
Academic Editors: Nilanjan Ray

Chaudhuri and Ali Mehrizi-Sani

Received: 6 December 2024

Revised: 15 January 2025

Accepted: 15 January 2025

Published: 18 January 2025

Citation: Zhang, P.; Zhang, Q.; Hu,

H.; Hu, H.; Peng, R.; Liu, J. Research

on Transformer Temperature Early

Warning Method Based on Adaptive

Sliding Window and Stacking.

Electronics 2025, 14, 373. https://

doi.org/10.3390/electronics14020373

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Research on Transformer Temperature Early Warning Method
Based on Adaptive Sliding Window and Stacking
Pan Zhang 1, Qian Zhang 1, Huan Hu 1, Huazhi Hu 1, Runze Peng 2,* and Jiaqi Liu 2

1 State Grid Hubei Electric Power Co., Ltd., Xiaogan Power Supply Company, Xiaogan 432000, China;
zhangp8@hb.sgcc.com.cn (P.Z.); zhangq42@hb.sgcc.com.cn (Q.Z.); huh24@hb.sgcc.com.cn (H.H.);
huhz21@hb.sgcc.com.cn (H.H.)

2 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
liujiaqi@csu.edu.cn

* Correspondence: 244703045@csu.edu.cn

Abstract: This paper proposes a transformer temperature early warning method based on
an adaptive sliding window and stacking ensemble learning algorithm, aiming to improve
the accuracy and robustness of temperature prediction. The transformer temperature early
warning system is crucial for ensuring the safe operation of the power system, and tem-
perature prediction, as the foundation of early warning, directly affects the early warning
effectiveness. This paper analyzes the characteristics of transformer temperature using
support vector regression, random forest, and gradient boosting regression as base learners
and ridge regression as the meta-learner to construct a stacking model. At the same time,
Bayesian optimization is used to automatically adjust the sliding window size, achieving
adaptive sliding window processing. The experimental results indicate that the temper-
ature prediction method based on adaptive sliding window and stacking significantly
reduces prediction errors, enhances the model’s adaptability and generalization ability, and
provides more reliable technical support for transformer fault warning.

Keywords: transformer; adaptive sliding window; stacking; Bayesian optimization

1. Introduction
As an important piece of equipment in the power system, the transformer is in a

high-current and high-voltage working state for a long time, which makes it easy to
generate a lot of heat. Excessive temperature may cause aging of insulation materials,
deterioration of oil quality, burning of windings, and even cause serious accidents such
as fire. Therefore, timely monitoring of the temperature change of the transformer can
detect temperature anomalies and issue early warnings in time, helping operation and
maintenance personnel to intervene promptly to avoid equipment damage and power
supply interruption. Temperature anomalies are often a precursor to transformer failure.
Timely temperature monitoring can effectively prevent transformer failures caused by
overheating. Therefore, the transformer temperature early warning system can promptly
provide temperature anomaly information to operation and maintenance personnel through
real-time monitoring and early warning functions, avoid long-term high-temperature
operation, and thus extend the service life of the transformer. In addition, the transformer
is an important part of the power system, and its safe operation is directly related to the
stability of the power supply. Temperature early warning can reduce the occurrence of
sudden failures and outages and improve the reliability of the power system. This paper
divides the research on transformer temperature early warning methods into two kinds:
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transformer temperature early warning based on real-time monitoring and transformer
temperature early warning based on predicted temperature.

