could generate
realistic and diverse sequences of transactions.

Our work extends the above approaches by incorporating stock data availability
into the generation process. Stock data availability refers to the information about the
quantity of products in the store or warehouse, which can affect the customer’s purchase
decisions and the retailer’s operations planning. We acknowledge the scarcity, quality,
and availability challenges of these data among retailers; however, ignoring stock data
availability can lead to unrealistic or suboptimal sequences of transactions, as customers
may not be able to buy the products they want or need, or retailers may not be able to
replenish the products in time. Therefore, given that we possess a rare proprietary dataset
with detailed stock information through a commercial partnership, we propose to modify
the conditional GAN to consider the stock data availability when generating and updating
the baskets. We hypothesize that this will result in more accurate and valuable sequences
of transactions for retail analytics. Another more broadly related study addresses data
generation aspects introducing CTAB-GAN [35] for better privacy preservability. Our
research echoes the considerations described by authors with a more specific narrowed
retail industry application.

3. Proposed Approach
The methodology presented in this section aims to bridge the gap between theoretical

advancements in machine learning and practical challenges in offline retail analytics. We
employ Generative Adversarial Networks (GANs) as a foundational tool for simulating
customer behavior, extending their capabilities to accommodate real-world constraints
such as SKU stock limitations.
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3.1. Overview of Generative Adversarial Networks

Generative Adversarial Networks (GANs) [36] are acknowledged for their ability
to generate data closely resembling real-world distributions. The networks consist of
two neural networks, the Generator and the Discriminator, trained in a min-max adversarial
setting. The Generator aims to produce synthetic data, while the Discriminator’s role is
to distinguish between real and generated data. The training process involves a game-
theoretic approach where both networks are optimized until the Generator produces data
that the Discriminator can hardly distinguish from real data.

Further developed, Wasserstein GAN (WGAN) and its modification with gradient
penalty (WGAN-GP) address the issue of training instability commonly observed in stan-
dard GANs by adopting the Wasserstein distance as the loss function. This modification
leads to more stable training and higher-quality generated samples [37].

min
G

max
D

(E x∼pdata
[logD(x)] + Ez∼pz [log(1 − D(G(z)))]) (1)

where we adopt the following notation (also in all our equations): G—the Generator net-
work, responsible for generating synthetic data that aims to mimic the real data distribution;
D—the Discriminator network, responsible for distinguishing between real and synthetic
(generated) data; x—a sample from the real data distribution; and z—a sample from the
latent space or noise distribution.

Wasserstein GAN (WGAN): A significant advancement in the GAN landscape is the
introduction of Wasserstein GAN (WGAN). WGANs address the issue of training instability,
commonly observed in standard GANs, by adopting the Wasserstein distance as the loss
function. This modification leads to more stable training and higher-quality generated
samples [37].

min
G

max
D

(E x∼pdata
[D(x)]− Ez∼pz [D(G(z))]) (2)

In WGAN, the Discriminator (often referred to as the “Critic” in this context) is not
restricted to output probabilities, allowing for a broader range of output values.

WGAN with Gradient Penalty (WGAN-GP): Building upon WGAN, the WGAN-GP
introduces a gradient penalty term to the loss function. This addition further stabilizes the
training process and enables the use of more complex architectures without the need for
extensive hyperparameter tuning [37].

min
G

max
D

(E x∼pdata
[D(x)]− Ez∼pz [D(G(z))] + λEx̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2]) (3)

where λ is the penalty coefficient and x̂ is sampled uniformly along a straight line between
a pair of real and generated data points.

Unlike the above classical architectures, we leverage the conditional and controllable
GAN approach demonstrated in Section 4.2, integrating a stock representation. Our target
objective function used to establish generative adversarial network looks as follows:

min
G

max
D

(E x∼pdata
[D(x)]− Ep,s[D(G(p, s))] + λEx̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2]) (4)

where we adopt the following notation:

• G—the Generator network, responsible for generating synthetic data that aims to
mimic the real data distribution;

• D—the Discriminator network, responsible for distinguishing between real and syn-
thetic (generated) data;
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• x—a sample from the real data distribution; p—product embedding, s—stock em-
bedding, λ—the penalty coefficient, and x̂—sampled uniformly along a straight line
between a pair of real and generated data points.

