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Antonio G. Ravelo-Garcia, Morgado

Dias and Ankit Gupta

Received: 18 December 2024

Revised: 10 January 2025

Accepted: 17 January 2025

Published: 19 January 2025

Citation: Ou, Q.; Zou, J.

Channel-Wise Attention-Enhanced

Feature Mutual Reconstruction for

Few-Shot Fine-Grained Image

Classification. Electronics 2025, 14, 377.

https://doi.org/10.3390/

electronics14020377

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Channel-Wise Attention-Enhanced Feature Mutual
Reconstruction for Few-Shot Fine-Grained Image Classification
Qianying Ou * and Jinmiao Zou

School of Information Science and Technology, Fudan University, Shanghai 200433, China;
20210720278@fudan.edu.cn
* Correspondence: 20210720264@fudan.edu.cn

Abstract: Fine-grained image classification is faced with the challenge of significant intra-
class differences and subtle similarities between classes, with a limited number of labelled
data. Previous few-shot learning approaches, however, often fail to recognize these discrim-
inative details, such as a bird’s eyes and beak. In this paper, we proposed a channel-wise
attention-enhanced feature mutual reconstruction mechanism that helps to alleviate these
problems for fine-grained image classification. This mechanism first employed a channel-
wise attention module (CAM) to learn the channel weights for both the support and query
features. We utilized channel-wise self-attention to assign greater importance to object-
relevant channels. This helps the model to focus on subtle yet discriminative details, which
is essential to the classification process. Then, we introduce a feature mutual reconstruc-
tion module (FMRM) to reconstruct features. The support features are reconstructed by
a support-weight-enhanced feature map to reduce the intra-class variations, and query
features are reconstructed by a query-weight-enhanced feature map to increase inter-class
variations. The results of classification depend on the similarity between reconstructed
features and enhanced features. We evaluated the performance based on four fine-grained
image datasets when Conv-4 and Resnet-12 were used. The experimental results showed
that our method outperforms previous few-shot fine-grained classification methods. This
proves that our method can improve fine-grained image classification performance and
simultaneously balance both the inter-class and intra-class variations.

Keywords: few-shot learning; fine-grained image classification; channel-wise attention;
feature reconstruction

1. Introduction
With the rapid development of neural networks, remarkable progress has been made

in image processing, such as classification [1,2], object detection [3], and semantic segmen-
tation [4]. This improvement heavily relies on large-scale model training on numerous
labelled images. However, data annotation is both costly and time-consuming, resulting in
a limited number of labelled data. This issue leads to the overfitting or underfitting of the
model, which may degrade the performance [5]. To address this challenge, the computer
vision community has proposed few-shot learning methods. These methods mimic human
reasoning and quickly acquire new knowledge with only a few examples. Specifically,
few-shot learning adopts an episodic learning strategy. In every episode, the model is
trained through a support set and evaluated through a query set.

Scholars have attempted to apply transfer learning [6] and meta-learning to achieve
few-shot learning. Currently, meta-learning-based few-shot image classification primarily
relies on metric learning. The main idea is to compute the distance between the query
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feature and the support feature using predefined mathematical metrics or pre-trained
classifiers. In other words, the classification results depend on the distance between the
query set and the descriptors [7] or points of the support sets in the latent space. The
typical ProtoNet [8] calculates the prototypes of support sets according to their Euclidean
distances, believing that the prototypes capture the inductive bias of support images. The
DeepEMD [9] introduced the Earth Mover’s Distance (EMD) and compared the distance
between feature representations. This approach divides images into small patches and cal-
culates the best match to determine the distance. Additionally, DeepDBC [10] employs the
distance through Brownian Distance Covariance, which quantifies the difference between
the joint characteristic distributions of input images. Instead of the method mentioned
above using predefined mathematical metrics, the Relation Network [11] trains a learnable
classifier to compare the feature vector of input images for classification.

Applying few-shot learning to fine-grained image classification effectively overcomes
the challenge of limited labelled data and achieves positive results [12]. However, the chal-
lenge in fine-grained image classification extends beyond the issue of limited labelled data.
The difference between fine-grained image classification and general image classification
can be seen in Figure 1. General images from different classes exhibit significant differences,
so the background has a minimal impact on the classification. However, the significant
intra-class differences and subtle inter-class similarities between subcategories severely
impact the classification. As shown in Figure 1a, horizontally, images in the first row belong
to California gulls. However, due to variations in their backgrounds and postures, they look
quite different. In contrast, images in the same column belong to different gulls but share
some similarities in background and posture, with slight differences in their wings and
beaks. This challenge, unique to fine-grained images, amplifies the difficulties of few-shot
classification. Therefore, accurately distinguishing these subtle but critical features has
played a significant role in few-shot fine-grained image classification.

(a) (b)

Figure 1. The difference between fine-grained images and general images. Rows represent different
species and columns represent different backgrounds. (a) Fine-grained image examples; (b) general
image examples.

Some existing metric-based methods for few-shot learning are directly employed
in fine-grained image classification, relying on complex network structures to extract
features [13]. FEAT [14] generates distinctive and task-specific features through set-to-set
functions and embedding adaptation. CTX [15], which introduces a cross transformer to
retrieve features, maps query instances to the supporting latent space and classifies targets
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through self-supervised learning. HelixFormer [16] leverages the cross-image semantic
relationships between the query and support features within a transformer-based structure.
CSCAM [17] introduces a module combining channel attention and spatial attention, and
aims to extract discriminative regions through a cross-attention module.