Early warning research based on real-time transformer temperature monitoring uses
the real-time collection, analysis, and alarm of transformer temperature to remind the
operation and maintenance personnel of abnormal temperature conditions in a timely
manner. Its main feature is the immediate response to the current temperature condition,
ensuring that attention can be drawn before the temperature exceeds the safety threshold,
making it suitable for early fault detection and real-time response. Transformer temper-
ature early warning based on real-time monitoring temperature early warning usually
consists of a temperature sensor module, a data acquisition and transmission module, a
data analysis and processing module, and an early warning module. Among them, the
temperature sensor is the core of the system, which is used to monitor the temperature
of key parts of the transformer in real time. These sensors are installed in transformer
windings, cores, oil tanks, etc., to obtain temperature data from these parts. Commonly
used temperature sensors include thermocouples, optical fiber temperature sensors, and
infrared temperature sensors. The temperature data acquisition and transmission module
transmits the temperature data obtained by the sensor to the monitoring center or manage-
ment platform in a timely manner. The data transmission methods usually include wired
transmission, wireless transmission, and edge computing. Among them, edge computing is
used to arrange edge computing nodes at the sensor end or near the transformer to perform
preliminary data processing, reduce transmission pressure, and improve the real-time per-
formance of data transmission [1]. In addition, temperature data need to be processed and
analyzed to identify abnormal temperature changes. Common data processing techniques
include using algorithms such as low-pass filtering [2] and Kalman filtering [3] to remove
noise and abnormal points in the data to improve data accuracy, and algorithms based
on temperature fluctuation analysis, such as moving average [4] and sliding window [5],
to detect whether the temperature change exceeds the normal range. Finally, the early
warning module triggers an alarm based on preset thresholds or rules through real-time
analysis of temperature data, reminding the operation and maintenance personnel to take
intervention measures. The system usually sets multiple early warning levels [6], such as
mild warning, moderate warning, severe warning, etc. Each level corresponds to different
temperature thresholds, alarm information, and response methods.

With the development of technology, the real-time temperature monitoring and early
warning system of transformers is also constantly improving and optimizing. Multiple
sensors are used for data fusion [7], and the accuracy and reliability of temperature mon-
itoring are improved through complementary data from different types of sensors. For
example, the temperature sensor and current sensor are combined to monitor the impact of
excessive load on temperature, or the oil temperature, winding temperature, and ambient
temperature data are combined to more accurately predict faults. With the development of
big data and cloud computing, the transformer temperature monitoring system is grad-
ually transforming to a cloud platform. By uploading temperature monitoring data of
the transformer to the cloud, operation and maintenance personnel can realize remote
monitoring, fault analysis, and historical data queries through the cloud platform. Big data
analysis technology can help identify potential fault modes, make intelligent predictions,
and optimize scheduling based on big data models [8]. There is also a proposal to use
electromagnetic energy transmission and wireless sensor equipment to establish a trans-
former monitoring system [9], which can help staff to accurately evaluate transformer alarm
faults in a timely manner. The core of the transformer temperature early warning research,
based on predicted temperature, is used to predict the temperature variation in advance by
modeling and analyzing the trend of transformer temperature data, issue early warnings,
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and take corresponding preventive measures. Predictive temperature warning research
uses historical data, load data, environmental factors, and other factors combined with
intelligent algorithms and big data analysis to predict future temperatures so that active
protection measures can be taken before abnormal temperatures arrive [10]. This warn-
ing method is more forward-looking than early warning research based on the real-time
transformer temperature monitoring using the real-time collection. It can predict abnormal
temperature rises and deal with them in advance to avoid power outages caused by sudden
failures. It can also reasonably arrange inspections and maintenance through predictions,
reduce unnecessary shutdowns and repairs, improve equipment utilization, and help fur-
ther ensure the safety and stability of the power system. The essential difference between
this method and the early warning method based on real-time transformer temperature
monitoring using the real-time collection is that it constructs a temperature prediction
model through data modeling, feature extraction, and prediction algorithm selection.

Transformer temperature is affected by many factors, including load, current, voltage,
ambient temperature, humidity, etc. Therefore, when modeling data, it is necessary to com-
prehensively consider the key factors affecting temperature and construct a feature vector
that reflects the temperature change law of the transformer. The prediction algorithm is the
core of the prediction temperature early warning. Commonly used algorithms include the
ARIMA model [11], exponential smoothing [12], and other time series analysis algorithms,
which can be used for short-term temperature trend prediction; regression analysis, support
vector machine [13], random forest, and other machine learning models, which can achieve
higher accuracy temperature prediction through big data training; and long short-term
memory network [14] and other deep learning algorithms, which are particularly suitable
for capturing the nonlinear temperature change law. In addition, combining multiple models
and integrating the advantages of different models can improve the prediction effect. For ex-
ample, ref. [15] combines integrated empirical mode decomposition and the long short-term
memory network to realize a transformer temperature prediction model with high noise
resistance. Moreover, ref. [16] extract temperature factors and load factors as feature data to
train a fully connected neural network model for transformer temperature prediction.