In this way, we secured the possibility of the simulation of various stock scenarios
that are crucial for retailers’ category planning and assortment management decisions. For
example, when a retailer removes a product from the assortment, it will result in a different
stock embedding—a different set of transactions will be generated by the network under
new stock conditions.

3.2. Features and Representations

The proposed GAN model leverages multiple types of embeddings and features,
including stock, customer, and product embeddings. We aim to compare different ways of
representing products, customers, and stocks to observe changes in model performance
and uncover the most efficient combination. Therefore, we engineer the following features
and representations:

• Product: Similarly to the related research we referred to in Section 2, we generate a
simple representation using word2vec but also leverage [25] as a potentially more
advanced alternative that has proven to be effective in one of our previous studies
[removed for blind review] in a comparable setting. Unlike word2vec, we use Cleora to
generate embeddings not only using product names but also including the information
about product interactions within purchase baskets.

• Customer: We use RNN architecture that has been used by other researchers for
similar applications [38] to extract consumer representation from the last layer of
the network’s hidden layer. As a comparison, we use the abovementioned Cleora
algorithm with the relevant input parameters to enable both product and consumer
embedding outputs.

• Dates: Retail data often exhibit strong seasonal patterns. By using cyclic features
for dates, our model can capture these patterns effectively, allowing for a more ac-
curate and realistic transaction generation. Hence, we extract cyclic features from
the transaction dates, such as the day of the week, the day of the month, and the
month itself.

• Price: We transform unit price using a natural logarithm to reduce the dynamic range
of a variable since some values are significantly larger than others. The variability of
prices is expected when handling a wide range of assortments in large-scale retail.

• Stocks: The generation of stock embeddings is a two-step process involving the un-
weighted and weighted aggregation of product embeddings (we use Cleora-generated
embeddings that hold more information than the ones generated with word2vec).
Firstly, for each unique combination of site and date, a subset of product indices
with the corresponding product embeddings and quantities is extracted. For un-
weighted representation, the mean of the product embeddings is computed, whereas
for weighted representation, a weighted average of the product embeddings is com-
puted using the quantities as weights.

The lengths of product, customer, dates, and price are 1024, 256, 6, and 1, respectively;
this results in a 1287-length transnational item representation. Since we use product
embeddings to compute stock representation, it has the same length—1024. All features
and representations are scaled to the range [−1, 1].

Cleora was chosen for its scalability and effectiveness in generating embeddings with
contextual product interactions. Compared to methods like BERT or static embeddings, Cle-
ora has shown a higher efficiency in transaction modeling in prior research [39]. Similarly,
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RNN was selected for consumer embeddings due to its ability to capture sequential pur-
chase patterns, offering advantages over autoencoders for temporal tasks.

4. Experiments and Results
The objective of this section is to rigorously evaluate the efficacy of the proposed GAN

model in generating realistic transaction data that adheres to real-world constraints. We
employ a comprehensive experimental setup, leveraging proprietary data and employing
multiple performance metrics to assess the quality of the generated transactions.

4.1. Dataset

The dataset used in this research is provided by one of the largest retailers in Europe,
holding a significant share of the domestic market. This unique dataset offers a rare oppor-
tunity to study consumer behavior and retail operations at scale. The data encompasses
various aspects of retail transactions, including but not limited to customers, products
(Product ID, Product Name, Size, and other metadata), transactional details (e.g., ID, price,
quantity, date, etc.), stores (Store ID, City, and other metadata), and stocks (availability and
quantity of a product per day per store).

The dataset is particularly valuable for several reasons. Its scale allows for a robust
statistical analysis and the training of complex machine learning models like GANs. The
diversity means it is likely to be representative of broader shopping behaviors in Europe,
thereby increasing the generalizability of the research findings. The dataset includes fine-
grained details, such as product embeddings, transaction dates, and unit prices, which are
crucial for the nuanced understanding and modeling of consumer behavior. Sourced from
an industry leader, the dataset reflects real-world retail operations, making the research
findings directly applicable to practical challenges in retail management.