However, there is a problem with this kind of method. After extracting feature
maps using various efficient extractors, it is necessary to convert them into single-vector
representations for metric functions. The process of converting spatial features into vector
representations results in the loss of spatial or positional information, as well as leading
to potential overfitting for posture. Taking global pooling as an example, the commonly
used softmax classifier averages the input image [8,11], preserving its overall details and
location, but leads to overfitting to postures and overlooking potential information. Some
attempts address this issue by expanding the receptive field [15], but induce new problem
that the model overfits to irrelevant information like the background. Therefore, FRN [18]
introduces a novel approach that reconstructs the query feature using the support feature
and then compares the reconstructed feature with the query feature for classification.
Specifically, it is easier for support images to reconstruct query images belonging to the same
class because they share some similar feature mappings. On the contrary, reconstructing
query images from different classes will cause substantial errors due to inter-class variations.
This is why the category similarity between images can be measured by calculating the
reconstruction error. Compared to metric learning, this method preserves spatial details
and avoids overfitting to the posture, thus decreasing the influence of inter-class variations.
However, while the support–query feature reconstruction encourages the model to learn
distinct differences between classes, helping to address inter-class variations, it struggles to
capture subtle differences within the same class.

Consequently, we propose a channel-wise attention-enhanced feature mutual recon-
struction approach for few-shot fine-grained image classification. We treat feature recon-
struction as a ridge regression problem and achieve the best reconstruction using the least
square method. Besides the support–query feature reconstruction, we additionally adopt
a reverse query–support reconstruction strategy, which aims to reduce the differences be-
tween same-class images. This strategy compresses the intra-class differences, encouraging
the model to learn more consistent and compact representations for similar instances. The
support–query feature reconstruction improves the separability between classes, while
the reverse query–support reconstruction focuses on reducing discrepancies within the
same class.

This seemingly simple method encourages the model to focus not only on the signifi-
cant differences between categories (through the support–query feature reconstruction),
but also on reducing the gap within the same category (through the query–support feature
reconstruction). This mutual learning mechanism enables our model to perform more
robustly in fine-grained image classification tasks, especially when the training samples
are scarce.

Our channel-wise feature mutual reconstruction contains four modules: (1) a feature
extractor, (2) a channel-wise attention module, (3) a feature mutual reconstruction module,
and (4) a feature similarity calculation module. In order to weaken the semantic difference
caused by background and posture, we propose a channel-wise attention module. This
module highlights the key parts of the targets and ensures that the features accurately
represent the category information.

In summary, our contributions can be listed as follows:

• We propose a channel-wise attention mechanism. This approach uses channel-wise
self-attention to obtain object-specific channel weights. These weights help features
to depress the background noise and focus on the salient feature of the target. To
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reduce the classification errors caused by background similarities, we minimize the
inter-class similarities.

• We introduce a feature mutual reconstruction module. This module reconstructs
images using channel-wise enhanced features. This mutual reconstruction ensures a
larger intra-class variation and smaller inter-class similarities. Ablation experiments
show that mutual reconstruction promotes a stronger interaction between the support
and query sets, maximizing their contributions to the classification task.

• To prove the validity of our approach, we conduct several experiments on classic
fine-grained image datasets, including CUB-200-2011 [19], Stanford Cars [20], Stanford
Dogs [21], and Aircraft [22], and compare them with other advanced methods.

The structure of this paper can be summarized as follows: Section 2 provides an
overview of the materials and methods proposed in this paper, and details the application
of using a channel-wise attention module, which is complementary to the feature mutual
reconstruction. Section 3 presents the experimental results, comparing models across few-
shot fine-grained datasets, while examining the impact of each branch on performance.
Finally, Section 4 concludes the proposed method, discussing model results, limitations,
and future directions for few-shot fine-grained image classification.

2. Materials and Methods
The overall architecture of our approach is illustrated in Figure 2. There is a feature ex-

tractor to compute the feature maps for both support and query instances in every episode.
We then employ a channel-wise attention module (CAM) to generate attention weights that
emphasize the most informative regions of the objects. This attention mechanism works by
redistributing weights to object-relevant channels, effectively enhancing the feature maps
for subsequent processing. After that, we apply a feature mutual reconstruction module
(FMRM) to reconstruct both the support images and query images, leveraging the mutual
relationships between the enhanced features. The classification results are determined by
the similarity between reconstructed features and channel-wise enhanced features.

Figure 2. Overview of our approach. The channel-wise feature mutual reconstruction contains
four sub-modules. FS

c and FQ
i are extracted features. wS

c represents the attention weight of the
cth class support images and wQ

i represents the attention weight of the ith query instance. FS→Q
c

represents the query feature reconstructed by support feature FS
c and FQ→S

i represents the support
feature reconstructed by query feature FQ

i . Qi represents the query features enhanced by wS
c , while

S′
c represents support features enhanced by wQ

i . After that, we calculate the similarity between FS
c

and Qi, as well as FQ
i and S′

c, to obtain the results.

2.1. Problem Formulation

In a standard few-shot classification, we divided the datasets D = {(xi, yi), yi ∈ Y}
into three parts, namely the training set Dtrain = {(xi, yi), yi ∈ Ytrain}, the test set Dtest =

{(xi, yi), yi ∈ Ytest} and the validation set Dval = {(xi, yi), yi ∈ Yval}, similar to other tra-
ditional model training processes. During training, the model improves its performance
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on a C-way K-shot classification. In every training episode, the model is provided with
a support set (meta-training set) and a query set (meta-test set), which are divided from
the training set Dtrain. Specifically, in every episode, C classes are randomly selected from
Dtrain, and for each of these classes, K labelled images are provided as the support set
S =

{
(xj, yj)

}N×K
j=1 and M unlabelled images are provided as the query set Q =

{
xj
}N×K

j=1 .
Images in the support set and query set belong to the same class but do not overlap. After
data loading, the total number of samples in each episode is C × (K + M). This setup
ensures that the model is trained to recognize new classes with a limited number of data.