The limitation of existing transformer temperature warning technology is that it is
difficult to obtain transformer temperature data in real power grid scenarios, and many
existing research methods are not suitable for small sample data. Therefore, this article
proposes a stacking model suitable for small sample data, which combines the advantages
of multiple models to improve the robustness of overall model prediction. In addition,
this article proposes an adaptive sliding window algorithm to improve the accuracy of
model prediction.

2. Stacking Ensemble Learning Model
There are a lot of machine learning and deep learning methods used in transformer

temperature prediction, as described in the Section 1. This paper chooses to establish
a transformer temperature prediction model based on an ensemble learning algorithm
because it integrates multiple models to obtain higher prediction accuracy, stronger robust-
ness, and a more flexible model structure, and performs well in dealing with complex data,
diverse features, and noise resistance. Transformer temperature prediction involves multi-
ple complex factors such as load, ambient temperature, historical temperature trends, etc.
A single model is often difficult to accurately model, while ensemble learning can combine
the advantages of multiple models to make prediction results more comprehensive. In
addition, a single model may be prone to overfitting or underfitting when facing complex
or noisy transformer temperature data, while ensemble learning is usually more robust.
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2.1. Stacking Model Analysis

Commonly, ensemble learning includes bagging, boosting, and stacking. Among these,
bagging is usually based on the same type of model, such as random forest, and these models
have relatively limited adaptability to nonlinear features. In transformer temperature predic-
tion, the data may have strong nonlinearity or multivariate correlations, the effect of bagging
may be limited, and the temporal nature of the data are not considered, so it cannot capture
long-term and short-term trends well in the time series data of transformer temperature pre-
diction. The boosting method will continuously strengthen the error samples of each round,
so it is sensitive to noise data. In temperature data, if there is a large fluctuation or erroneous
data input, the boosting method may produce a high error, and in the case of complex data
and high noise, the boosting method is more likely to overfit, resulting in a decrease in
generalization ability, and the volatility of transformer temperature data will increase the
risk of overfitting. Stacking can combine multiple different types of basic models and further
optimize them on the secondary learner. In contrast, bagging and boosting are usually based
on the same types of basic models. Stacking allows the combination of multiple algorithms
to capture the linear, nonlinear, and temporal characteristics of temperature data using the
advantages of various models. In transformer temperature prediction, stacking has higher
flexibility and generalization than bagging and boosting. Its multi-model and multi-level
fusion method enables it to better adapt to complex and changeable temperature data and
improve the accuracy and stability of prediction. Therefore, this paper chooses to establish a
transformer temperature prediction model based on stacking.

Stacking is an ensemble learning method that improves the performance of the model
by combining the prediction results of multiple base learners. The basic idea is to train
multiple base learners to learn different parts of the data, respectively, and then use a
meta-learner to integrate the outputs of these base learners to form the final prediction
results. The overall stacking model structure proposed in this paper is shown in Figure 1.
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Base learners are the key to the effect of the stacking model, and include support vector
regression, random forest, and gradient boosting regression in this paper; the meta-learner
is usually a simple model, which, in this paper, is ridge regression. This kind of method can
reduce the bias and variance of the prediction and improve the generalization ability of the
model by combining multiple base learners. The meta-learner can capture more information
through the prediction results of different models. Selecting base learners with greater
diversity can improve the effect of stacking. Therefore, this paper selects support vector
regression, random forest, and gradient boosting regression with their own characteristics
as base learners. Among them, the support vector regression algorithm is suitable for
handling nonlinear problems in high-dimensional space and is applicable to small sample
data. The random forest algorithm reduces the risk of overfitting through random sampling
and feature selection. Gradient boosting regression has stronger flexibility and can provide
very high prediction accuracy. This article aims to combine the advantages of three models
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and develop a prediction algorithm model that is suitable for small sample data and has
high robustness and accuracy.