The data offer a broad temporal and spatial scope as they were collected from
986 distinct retail sites over 58 days, or approximately eight weeks. It encompasses an im-
pressive 2,061,078 customers. The dataset is particularly rich in transactional data, contain-
ing 31,183,932 transactions. It records an average of approximately 3,464,881 transactions
per week. This high volume of transactional data is crucial for training sophisticated
machine learning models, such as the Generative Adversarial Network (GAN) model
proposed in this study. Each transaction involves an average of nearly 14 products, of
which around 11 are unique. This diversity is further emphasized by the fact that each
customer purchases an average of approximately 106 unique products, making the dataset
highly suitable for studying assortment planning. About half (1,049,775) of the repeated
customers in our training dataset have engaged in transactions at multiple sites. This
high customer loyalty indicates recurring purchase patterns essential for accurate demand
forecasting. Moreover, the dataset includes 29,393,436 transactions involving more than
two products, and 2,055,421 transactions involving at least five distinct products, in a single
transaction, while the overall assortment of the retailer contains more than 55,000 unique
SKUs. These statistics underscore the complexity of consumer buying behavior, which is a
central focus of this research. To enhance the dataset’s reliability, pre-processing steps were
applied, including the deduplication, normalization, and imputation of missing values.
These steps are crucial for ensuring robust embeddings and a consistent performance
during model training.

In summary, the dataset’s extensive scale, diversity, and granularity make it an ex-
ceptional resource for investigating the challenges and opportunities in retail operations,
particularly in assortment planning and demand forecasting. Given its real-world rel-
evance and the scale at which the data have been collected, the research findings are



Electronics 2025, 14, 284 8 of 14

expected to have direct and significant implications for the retail industry, especially for
large-scale retailers.

4.2. Model Design and Training

We experimented with various architectures and configurations of our GAN model.
There are two observations worth noting, based solely on the architectural experimentation:
WGAN-GP significantly increases the stability of training even in the first epochs. At the
same time, slightly different architectures for Generator and Discriminator help to avoid
mode collapse at the initial training stages (even when a gradient penalty is not applied).
The final architecture (Figure 1) we used in this study is described below. Hyperparameter
values were selected based on a grid search over learning rates, batch sizes, and hidden
layer dimensions. The final configuration prioritized stability (e.g., through WGAN-GP)
and performance, as shown in Figure 2.

Figure 1. Proposed augmentation of conditional GAN.

Figure 2. Stabilization of discriminator training process (illustrative example).

The Generator is a neural network comprising four fully connected layers with the
following dimensions:
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• Layer I: 2048 input units (product and stock embeddings) to 1024 output units,
followed by a LeakyReLU (https://pytorch.org/docs/stable/generated/torch.nn.
LeakyReLU.html, accessed on 1 April 2024) activation.

• Layer II: 1024 to 512 units, followed by a LeakyReLU activation.
• Layer III: 512 to 256 units, followed by a LeakyReLU activation.
• Output Layer: 256 to 1287 units, followed by a Tanh activation.

The Discriminator also consists of a neural network with three fully connected layers:

• Layer I: 1287 input units to 512 output units, followed by a LeakyReLU activation and
a dropout layer.

• Layer II: 512 to 128 units, followed by a LeakyReLU activation and another
dropout layer.

• Output Layer: 128 to 1 unit, followed by a sigmoid activation.

The generator’s loss function is a weighted combination of the GAN loss and a
reconstruction loss (Equation (5)). The GAN loss aims to deceive the discriminator,
while the reconstruction loss ensures that the generated embeddings are close to the
real product embeddings.

LR =
1
N

N

∑
i=1

∥∥ereal,i − egen,i
∥∥2

2 (5)

where N—number of samples, ereal,i—real product embedding for the ith sample, and
egen,i—generated product embedding for the ith sample.

Two different optimization algorithms are employed for training the Generator and
Discriminator: the Generator uses the with a learning rate of 0.0002 [40] and β values
of (0.5, 0.999), and the Discriminator uses the RMSprop optimizer [41] with a learning
rate of 0.0002. The Discriminator is trained five times for each Generator update. The
Discriminator loss is computed using real and fake orders and a gradient penalty term to
enforce the Lipschitz constraint [42].

The training process of the proposed Generative Adversarial Network (GAN) model
is formalized as Algorithm 1 to provide a structured and easily interpretable overview of
the vital computational steps. Although we cannot publish a full PyTorch implementation
because of the proprietary nature of collaboration and data sourcing, by delineating the
process in this manner, we aim to offer a transparent and replicable framework that can be
readily understood and implemented by researchers and practitioners alike. The training,
evaluation, and inference processes were performed using NVIDIA DGX A100 40 GB.