2.2. Channel-Wise Attention Module (CAM)

After the feature extractor, we obtain the feature representations of the support and
query images:

FS
c = fθ(xS

c )

FQ
i = fθ(xQ

i )
(1)

where the xS
c represents images of the cth class of support sets and xQ

i is the ith instance of
the query sets. The feature map F ∈ RD×H×W , where D, H, and W denote the number of
channels, height, and weight.

Previous work like SeNet [23] has proved that channel attention weights are beneficial
for image classification. They reassign weights across different channels, enabling the
proposed model to focus on the distinct areas of input features. In fine-grained image
classification, this helps to reduce the impact of the background and highlights the fine-
grained objects. The channel-wise attention module we proposed is shown in Figure 3. The
core idea is to calculate the correlation along the channel dimension of the input features,
allowing the model to focus on distinctive regions of the input features. Specifically, we
compute the correlation between feature channels and aggregate these correlations.

Figure 3. Channel-wise attention module. Q, K, and V are obtained through a 1 × 1 convolution
kernel, representing the query, key, and value of the images in the channel dimension, respectively.

The input features of the channel-wise attention module are denoted as F. We nor-
malize F in the channel dimension, and obtain the Q, K, and V through a 1 × 1 convolu-
tion kernel.

Q = Conv1dQ(F)

K = Conv1dK(F)

V = Conv1dV(F)

(2)

where Q, K, V ∈ RD×N with N = H × W. The structure of channel-wise self-attention
(CSA) is quite similar to the Multi-Head Self-Attention (MHSA) introduced by ViT [24].

w = Attention(Q, K, V) = So f tmax(
QKT
√

D
)V (3)
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However, there are still some differences. In MHSA, Q, K, V ∈ RN×D and N = H ×W.
In our proposed CSA, self-attention focuses on the channel feature, so our Q, K, V ∈ RD×N .

2.3. Feature Mutual Reconstruction Module (FMRM)

The reconstruction process is shown in Figure 4, including two branches: the query
feature reconstruction branch and the support feature reconstruction branch. QFR is
designed to ensure the inter-class differences, while SFR is designed to minimize the inter-
class similarity. Before the reconstruction, we enhanced the support feature Sc and query
feature Qi using the support channel-wise weights ws

c:

Sc = (wS
c )

T ⊙ FS
c = [(wS

c,1)
T f S

c,1, (wS
c,2)

T f S
c,2, . . . , (wS

c,D)
T f S

c,D]

Qi = (wS
c )

T ⊙ FQ
i = [(wS

i,1)
T f Q

i,1, (wS
i,2)

T f Q
i,2, . . . , (wS

i,D)
T f Q

i,D]
(4)

where wS
c,j represents the scalar value at the jth dimension of wS

c . f S
c,d is the dth channel of

the support feature FS
c . f Q

i,d is the dth channel of the query feature FQ
i . fc ∈ RH×W .

Figure 4. Overview of our feature mutual reconstruction module. Sc and Qi are the features
reassigned by the support attention weight ws

c. S′
c and Q′

i are the features reassigned by the support
attention weight ws

i . dS→Q
i.c calculates the similarity between FS→Q

c and Qi, while dQ→S
i.c calculates the

similarity between S′
c and FQ→S

i .

Feature reconstruction aims to figure out a matrix that satisfies WSc ≈ Qi, W ∈ Rr×C,
in which Sc is reshaped to Rkr×d, r = H × W, which represents the feature pools of the cth
class. Solving this formulation using the least square method, we can find that

W = argmin
W

∥Qi − WSc∥2 + λ∥W∥2 (5)

where ∥.∥ denotes the Frobenius norm and λ is the ridge regression penalty, which is
designed to ensure the optimization is tractable. The reconstruction can be calculated
as follows:

W = QiST
c (ScST

c + λ1 I)−1

FS→Q
c = WSc

(6)
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where FS→Q
c is the new query feature reconstructed by the support feature and λ1 is set

as Kr
D inspired by [18]. After a query feature reconstruction branch, we obtain FS→Q

c and
an enhanced query feature Qi that focuses on support classes. Similarly, we enhanced the
support feature and query feature by query weights wQ

i :

S′
c = (wQ

i )
T ⊙ FS

c = [(wQ
i,1)

T f S
c,1, (wQ

i,2)
T f S

c,2, . . . , (wQ
i,D)

T f S
c,D]

Q′
i = (wQ

i )
T ⊙ FQ

i = [(wQ
i,1)

T f Q
i,1, (wQ

i,2)
T f Q

i,2, . . . , (wQ
i,D)

T f Q
i,D]

(7)

We reconstruct a new support feature using Q′
i:

W ′ = S′
cQ

′T
c (Q′

cQ
′T
c + λ2 I)−1

FQ→S
i = W ′Q′

c

(8)

where λ2 is set as r
D .