2.2. Support Vector Regression

Support vector regression is a regression method based on support vector machines
that aims to make predictions by minimizing the trade-off between model complexity
and training errors. The support vector regression model finds an optimal regression
hyperplane such that most training data points lie within a specific tolerance band, using a
function to fit the data, as shown in Formula (1):

f (x) = ωTΦ(x) + b (1)

Among them, ω is the weight vector, x is the input feature, Φ(x) is the feature mapping,
and b is the bias. This model mainly includes selection parameters, namely the width of
the margin of tolerance ε and the penalty parameter C. ε defines the tolerance range for
prediction errors, and C controls the degree of penalty for training errors. An optimization
problem is constructed, which minimizes a loss function to balance the model’s complexity
and fitting error, as shown in Formula (2):

F = min
(

1
2
∥ω∥2 + C∑n

i=1(ξi + ξ∗i )

)
(2)

Among them, ξi and ξ*
i are slack variables used to handle the situation where data

points exceed the tolerance band; constraints are added to ensure that the prediction error
for each data point does not exceed ε, as shown in Formula (3):{

yi −
(
ωTΦ(x) + b

)
≤ ε + ξi(

ωTΦ(x) + b
)
− yi ≤ ε + ξ∗i

(3)

Among them, yi is the true target value of the i-th training sample, and ωTΦ(x) + b
represents the model’s predicted value; to solve the optimization problem, the Lagrange
multiplier method is used to combine the objective function and the constraints, construct-
ing the Lagrange function and solving it to obtain the optimal weight vector ω and bias
b; model prediction is used when predicting new data points. Support vector regression
effectively captures the complex relationships within data by finding the optimal regres-
sion hyperplane in the high-dimensional feature space, combining the tolerance band and
penalty mechanism, and is suitable for a variety of regression tasks.

2.3. Random Forest

Random forest is an ensemble learning method, mainly used for classification and
regression tasks, that improves the accuracy and robustness of the model by constructing
multiple decision trees and combining their predictions. The steps include the following:
randomly drawing samples from the original training dataset with put-back to form
multiple different training subsets, each of which is used to train an independent decision
tree; selecting a specific number of features randomly to evaluate at each node split of each
decision tree instead of using all of them, in which randomization increases the diversity of
the model and reduces the risk of overfitting; constructing multiple decision trees based
on the pocketed samples and the randomly selected features. Multiple decision trees are
constructed, each of which can have a different structure because they are trained on
different subsets of data and feature sets; finally, for the regression task, the average of
the predictions from all trees is taken. Random forest utilizes the integration of multiple
decision trees to improve prediction accuracy and robustness. By introducing randomness,
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random forest performs well in dealing with complex data. It is suitable for classification
and regression problems and is one of the most widely used algorithms in machine learning.

2.4. Gradient Boosting Regression

Gradient boosting regression minimizes the loss function by gradually building weak
learners, thereby improving the predictive ability of the model. Its steps include initializa-
tion, calculating the mean F0(x) of the target value, as shown in Formula (4):

F0(x) =
1
n∑n

i=1 yi (4)

where yi is the target value of the i-th training sample; iterative training, for each round
m = 1, 2, . . . , M, calculate the residual, as shown in Formula (5):

r(m)
i = yi − Fm−1(xi) (5)

The weak learner hm(x) is then trained, that is, a new weak learner is trained using
the residual r(m)

i as the target, and then update the model, as shown in Formula (6):

Fm(x) = Fm−1(x) + γmhm(x) (6)

Among them, γm is the learning rate, which is used to control the influence of the new
model on the general model; the final prediction is to predict the new sample. Gradient
boosting regression has performed well in many machine learning competitions and prac-
tical applications and is a very popular choice in regression tasks. By optimizing the loss
function, gradient boosting regression can effectively capture complex patterns in the data.

2.5. Ridge Regression

The meta-learner of the Stacking model in this paper is ridge regression, which con-
strains the complexity of the model by introducing L2 regularization terms, thereby improv-
ing the generalization ability of the model. The process includes selecting regularization
parameters and determining regularization strength λ. This parameter is used to control
the complexity of the model. The larger the value, the simpler the model is and the more
likely it is to be underfitted. The smaller the value, the more complex the model is and the
more likely it is to be overfitted. When constructing an optimization problem, the goal of
ridge regression is to minimize the loss function, as shown in Formula (7):

L(β) = ∑n
i=1 (yi − Xiβ)

2 + λ∑p
j=1 β2

j (7)

Here, β is the regression coefficient and Xi is the eigenvector of the i-th sample; solve
the optimization problem and obtain the regression coefficient β by minimizing the loss
function. The analytical solution of ridge regression is shown in Formula (8):

β∗ =
(

XTX + λI
)−1

XTy (8)

Among them, I is the identity matrix and λ is the regularization parameter. In Stacking,
ridge regression as a meta-learner can make full use of its robustness and ability to process high-
dimensional data, thereby enhancing the overall performance of the ensemble learning model.