Algorithm 1. Training Process of the Proposed GAN Model

1: Input: Training dataset, batch size, number of epochs
2: Initialize: Generator G, Discriminator D
3: Initialize: Optimizers optimizer_G, optimizer_D
4: for epoch in 1, 2, . . ., epochs do
5: for mini-batch in DataLoader do
6: Extract real orders and stock embeddings
7: Extract product embeddings from real orders
8: Move all data to computation device (GPU)
9: for iteration in 1, 2, . . ., ncritic do
10: Generate fake orders using G
11: Compute Discriminator loss LD

12: Update D using optimizer_D
13: Generate fake orders using G
14: Compute Generator loss LG

15: Update G using optimizer_G

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
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4.3. Performance Metrics

Evaluating the performance of Generative Adversarial Networks (GANs) is challeng-
ing, especially in non-visual domains. The limitations of GANs in discriminative tasks and
their sensitivity to domain shifts make the evaluation process intricate [43]. To address
these challenges, we employ a multi-faceted approach to assess the quality of the generated
transactions using the following metrics.

Jensen–Shannon Divergence (JSD): A symmetric measure of the similarity between
two probability distributions. It is particularly useful for comparing the distributions of real
and generated transactions in our context. The JSD is the average of two Kullback–Leibler
divergences, one for P and one for Q, the probability distributions of real and generated
transactions, respectively.

JSD(P, Q) =
1
2

DKL(P∥M) +
1
2

DKL(Q∥M) (6)

where

M =
1
2
(P + Q), DKL(P∥Q) = ∑x P(x)log

P(x)
Q(x)

(7)

In retail transactions, the tail behavior of the distribution can be crucial. JSD is sensitive
to differences in the tails of the distributions, making it a suitable metric for our application.
A lower JSD value means that the two distributions are more similar in an information-
theoretic sense.

Earth Mover’s Distance (EMD): Measures the distance between the probability dis-
tributions of real and generated transactions. Similarly to the above, a lower EMD value
indicates that less “work” is required to transform one distribution into another, suggesting
that the two distributions are more similar.

EMD(P, Q) = in f γϵ∏ (P,Q)

∫
X×Y

d(x, y)dγ(x, y) (8)

Classification Accuracy (Acc): Utilizes a simple binary classifier to distinguish be-
tween real and fake samples in the downstream task. We follow the same approach used
previously in [34] to create a classifier different from the one used to train GAN. An ac-
curacy of around 0.5 would mean that the classifier cannot distinguish a real transaction
representation from a generated one.

By employing these metrics, we aim to provide a comprehensive and robust evaluation
of the quality of transactions generated by our GAN model. Each metric offers a unique
perspective: EMD focuses on the overall distribution, classification accuracy provides an
operational view, and JSD gives a balanced and bounded measure. It is worth highlighting
that both EMD and JSD are used to measure the similarity between two probability distri-
butions. Still, they have different properties and sensitivities that make them suitable for
diverse types of analyses. EMD is useful for understanding the overall shape and spread
of the distribution, including the impact of outliers, which could represent high-value
transactions, while JSD compares the core behaviors of customer transactions, especially
when outliers are less of a concern. Together, they allow for a nuanced understanding of
the model’s performance.

4.4. Results and Discussion

In this section, we present the results of our experiments designed to evaluate the
efficacy of various GAN models in generating plausible retail transactions. The models
were trained using different combinations of consumer and product embeddings, with and
without including stock information, including its weighting variation. Our experiments
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demonstrate that Cleora outperforms word2vec-based embeddings in EMD and JSD met-
rics, emphasizing its suitability for large-scale retail datasets.

In evaluating our GAN models, summarized in Table 1, we observed significant
performance variations based on the type of embeddings and the inclusion of stock infor-
mation. The EMD and JSD metrics were lower for models trained with weighted stocks,
indicating a closer match to the real data distribution. Particularly, models utilizing RNN
for consumer embeddings and Cleora for product embeddings achieved the best results
with EMD and JSD values of 0.16 and 0.07, respectively. These models also achieved a
classification accuracy closest to 0.5, which is considered ideal in the context of GANs as
it signifies that the generated transactions are nearly indistinguishable from the real ones.
In comparison to [33] which used LSTMs, our GAN-based approach incorporating stock
constraints achieved a superior alignment with real-world distributions (lower EMD and
JSD). Similarly, our method improved that of [34] by capturing assortment dynamics.