2.4. Classifier and Loss

We obtain the reconstructed features FS→Q
c and FQ→S

i and the enhanced features Qi

and S′
c after FMRM. We calculate the similarity between the enhanced query feature Qi and

the reconstructed query feature FS→Q
c as

dS→Q
i.c = ∥FS→Q

c − Qi∥2 (9)

and compute the similarity between the enhanced support feature S′
c and the reconstructed

suport feature FQ→S
i as

dQ→S
i.c = ∥FQ→S

i − S′
c∥2 (10)

Through Equations (9) and (10), we measure the reconstruction similarities of QFR
and SFR. To measure the total reconstruction similarities of the FMRM, we calculate the
total distance vis the weighted summation of the two distances. Thus, the total distance
between the ith query instance and the cth class is

di,c = γ(αdS→Q
i.c + βdQ→S

i.c ) (11)

Inspired by [15,18], we set γ, α, and β as three learnable parameters, and their initial
value is 1.00. α and β are designed to dynamically adjust the importance of each branch. γ

is introduced in order to control the peakiness of Equation (11). The possibility that the ith
query instance belongs to the cth class is given by

Pc
i =

e(−di,c)

∑i′∈C e(−d′i,c)
(12)

During training, we employ a cross-entropy function to calculate the loss of our classi-
fication:

Lentropy = − 1
M × C

M×C

∑
i=1

C

∑
c=1

1(yi == c) log(Pc
i )

To improve the quality of the reconstructed feature, we additionally introduce a
reconstructing loss:

Lrecon = ∑
i∈C

∑
j∈C,j ̸=i

||S̃iS̃T
i ||2 + ∑

i∈q
∑

j∈q,j ̸=i
||Q̃iQ̃T

i ||2 (13)
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where S̃ and Q̃ is row-normalized, and q is the number of query images. This loss ensures
the orthogonality between features, so it encourages larger differences between features.
This helps the module to reduce the similarity caused by the background. The total loss of
the training is

L = Lentropy + θLrecon (14)

Following [25], we set θ as 0.03.

3. Results
3.1. Datasets

We evaluate the performance of the proposed method based on four classic fine-
grained datasets. For each dataset, we divide it into three parts: Dtrain, Dval , and Dtest. The
ratio of each part is shown in Table 1, and all images are resized to 84 × 84.

Table 1. The split of datasets.

Datasets Dall Dtrain Dval Dtest

CUB-200-2011 200 100 50 50
Stanford-Cars 190 136 17 49
Stanford-Dogs 120 70 20 30

Aircraft 100 50 25 25

CUB-200-2011 (CUB) [19] is a widely used fine-grained image classification dataset,
consisting of 11,788 images across 200 bird species. Following [10], we crop the images by
annotated bounding boxes given by the dataset.

Stanford-Cars (Cars) [20] is a classic fine-grained image classification dataset as
well, consisting of 16,185 images across 196 different kinds of cars. Image labels contain
information including the brand, model, and year, such as the 2012 Tesla Model S and the
2012 BMW M3coupe.

Stanford-Dogs (Dogs) [21] is a classic fine-grained image classification dataset, con-
sisting of 20,580 images across 120 dog breeds.

Aircraft [22] is a challenging fine-grained image classification dataset, consisting of
10,000 images across 100 aircraft models.

3.2. Implementation Details
3.2.1. Architecture

Following the standard protocols from recent few-shot classification works [5], we
conducted our experiments on the backbone Conv-4 [26] and ResNet-12 [27]. Conv-4
consists of four convolutional blocks, where each block consists of a convolution layer with
64 3 × 3 kernels, followed by a BatchNorm operation, a ReLU activation, and a max-pooling
layer with 2 × 2 pool size. After a Conv-4 backbone, a 3 × 84 × 84 image is transformed
into a 64 × 5 × 5 feature map. The ResNet-12 architecture, on the other hand, is made up of
four residual blocks. Each of these blocks contains three convolutional layers, followed by
a BatchNorm normalization and a Leaky ReLU (with a slope of 0.1). The last convolutional
layer in each block uses 2 × 2 max-pooling. After Resnet-12, we obtain a 640 × 5 × 5
feature map.

3.2.2. Training Details

In our experiments, the models based on Conv-4 are trained for a total of 800 epochs,
using Stochastic Gradient Descent (SGD) with Nesterov momentum set to 0.9. We set the
initial learning rate as 0.1, and reduce it to 0.01 after 400 epochs. Models are trained on
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20-way five-shot episodes and directly tested on five-way one-shot or five-shot episodes.
For each training or testing episode, 15 query images are selected.

As for the Resnet-12 models, we train them on three stages with 400 epochs per stage.
The initial learning rate is set as 0.1, and decreases by a scale factor of 10 every stage. The
SGD optimizer with a Nesterov momentum of 0.9 is also used. To save the memory, we
train the Resnet-12 models on 10-way 5-shot episodes, keeping other test setups unchanged.

The weight decay of our model’s training is 5 × 10−4. In addition, following existing
methods [5,14,18], standard data augmentation techniques are used to achieve better
training stability, including random crop, horizontal flip, and colour jitter. To prevent
overfitting, we validate the model every 20 epochs and select the best-performing model
based on the validation set.

3.2.3. Evaluation Details

In the N-way K-shot classification task, we examine few-shot classification for
10,000 episodes. In every episode, N classes are randomly selected, and each class contains
K support images and 15 query images. The results are reported as the average classification
accuracy along with 95% confidence intervals, as in [7,28].

3.3. Comparison of Results

To validate the efficiency of our approach, we conducted experiments on the three
fine-grained image datasets mentioned above and the results are listed in Tables 2 and 3.
The results marked with * were obtained with the official code provided by the authors,
and the original dataset was replaced by the one used in this paper. The results marked
with † were obtained from CSCAM [17]. We maintained the same dataset split ratio and
used the same BBOX as in the original method. All other experimental settings remained
consistent with the official implementation.

Table 2. Five-way few-shot classification performance based on three fine-grained datasets when
Conv-4 is used.