3. Adaptive Sliding Window
Transformer temperature prediction belongs to time series prediction. In time series

prediction, the sliding window algorithm is a commonly used data processing method. By
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creating subsequences to help the model capture trends and patterns in time series, time series
data can be transformed into supervised learning problems, so that regression models and
neural networks can better learn the dependencies of sequences. This paper also combines the
sliding window algorithm when training the Stacking model, and uses Bayesian optimization
to find the optimal sliding window size to implement an adaptive sliding window algorithm.

3.1. Sliding Window Algorithm

The basic idea of the sliding window algorithm is to use a certain period of historical
data of the sequence data to predict one or more data points in the future so that non-time
series models can also be used for time series prediction. The algorithm needs to determine
the window size W first. The size of the sliding window determines the amount of data
used in each time the window is slid, that is, the input length of each training sample, and
is also a key factor affecting the final time series prediction effect; each time the window is
slid, the first W − 1 data points in the window are used as input features, and the last data
point is used as the target output. The window is continuously slid forward to generate a
series of input-output pairs; the generated sample is used to train the model, that is, the
support vector regression, random forest, and gradient boosting regression models, and
finally stacked into a stacking model.

The sliding window converts the time series into input and output pairs, so that non-
sequence models can also be used for time series prediction, capturing local time dependen-
cies, that is, short-term trends within the window, so that the model has better performance
in short-term prediction. However, the sliding window model usually generates predic-
tion results step by step, and the error will accumulate as the number of prediction steps
increases. Therefore, the selection of the sliding window size is very critical. However, in
the transformer temperature prediction, the transformer temperature time series is affected
by many factors, and its change trend cycle is different in different seasons and different
environments. Using a fixed size sliding window constantly will lead to a decrease in the
general prediction accuracy of the prediction model and a loss of its robustness. Therefore,
this paper proposes to use the Bayesian optimization algorithm to find the optimal sliding
window size under the current data to achieve an adaptive sliding window and improve the
accuracy and robustness of the overall transformer temperature prediction model.

3.2. Bayesian Optimization

Bayesian optimization is an efficient global optimization algorithm suitable for opti-
mizing black box functions with high optimization costs. Its main idea is to approximate the
objective function by building a proxy model and select the next best sampling point based
on the prediction and uncertainty of the proxy model so as to achieve efficient optimization
of the objective function. The algorithm needs to define the proxy model first, that is, using
the prior distribution to represent the proxy model of the objective function. This model
does not contain any data in the initial stage, so it is based on prior assumptions; then,
sampling and updating are performed, that is, selecting several initial sampling points,
evaluating them through the true objective function, and using these sample points to
update the posterior distribution of the proxy model. The proxy model estimates the value
and uncertainty of the objective function; then, the next sampling point is selected; that is,
the acquisition function is used to select the next point for sampling based on the current
proxy model. The acquisition function determines the new sampling position by balancing
exploration and development, thereby guiding the algorithm to find the global optimal
solution; finally, the proxy model is optimized and the sampling point is updated, that is,
the true value of the new sampling point is calculated, and the proxy model is updated
again, and the above process is repeated until a certain termination condition is met.
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In the Bayesian optimization algorithm used in this paper, the proxy model uses the
Gaussian process, which can flexibly express uncertainty and is suitable for representing
unexplored areas. The Gaussian process assumes that any function value obeys a multi-
variate normal distribution, and its mean and covariance are updated through the prior
distribution and observed data. The Bayesian optimization algorithm is used to find a
sliding window size that minimizes the mean square error of the training model, so the
objective function is defined as:

f (x) = min
(

1
n∑n

i=1 MSE
(

ytest,i, ypred,i

))
(9)