Table 1. Results for models trained on various embeddings.

Consumer Product
Stocks (Unweighted) Stocks (Weighted) No Stocks

EMD JSD Acc EMD JSD Acc EMD JSD Acc

Cleora Cleora 0.23 0.12 0.60 0.18 0.09 0.58 0.35 0.20 0.68
Cleora w2v 0.28 0.16 0.63 0.24 0.12 0.61 0.40 0.24 0.71
RNN Cleora 0.21 0.10 0.58 0.16 0.07 0.54 0.33 0.18 0.66
RNN w2v 0.26 0.14 0.61 0.22 0.11 0.59 0.38 0.22 0.69

When comparing these results to models trained without stocks, the importance of
incorporating stock information becomes evident. Models without stock information had
higher EMD and JSD values, indicating a greater divergence from the real data distribution.
Moreover, their classification accuracy was far from the ideal 0.5 mark, making them
more easily distinguishable from real transactions. These findings strongly support our
hypothesis that weighted stocks provide more informative embeddings, thereby enhancing
the performance of GANs in generating realistic retail transactions.

5. Conclusions and Future Work
In this study, we have presented a novel approach to generating realistic retail transac-

tions using GANs. Our work is distinguished by incorporating stock information into the
model, a feature often overlooked in previous research. Through the evaluation involving
multiple metrics (i.e., EMD, JSD, Acc), we demonstrated that including weighted stock
information significantly enhances the quality of the generated transactions. Our research
contributes to the growing body of work on applying deep learning techniques in the
retail industry, offering a new avenue for enhancing the realism and utility of generated
transaction data. This framework can simulate transaction scenarios under varying in-
ventory levels, aiding in demand impact forecasting, pricing strategies, and inventory
optimization for large retailers. While this research used proprietary data, future work
could explore public datasets like Instacart or Dunnhumby to validate findings as soon as
stock data become available in opensource. The modular design of our approach ensures
its adaptability to different datasets and retail contexts.

The current research serves as a foundational step for employing deep learning in
assortment optimization within large-scale retail—our approach leverages Cleora embed-
dings and GPU training, allowing its scalability to millions of transactions. Our findings
pave the way for several future research directions, which could extend this to distributed
systems for even larger datasets or varying hardware configurations. One immediate exten-
sion is the development of a transferable demand model that can adapt to new data quickly,
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offering a scalable solution for large retailers’ category management efforts [44]. While the
notion of transferable demand was studied earlier with a statistical approach [45] our goal
is to create a more robust deep learning model that not only adapts to changing customer
preferences but can also be easily transferred to different retail settings or scaled up to
accommodate larger datasets. This would involve incorporating more advanced machine
learning techniques and perhaps integrating other forms of data to create a more holistic
model. While our model captures SKU constraints effectively, future work could address
the sparsity of datasets with advanced GAN variants like CTAB-GAN or improved embed-
ding techniques. Comparisons to state-of-the-art methods further validate our approach’s
robustness. The potential of the GAN model in this study also suggests that other neural
network architectures could be explored for similar applications. Finally, the ultimate
validation of these models would come from their deployment in real-world retail settings.
By focusing on these areas, future work can offer more robust and effective solutions for
assortment optimization, contributing to the broader application of deep learning and
computer science in complex industrial problems.
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25. Rychalska, B.; Bąbel, P.; Gołuchowski, K.; Michałowski, A.; Dąbrowski, J.; Biecek, P. Cleora: A simple, strong and scalable graph
embedding scheme. In Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, 8–12
December 2021, Proceedings, Part IV 28; Springer: Cham, Switzerland, 2021; pp. 338–352.

26. Sherstinsky, A. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Phys. D Nonlinear
Phenom. 2020, 404, 132306. [CrossRef]

27. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A. Photo-realistic single image super-resolution using a
generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 4681–4690.

28. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.

29. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176.