Method
CUB Dogs Cars

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Matching [29] 66.06 ± 0.88 74.57 ± 0.73 46.10 ± 0.86 59.79 ± 0.72 44.73 ± 0.77 64.74 ± 0.72
ProtoNet * [8] 63.84 ± 0.24 84.61 ± 0.15 47.13 ± 0.21 68.48 ± 0.17 48.64 ± 0.20 74.23 ± 0.17

RelationNet [11] 63.94 ± 0.92 77.87 ± 0.64 47.35 ± 0.88 66.20 ± 0.74 46.04 ± 0.91 68.52 ± 0.78
DN4 [7] 57.45 ± 0.89 84.41 ± 0.58 39.08 ± 0.76 69.81 ± 0.69 34.12 ± 0.68 87.47 ± 0.47

DeepEMD [10] 64.08 ± 0.50 80.55 ± 0.71 46.73 ± 0.49 65.74 ± 0.63 61.63 ± 0.27 72.95 ± 0.38
LRPABN [28] 63.63 ± 0.27 76.06 ± 0.58 45.72 ± 0.75 60.94 ± 0.66 60.28 ± 0.76 73.29 ± 0.58

CTX * [15] 71.16 ± 0.21 85.73 ± 0.14 56.18 ± 0.21 71.98 ± 0.16 65.15 ± 0.21 81.25 ± 0.14
MistFSL* [30] 56.45 ± 0.88 74.75 ± 0.75 45.61 ± 0.78 62.22 ± 0.68 44.43 ± 0.79 66.31 ± 0.75

FRN * [18] 74.01 ± 0.21 88.55 ± 0.13 58.42 ± 0.21 77.48 ± 0.15 66.00 ± 0.21 85.96 ± 0.12
BSFA † [31] 68.16 ± 0.52 82.41 ± 0.35 - - 49.98 ± 0.48 67.52 ± 0.44
AGPF [32] 74.03 ± 0.90 86.54 ± 0.50 60.89 ± 0.89 78.14 ± 0.62 78.14 ± 0.84 87.42 ± 0.57

IDEAL-clean † [33] 69.93 ± 0.89 81.67 ± 0.69 - - 52.64 ± 0.91 70.28 ± 0.69
CAML [34] 59.71 ± 1.46 73.09 ± 0.73 - - - -
W3SL [35] 71.48 86.74 59.37 78.94 61.13 81.51

Ours 74.37 ± 0.22 89.20 ± 0.12 59.61 ± 0.22 78.56 ± 0.15 67.09 ± 0.22 87.95 ± 0.11
* Results were obtained with the official code provided by the authors, and the original dataset was replaced by
the one used in this paper. † Results were obtained from CSCAM.
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Table 3. Five-way few-shot classification performance based on three fine-grained datasets when
Resnet-12 is used.

Method
CUB Dogs Cars

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

ProtoNet * [8] 78.07 ± 0.21 90.54 ± 0.11 72.25 ± 0.22 86.82 ± 0.13 86.11 ± 0.18 95.02 ± 0.08
FEAT [14] 73.27 ± 0.22 85.77 ± 0.14 - - - -

DeepEMD * [10] 74.87 ± 0.24 87.83 ± 0.28 70.03 ± 0.26 84.78 ± 0.18 79.63 ± 0.27 90.95 ± 0.38
VFD [36] 79.12 ± 0.83 91.48 ± 0.39 76.24 ± 0.87 88.00 ± 0.47 - -

CTX * [15] 77.89 ± 0.20 90.84 ± 0.11 72.97 ± 0.22 85.60 ± 0.13 84.93 ± 0.19 92.63 ± 0.14
DeepDBC * [10] 81.89 ± 0.42 91.84 ± 0.31 72.57 ± 0.32 84.96 ± 0.17 80.93 ± 0.39 92.03 ± 0.14

HelixFormer [16] 81.66 ± 0.30 91.83 ± 0.17 65.92 ± 0.49 80.65 ± 0.36 79.40 ± 0.43 92.26 ± 0.15
FRN * [18] 81.5 ± 10.20 91.77 ± 0.11 76.43 ± 0.21 88.23 ± 0.12 87.95 ± 0.16 95.30 ± 0.08
BSFA [31] 82.27 ± 0.46 90.76 ± 0.26 69.58 ± 0.50 82.59 ± 0.33 88.93 ± 0.38 95.20 ± 0.20
AGPF [32] 78.73 ± 0.84 89.77 ± 0.47 - - - -

TDM + CSCAM [17] 83.34 ± 0.19 92.28 ± 0.18 - - 86.86 ± 0.17 95.63 ± 0.08
C2-Net [37] - - 75.50 ± 0.49 87.65 ± 0.28 88.96 ± 0.37 95.16 ± 0.20
FicNet [38] 80.97 ± 0.57 93.17 ± 0.32 72.41 ± 0.64 85.11 ± 0.37 88.81 ± 0.47 95.36 ± 0.22
W3SL [35] 73.16 89.75 62.94 82.16 64.85 84.25

Ours 83.09 ± 0.19 92.75 ± 0.10 77.21 ± 0.21 88.90 ± 0.12 89.03 ± 0.16 96.09 ± 0.07
* Results were obtained with the official code provided by the authors, and the original dataset was replaced by
the one used in this paper.

We tested the five-way one-shot and five-way five-shot classification performance
with other advanced methods based on the same backbone Conv-4 and Resnet-12. As
shown in Table 2, our method performs best based on all three datasets on the backbone
Conv-4 except for the comparison with AGPF. In addition to the results on the Cars
dataset for one-shot training, we approached and even surpassed these data. As shown in
Table 3, we achieved outstanding performance across nearly all datasets. The exceptional
comparison with TDM+CSCAM on the CUB dataset for one-shot training is comparable.
We can conclude that our proposed method achieves superior performance regarding the
datasets CUB, Cars, and Dogs, regardless of the backbone. As for the performance based
on the Aircraft dataset, the results are shown in Table 4. Compared with other advanced
experiments, our approach achieves results that are highly competitive, demonstrating
comparable performance.