Among them, x is the corresponding sliding window size, ytest,i is the actual tem-
perature of the i-th feature, ypred,i is the predicted temperature of the i-th feature, n is
the number of features, and MSE is the mean square error calculation function. For the
objective function f , given several observation points D = {(xi, yi)|yi = f (xi) + ε}, its
estimation model is f (x) ∼ GP(µ(x), k(x, x′)), where µ(x) is the mean function, k(x, x′) is
the covariance function, i.e., the kernel function, as shown in Formula (10):

k
(

x, x′
)
= σ2exp

(
− (x − x′)2

2l2

)
(10)

where σ is the signal variance and l is the scale parameter. The acquisition function is used
to determine the next evaluation point to optimize the objective function. The expected
improvement used in this paper selects the sampling point by maximizing the expected
improvement of the current optimal value. Given the current optimal value f (xbest) and the
predicted distribution of the proxy mode, the expected improvement can be expressed as:

EI(x) = ( f ∗ − µ(x))Φ
(

f ∗ − µ(x)
σ(x)

)
+ σ(x)ϕ

(
f ∗ − µ(x)

σ(x)

)
(11)

Among them, f ∗ is the optimal solution in the current observation, Φ is the cumulative
distribution function of the standard normal distribution, and ϕ is the probability density
function of the standard normal distribution. Through the Bayesian optimization algorithm,
this paper can find close to the optimal parameters with fewer evaluation steps, and,
through the probability model and acquisition function, it can strike a balance between
exploration and utilization to avoid falling into the local optimal solution.

4. Transformer Early Warning Based on Predicted Temperature
In practice, the ultimate effectiveness of the transformer warning system is based

on the warning rule base. The early warning rule base design in the transformer early
warning method proposed in this paper is based on the dynamic threshold method of
historical data. The dynamic threshold method, based on historical data, is a common
method in transformer temperature early warning. It uses the historical temperature data
of the equipment to set the early warning threshold so that the threshold can better reflect
the actual operating status of the transformer. This method can dynamically adjust the
threshold based on factors such as seasonality and load fluctuations to improve the accuracy
and flexibility of early warning.

First, to establish an early warning rule base, a large amount of historical temperature
data from transformers must be collected. Then, in view of the periodic fluctuation of
transformer temperature data during the day and night, this paper divides the historical
temperature data of transformers into different sets by hour, and the temperature data in
the same set are the temperature at the same time in each day. After obtaining the processed
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data, the early warning rule base is divided into three early warning levels. Among them,
the first-level early warning is a minor early warning, which requires staff to continuously
monitor the temperature change of the transformer online, and no further operation is
required; the second-level early warning is a medium early warning, which requires staff
to check the operating status of the transformer on site; the third-level early warning is a
serious early warning, which requires the transformer to be shut down immediately for
inspection, detailed fault analysis and troubleshooting conducted, and electrical connection
and insulation status determined. The above three early warning levels correspond to three
temperature change thresholds, which are represented by ∆T1, ∆T2, and ∆T3, respectively,
and ∆T1 < ∆T2 < ∆T3. Since the temperature change in the transformer has a certain
time periodicity, this method uses the mean of the processed dataset at that moment as the
judgment criterion. If the difference between the predicted temperature and the mean is
less than ∆T1, no warning operation is performed; if the difference between the predicted
temperature and the mean is greater than or equal to ∆T1 but less than ∆T2, the first-level
warning operation will be performed; if the difference between the predicted temperature
and the mean is greater than or equal to ∆T2 but less than ∆T3, the second -level warning
operation will be performed; if the difference between the predicted temperature and the
mean is greater than or equal to ∆T3, the third-level warning operation will be performed.
Through the analysis of historical data, we set dynamic thresholds for transformers in
different time periods and load levels to build a warning rule library. In this way, the
system can more flexibly adapt to the temperature changes of the equipment in different
operating environments, ensuring that the early warning will not be frequently triggered
due to small fluctuations, and can also alarm in time when there exists a real abnormality,
improving the effectiveness and accuracy of the early warning system.

Finally, the process of the transformer temperature early warning model based on
adaptive sliding window and stacking is summarized, as shown in Figure 2, which includes
nine steps in total, and we can see the relationship between each algorithm module from
them. Different colors represent different modules of the model: the green part represents
the data acquisition module, the orange part represents the Bayesian optimization module,
the blue part represents the stacking model module, and the cyan part represents the
temperature warning module.