30. Zhou, T.; Li, Q.; Lu, H.; Cheng, Q.; Zhang, X. Gan review: Models and medical image fusion applications. Inf. Fusion 2023, 91,
134–148. [CrossRef]

https://doi.org/10.1016/j.endm.2010.05.049
https://doi.org/10.1016/j.techsoc.2022.102190
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3624026
https://doi.org/10.5267/j.uscm.2020.2.003
https://www.oed.com/dictionary/gen-z_n
https://doi.org/10.1177/0972150919880128
https://doi.org/10.7546/PECR.72.20.04
https://doi.org/10.54648/COLA2020006
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2319839
https://doi.org/10.1016/j.jretconser.2019.101982
https://doi.org/10.1108/EJM-09-2019-970
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.inffus.2022.10.017


Electronics 2025, 14, 284 14 of 14

31. Assefa, S.A.; Dervovic, D.; Mahfouz, M.; Tillman, R.E.; Reddy, P.; Veloso, M. Generating synthetic data in finance: Opportunities,
challenges and pitfalls. In Proceedings of the First ACM International Conference on AI in Finance, New York, NY, USA, 15–16
October 2020; pp. 1–8.

32. Takahashi, S.; Chen, Y.; Tanaka-Ishii, K. Modeling financial time-series with generative adversarial networks. Phys. A Stat. Mech.
Its Appl. 2019, 527, 121261. [CrossRef]

33. Kumar, A.; Biswas, A.; Sanyal, S. ecommercegan: A generative adversarial network for e-commerce. arXiv 2018, arXiv:1801.03244.
34. Doan, T.; Veira, N.; Keng, B. Generating realistic sequences of customer-level transactions for retail datasets. In Proceedings of the

2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE: Piscataway,
NJ, USA; pp. 820–827.

35. Zhao, Z.; Kunar, A.; Birke, R.; Chen, L.Y. Ctab-gan: Effective table data synthesizing. In Proceedings of the Asian Conference on
Machine Learning, Virtually, 17–19 November 2021; PMLR, 2021; pp. 97–112.

36. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27.

37. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. Adv. Neural Inf.
Process. Syst. 2017, 30.

38. Salampasis, M.; Siomos, T.; Katsalis, A.; Diamantaras, K.; Christantonis, K.; Delianidi, M.; Karaveli, I. Comparison of rnn and
embeddings methods for next-item and last-basket session-based recommendations. In Proceedings of the 2021 13th International
Conference on Machine Learning and Computing, Shenzhen China, 26 February–1 March 2021; pp. 477–484.

39. Tkachuk, S.; Wróblewska, A.; Dabrowski, J.; Łukasik, S. Identifying Substitute and Complementary Products for Assortment
Optimization with Cleora Embeddings. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN),
Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA.

40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
41. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop, Coursera: Neural Networks for Machine Learning; Technical Report, 6; University of

Toronto: Toronto, ON, Canada, 2012.
42. Liu, K.; Qiu, G. Lipschitz constrained gans via boundedness and continuity. Neural Comput. Appl. 2020, 32, 18271–18283.

[CrossRef]
43. Saxena, D.; Cao, J. Generative adversarial networks (gans) challenges, solutions, and future directions. ACM Comput. Surv.

(CSUR) 2021, 54, 1–42. [CrossRef]
44. Karampatsa, M.; Grigoroudis, E.; Matsatsinis, N.F. Retail category management: A review on assortment and shelf-space planning

models. In Operational Research in Business and Economics: 4th International Symposium and 26th National Conference on Operational
Research, Chania, Greece, June 2015; Springer: Cham, Switzerland, 2015; pp. 35–67.

45. Mahalanobish, O.; Mishra, S.; Das, A.; Misra, S. Capturing Demand Transference in Retail—A Statistical Approach. 2017, SSRN
3227753. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3227753 (accessed on 3 January 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.physa.2019.121261
https://doi.org/10.1007/s00521-020-04954-z
https://doi.org/10.1145/3446374
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3227753

	Introduction 
	Problem Statement 
	Objectives and Contributions 

	Related Work 
	Proposed Approach 
	Overview of Generative Adversarial Networks 
	Features and Representations 

	Experiments and Results 
	Dataset 
	Model Design and Training 
	Performance Metrics 
	Results and Discussion 

	Conclusions and Future Work 
	References