Table 4. Five-way few-shot classification performance based on the Aircraft dataset.

Method
Conv-4 Resnet-12

1-Shot 5-Shot 1-Shot 5-Shot

ProtoNet * [8] 52.07 ± 0.21 82.98 ± 0.16 85.67 ± 0.18 91.89 ± 0.11
FRN * [18] 66.68 ± 0.22 84.17 ± 0.13 86.58 ± 0.17 92.28 ± 0.09

HelixFormer [16] 70.37 ± 0.57 79.80 ± 0.42 74.01 ± 0.54 83.11 ± 0.41
IDEAL-clean † [33] 52.26 ± 0.83 80.36 ± 0.69 61.37 ± 0.92 82.51 ± 0.55

BSFA † [31] 61.17 ± 0.49 76.96 ± 0.36 87.85 ± 0.35 94.93 ± 0.14
C2-Net † [37] - - 87.98 ± 0.39 93.96 ± 0.20

Ours 67.09 ± 0.20 85.02 ± 0.13 87.31 ± 0.15 93.85 ± 0.10
* Results were obtained with the official code provided by the authors, and the original dataset was replaced by
the one used in this paper. † Results were obtained from CSCAM.

This is due to the proposed feature mutual reconstruction module. By capturing the
similarities between images from the same class and the gap between different classes,
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we reduce the intra-class variance and increase the inter-class variance, thus increase the
classification accuracy.

3.4. Ablation Studies
3.4.1. Analysis of Learnable Parameters

We set α and β as learnable parameters to reduce the time and effort for manual tuning.
To investigate the effects of different combinations of values on performance, we fixed α and
β at various levels and conducted some experiments. These experiments used Resnet-12 as
the backbone and CUB as the dataset. The results are shown in Table 5.

Table 5. Five-way few-shot classification with different combinations of α and β based on the CUB
dataset when Resnet-12 is used.

α β 1-Shot 5-Shot

0 1 82.05 ± 0.20 91.08 ± 0.12
0.5 1 82.57 ± 0.20 92.43 ± 0.11
1 1 82.26 ± 0.21 92.07 ± 0.13

1→0.67 1→7.83 83.09 ± 0.19 92.75 ± 0.10
1 0.5 82.01 ± 0.20 91.39 ± 0.11
1 0 81.71 ± 0.20 91.01 ± 0.12

From Table 5, we can notice that when α is fixed at 1, a decrease in β consistently leads
to a worse performance. This indicates that a smaller β negatively affects the model. On
the other hand, when β is fixed to 1, the model performance reaches its peak at α = 0.5.
After training, the values of the learnable parameters changed. α converged from 1 to 0.67,
and β converged from 1 to 7.83, which aligns with the trend we observed.

3.4.2. The Effectiveness of CAM and FMRM

We analyse each module of the proposed methods by progressively removing compo-
nents. Without CAM, the model (FMRM) directly uses the output from the feature extractor
for reconstruction and calculates the reconstruction error. Without FMRM, after obtaining
the channel attention weights, the model (CAM) performs classification by calculating the
Euclidean distance. The results, including training on three datasets and two backbones,
are reported in Table 6. We removed each of the two modules one at a time, and eventually
eliminated both modules, which ended up with the baseline.

Table 6. Ablation studies on each module.

Backbone Method
CUB Dogs Cars

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Conv-4

Baseline 63.84 ± 0.24 84.61 ± 0.15 47.13 ± 0.21 68.48 ± 0.17 48.64 ± 0.20 74.23 ± 0.17
CAM 66.15 ± 0.23 85.84 ± 0.15 51.27 ± 0.22 70.82 ± 0.17 56.75 ± 0.23 76.96 ± 0.17

FMRM 73.91 ± 0.21 88.11 ± 0.13 57.98 ± 0.22 76.99 ± 0.16 62.98 ± 0.22 84.58 ± 0.13
CAM + FMRM 74.37 ± 0.22 89.20 ± 0.12 59.61 ± 0.22 78.56 ± 0.15 67.09 ± 0.22 87.95 ± 0.11

Resnet-12

Baseline 78.07 ± 0.21 90.54 ± 0.11 72.25 ± 0.22 86.82 ± 0.13 86.11 ± 0.18 95.02 ± 0.08
CAM 80.72 ± 0.20 91.51 ± 0.12 74.59 ± 0.21 87.93 ± 0.12 87.49 ± 0.17 95.78 ± 0.08

FMRM 82.90 ± 0.19 92.56 ± 0.10 76.95 ± 0.20 89.09 ± 0.16 87.20 ± 0.17 95.91 ± 0.07
CAM + FMRM 83.09 ± 0.19 92.75 ± 0.10 77.21 ± 0.21 88.90 ± 0.12 89.03 ± 0.16 96.09 ± 0.07

Compared with the baseline, CAM calculates the weights of both support and query
images, then computes the Euclidean distance between the weights-enhanced query and
support feature for classification. FMRM utilizes two branches for reconstruction and
computes the similarity, instead of Euclidean distance. According to Table 6, FMRM plays
an effective role in reducing the classification errors caused by misaligned images. In
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most cases, the performance declines after removing either component. Therefore, both of
the modules we proposed are essential and complementary, working together to enhance
overall performance and reduce classification errors.