Step one collects the historical temperature data of the transformer, that is, it extracts
the temperature data in continuous time from the transformer temperature sensor. Step two
calculates the sliding window size. The sliding window is one of the important algorithms
for time series prediction, and its size is a key parameter affecting the effect of the algorithm.
Step three is used to train the support vector regression model based on the transformer
temperature data collected in step one and the sliding window size obtained in step two.
Step four is to train the random forest model based on the transformer temperature data
collected in step one and the sliding window size obtained in step two. Step five is to train
the gradient boosting regression model based on the transformer temperature data collected
in step one and the sliding window size obtained in step two. It should be noted that
steps three, four, and five can be performed simultaneously. Step six is to stack the models
obtained in steps three, four, and five to obtain a stacking model and calculate whether
the prediction mean square error of the current transformer temperature prediction model
based on adaptive sliding window and stacking is the minimum value. If it is the minimum,
it goes to step 7, otherwise it returns to step 2. Step 7 is to use a transformer temperature
prediction model based on the final optimal performance to predict future temperatures.
Step 8 is to build a warning rule base based on historical data and professional knowledge
as the judgment standard for warning after transformer temperature prediction, and this
step has no dependency relationship with step 7. Step 9 is to judge and warn based on the
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transformer predicted temperature obtained in step 7 and the warning rule base obtained
in step 8. Among them, the specific details of each step can be seen in Sections 2–4.
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5. Results
In the transformer temperature early warning system, the most critical factor affecting

the early warning function is the temperature prediction of the transformer. If the prediction
error is small, the early warning will play a greater role. Therefore, in order to demonstrate
the prediction effect of the transformer temperature prediction method proposed in this
paper, which is based on adaptive sliding window and stacking, this paper conducted an
experiment based on the A, B, and C three-phase temperatures of the high-voltage side
optical fiber of a substation main transformer for twenty consecutive days with a data
interval of one hour. Specifically, this article divides the transformer temperature data for
20 consecutive days and 480 h into two parts, 360 h and 120 h, which are used for model
training and prediction, respectively. A comparative analysis was conducted with the
method described in reference [17]. The experimental results prove the advantages of this
method and the role it can play in practical applications.

This paper uses the first 15 days of data in the dataset for model training and the last
5 days of data for testing the prediction effect. As shown in Figures 3 and 4, this paper
predicts the three-phase temperatures of optical fibers A, B, and C on the high-voltage
side of the main transformer. Figure 3 shows the results of the transformer temperature
prediction model based on fixed sliding windows and stacking. It can be seen that the
transformer temperature prediction model based on fixed sliding windows and stacking
can accurately predict future temperatures, and the predicted temperature trend is basically
consistent with the actual temperature trend, but there are still individual data points
with large errors. Figure 4 shows the results of the transformer temperature prediction
model based on adaptive sliding windows and stacking. Figure 5 shows the results of the
transformer temperature prediction results of empirical mode decomposition bidirectional
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long short-term memory. It can be seen that compared to the empirical mode decomposition
bidirectional long short-term memory, the error reduction is more significant. It can also
be seen that the error is reduced compared to the fixed sliding window and stacking
methods. Therefore, it can be explained that the transformer temperature prediction
method based on adaptive sliding windows and stacking improves the accuracy and
robustness of transformer temperature prediction.
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In addition, we also presented the difference curves between the predicted and actual
temperatures of phases A, B, and C using the fixed sliding window stacking model and
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the adaptive sliding window stacking model, as shown in Figures 6 and 7. Figure 6 shows
the error curve of the fixed sliding window stacking model for predicting the temperatures
of phases A and C, corresponding to the error curve in Figure 3. Figure 7 shows the error
curve of the adaptive sliding window stacking model for predicting the temperatures of
phases A and C, corresponding to the error curve in Figure 4. From the comparison between
Figures 6 and 7, it can be seen that Figure 7 has a smaller overall amplitude and is more
concentrated around the zero value on the vertical axis. Therefore, it can be seen from
Figures 6 and 7 that the adaptive sliding window stacking model has a smaller overall error
and more stable prediction performance compared to the fixed sliding window stacking
model. However, the difference in single point prediction error between these two algorithm
models is relatively small, and only a rough distribution can be seen from the graph, making
it impossible to conduct detailed numerical analysis. Therefore, this article will provide a
detailed comparison of error values in Table 1, which will be analyzed in detail later.
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Since the prediction performance of the above three methods is good, it is difficult to
evaluate their advantages and disadvantages by comparing them only using the figure.
This paper provides Table 1 to more intuitively reflect the advantages of the transformer
temperature prediction method based on the adaptive sliding window and stacking. From
Table 1, it can be seen that the mean square error of the prediction results of the above
three methods is small. However, compared to the empirical mode decomposition bidi-
rectional long short-term memory, the adaptive sliding window and Stacking transformer
temperature prediction method reduces the total error of A-phase temperature prediction
by about 34.58%. The total error of B-phase temperature prediction decreased by about
27.22%. The total error of C-phase temperature prediction has been reduced by about
31.54%. In addition, the adaptive sliding window and Stacking transformer temperature
prediction methods still reduce the mean square error of the prediction results to a certain
extent on the basis of the fixed sliding window and Stacking transformer temperature
prediction methods. It can be seen that the total error of A-phase temperature prediction
has been reduced by about 18.79%. The total error of B-phase temperature prediction
decreased by about 17.05%. The total error of C-phase temperature prediction has been
reduced by about 13.89%. Therefore, it can be concluded that the transformer temperature
prediction method based on adaptive sliding window and Stacking reduces the prediction
error in A, B, and C three-phase temperature prediction compared to existing methods. The
transformer temperature warning method and system based on adaptive sliding window
and Stacking achieve effective transformer temperature warning by improving the accuracy
of transformer temperature prediction.

Finally, to illustrate the importance of the adaptive sliding window algorithm in the
transformer temperature warning model proposed in this paper, we took the window range
from 5 to 30 as an example and plotted a line graph of the total temperature prediction error
as a function of the sliding window size, as shown in Figure 8. It can be seen that different
window sizes have different effects on the prediction of different phase temperatures,
which makes it difficult to capture patterns. This depends on the various influences of
time on the original transformer temperature data. However, the adaptive sliding window
algorithm can ultimately calculate the optimal sliding window size, which is the window
size that minimizes the sum of the mean square errors of the ABC three-phase temperature
prediction. In this example, the optimal sliding window size is 25.
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6. Conclusions
This paper proposes a transformer temperature prediction method based on adaptive

sliding window and stacking ensemble learning. It combines base learners such as support
vector regression, random forest, and gradient boosting regression, and uses ridge regres-
sion as a meta-learner to achieve high-precision temperature prediction of multi-model
fusion. Under the nonlinear and time-varying characteristics of temperature data, this
method dynamically adjusts the size of the sliding window through Bayesian optimization
to adaptively capture the temperature change trend, effectively improving the accuracy
and robustness of the prediction. Experimental results show that compared with the tradi-
tional fixed sliding window method, the adaptive sliding window and stacking methods
significantly reduce the temperature prediction error, reducing the total error by 18.79%,
17.05%, and 13.89% on the three-phase temperature of A, B, and C, respectively. This im-
provement significantly enhances the early warning system’s ability to identify transformer
temperature anomalies, reduces the possibility of false alarms and missed alarms, and
provides more reliable technical support for transformer temperature management and
safety assurance.

In practical applications, this method is suitable for long-term transformer tempera-
ture monitoring and fault warning, especially for dealing with temperature fluctuations
under different ambient temperatures and load conditions. By dynamically adjusting
the sliding window size, temperature anomalies can be detected in a high temperature
environment or during peak power consumption, helping maintenance personnel take
preventive measures, thereby improving the overall stability of the substation and the
reliability of the power system.

Future research can be expanded in the following aspects: First, it is possible to
consider integrating more deep learning algorithms to better handle the long-term and
short-term dependencies in temperature data, thereby further improving the prediction
accuracy of the model. Second, by combining multiple sensor data such as current, voltage,
and humidity, multi-source data fusion can be achieved to improve the adaptability of the
temperature prediction model. In addition, with the development of the Internet of Things
and edge computing technologies, the real-time data processing of the temperature early
warning system can be transferred to the edge to reduce transmission delays and improve
the real-time response capability of the system. Finally, by introducing big data analysis
and automated fault diagnosis mechanisms on the cloud platform, intelligent operation
and maintenance management of transformers can be realized, which will help promote
the digital and intelligent transformation of the entire power system.
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