3.4.3. The Effectiveness of Each Branch in FMRM

To validate the efficiency of mutual reconstruction in FMRM, we conducted exper-
iments on each reconstruction branch. We remove the support image reconstruction in
FMRM by setting α as 0 in Equation (11), which is noted as QFR. Similarly, SFR represented
the removal of the query image reconstruction by setting β as 0 in Equation (11). Trials on
all three datasets and two backbones were conducted, as shown in Table 7.

Table 7. Ablation studies on reconstruction branches of FMRM.

Backbone Method
CUB Dogs Cars

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Conv-4

Baseline 63.84 ± 0.24 84.61 ± 0.15 47.13 ± 0.21 68.48 ± 0.17 48.64 ± 0.20 74.23 ± 0.17
SFR 73.38 ± 0.22 88.91 ± 0.12 58.87 ± 0.22 77.98 ± 0.15 66.16 ± 0.22 88.14 ± 0.11
QFR 72.88 ± 0.24 87.83 ± 0.17 57.91 ± 0.21 77.04 ± 0.16 65.39 ± 0.23 87.82 ± 0.17

CAM + FMRM 74.37 ± 0.22 89.20 ± 0.12 59.61 ± 0.22 78.56 ± 0.15 67.09 ± 0.22 87.95 ± 0.11

Resnet-12

Baseline 78.07 ± 0.21 90.54 ± 0.11 72.25 ± 0.22 86.82 ± 0.13 86.11 ± 0.18 95.02 ± 0.08
SFR 82.05 ± 0.20 91.08 ± 0.12 77.52 ± 0.21 88.29 ± 0.12 88.44 ± 0.17 95.65 ± 0.08
QFR 81.71 ± 0.21 91.01 ± 0.13 75.98 ± 0.22 87.67 ± 0.14 87.88 ± 0.18 94.97 ± 0.09

CAM + FMRM 83.09 ± 0.19 92.75 ± 0.10 77.21 ± 0.21 88.90 ± 0.12 89.03 ± 0.16 96.09 ± 0.07

According to Table 7, the mutual reconstruction method consistently outperforms the
single-branch methods in most cases. This highlights the effectiveness of leveraging both
SFR and QFR together, rather than relying on either one of them. The trends observed in
these experiments are similar to those found in Table 5. SFR plays a more crucial role in
the model’s overall performance. The QFR is also indispensable, as removing it leads to a
noticeable decline in performance.

3.4.4. The Effectiveness of Shots and Ways

To prove the robustness and stability of our method, we changed the number of ways
or shots during inference on the same model to evaluate the effect of the number of ways
and shots and compared these results with FRN and ProtoNet under the same settings.
The evaluation model was trained for five-way five-shot classification with a Resnet-12
backbone based on CUB.

Figure 5 illustrates how the accuracy of the three models varies with different shot
numbers for a five-way classification task. Our model outperformed the others for any
number of shots. As the number of shots increases, the performance improves gradually.
As the number of shots increases, the accuracy of our model increases by 11.5%, while that
of FRN and ProtoNet increases by 12.39% and 14.90%, respectively. Compared to the other
models, our model is less sensitive to samples per class than other models.

Figure 6 illustrates how the accuracy of three models varies with different numbers of
ways for a five-shot classification task. Our model outperformed the others for any number
of ways. As the number of ways increases, the performance decreases gradually. With
various numbers of ways from 5 to 30, our model’s accuracy decreases from 92.75% to
75.36%, while that of FRN decreases from 91.77% to 71.98%, and that of ProtoNet decreases
from 90.54% to 68.87%. This indicates the robustness of our method against the change in
the number of classes.
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Figure 5. Five-way K-shot classification performance. We obtained the data by testing the same model
on a 5-way K-shot classification task. This chosen model was trained on 5-way 5-shot classification
with a Resnet-12 backbone on CUB.

Figure 6. C-way 5-shot classification performance. We obtained the data by testing the same model
on a C-way 5-shot classification task. This chosen model was trained on 5-way 5-shot classification
with a Resnet-12 backbone on CUB.

3.5. Visualization Analysis
3.5.1. Reconstruction Visualization

We trained an inverse Resnet-12 as a generator to visualize the reconstructed features
and enhanced features. This inverse Resnet-12 took the feature representations captured
by feature exactor as the input and took the original image as the output to recover these
features. The generator is trained through L1 loss and optimized with the Adam optimizer,
starting with a learning rate of 0.01 and a batch size of 200. We trained the generator for
500 epochs, and reduced the learning rate by a factor of 4 every 100 epochs.

The recovery images are shown in Figure 7. The block on the far left displays the
original support images in a five-way five-shot classification task, while the rightmost
block displays the original query image. The query image is repeated five times for easier
comparison of the reconstructed and enhanced images across different categories. The
second left block is the support features S′

c enhanced by the channel attention weights from
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query images wQ. The third left block is the reconstructed support features FQ→S. The
second right block is the query features Qi enhanced by the channel attention weights from
support images wS. The third left block is the reconstructed query features FS→Q.

Figure 7. Visualization of image features recovered by inverse Resnet-12 in the CUB datasets.
From left to right, the images represent the original support features, enhanced support features,
reconstructed support features, reconstructed query features, enhanced query features, and the
original query features.

From the second left column, it can be seen that enhanced support features focus
more on the similarity between the support and query images, like the colorful pattern.
For the support instances from different categories, the quality of the enhanced images
from support images with different color patterns is not as good as those with the same
color pattern. The reconstructed support images, in the third left column, exhibit the same
pattern as the query image and the same pose as the support images. This shows that our
SFR has indeed played a positive role in suppressing intra-class variations. Calculating the
similarity between these two columns maximizes the differences introduced by the pattern
and minimizes the errors caused by the pose.

The second and third right columns provide the enhanced query features and the
reconstructed query feature. The reconstructed query features focus on the posture of the
query image and patterns of the support image. The quality discrepancy of reconstructed
images from different ways is substantial, which indicates that QFR maximizes the differ-
ence between classes. However, the query image features, enhanced by the feature weights
of different categories, appear to be no different. This may be the reason why the support
reconstruction branch outperformed the the query reconstruction branch.

3.5.2. Feature Visualization

We visualized discriminative regions of ProtoNet and our method using Grad-
CAM [39], as shown in Figure 8. These visualized data are captured from the ResNet12
5-shot model based on the CUB dataset. After learning from support images, we evaluated
the model’s performance based on the shown query images. According to the visualization,
we found that ProtoNet tends to focus on the whole object, while our model localizes the
most delicate discriminative regions.
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Figure 8. Visualization of the discriminative regions by GradCAM in the CUB datasets. From top to
bottom, the images represent the original CUB image, ProtoNet’s visualization, and our visualization.

4. Conclusions
In this paper, we introduced a channel-wise attention-enhanced feature mutual re-

construction mechanism, a reconstruction-based method for few-shot fine-grained image
classification designed to alleviate significant intra-class differences and subtle inter-class
similarities. We utilized a channel-wise attention module (CAM) to reassign the channel
weights of support and query weights. This enabled the model to focus on the distin-
guishing parts of the targets. Then we reconstructed support and query features with
these attention-enhanced features. Support features were reconstructed using a support-
weight-reassigned feature map to minimize intra-class variation, while query features were
reconstructed with a query-weight-reassigned feature map to maximize inter-class variation.
We obtained the classification results based on the similarity between the reconstructed
features and attention-enhanced features.

The results based on four widely-used fine-grained benchmarks indicate that our
classification method is superior to the previous method and support the robustness of
our model. Additionally, the ablation studies confirm that our CAM and FMRM play
an essential and complementary role in enhancing overall performance and reducing
classification errors. Each branch of reconstruction impacts differently on the module, and
they are all indispensable. From the visualization of our model, we can conclude that SFR
reduces the difference from the same classes and QFR helps to learn the differences.

Despite the positive results achieved by our model, it suffers from a few limitations. As
shown in Figure 7, although SFR has demonstrated its effectiveness, the influence of pose
variations still negatively impacts its performance. Furthermore, the model’s performance
is highly dependent on computational resources during training. Addressing these two
limitations will be a focus of our future work.

Author Contributions: Conceptualization, Q.O. and J.Z.; methodology, Q.O.; software, Q.O.; val-
idation, Q.O. and J.Z.; formal analysis, Q.O.; investigation, Q.O.; resources, Q.O.; data curation,
Q.O. and J.Z.; writing—original draft preparation, Q.O.; writing—review and editing, Q.O. and J.Z.;
visualization, Q.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Goldblum, M.; Souri, H.; Ni, R.; Shu, M.; Prabhu, V.; Somepalli, G.; Chattopadhyay, P.; Ibrahim, M.; Bardes, A.; Hoffman, J.; et al.

Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks. Adv. Neural Inf. Process.
Syst. 2024, 36, 29343–29371.



Electronics 2025, 14, 377 16 of 17

2. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine
versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

3. Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974.

4. Zhou, H.Y.; Guo, J.; Zhang, Y.; Han, X.; Yu, L.; Wang, L.; Yu, Y. nnFormer: Volumetric medical image segmentation via a 3D
transformer. IEEE Trans. Image Process. 2023, 32, 4036–4045. [CrossRef] [PubMed]

5. Chen, W.Y.; Liu, Y.C.; Kira, Z.; Wang, Y.C.F.; Huang, J.B. A Closer Look at Few-shot Classification. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

6. Li, Z.; Tang, H.; Peng, Z.; Qi, G.J.; Tang, J. Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition. IEEE
Trans. Neural Netw. Learn. Syst. 2023, 1–15. [CrossRef] [PubMed]

7. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 7260–7268.

8. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30.
9. Zhang, C.; Cai, Y.; Lin, G.; Shen, C. Deepemd: Few-shot image classification with differentiable earth mover’s distance and

structured classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 13–19
June 2020; pp. 12203–12213.

10. Xie, J.; Long, F.; Lv, J.; Wang, Q.; Li, P. Joint distribution matters: Deep brownian distance covariance for few-shot classification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 7972–7981.

11. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 1199–1208.

12. Wei, X.S.; Wu, J.; Cui, Q. Deep learning for fine-grained image analysis: A survey. arXiv 2019, arXiv:1907.03069. [CrossRef]
[PubMed]

13. Zhu, Y.; Liu, C.; Jiang, S. Multi-attention Meta Learning for Few-shot Fine-grained Image Recognition. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 7–15 January 2021;
pp. 1090–1096.

14. Ye, H.J.; Hu, H.; Zhan, D.C.; Sha, F. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 13–19 June 2020; pp. 8808–8817.

15. Doersch, C.; Gupta, A.; Zisserman, A. Crosstransformers: Spatially-aware few-shot transfer. Adv. Neural Inf. Process. Syst. 2020,
33, 21981–21993.

16. Zhang, B.; Yuan, J.; Li, B.; Chen, T.; Fan, J.; Shi, B. Learning cross-image object semantic relation in transformer for few-shot
fine-grained image classification. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal,
10–14 October 2022; pp. 2135–2144.

17. Yang, S.; Li, X.; Chang, D.; Ma, Z.; Xue, J.H. Channel-Spatial Support-Query Cross-Attention for Fine-Grained Few-Shot Image
Classification. In Proceedings of the ACM Multimedia 2024, Melbourne, Australia, 28 October–1 November 2024.

18. Wertheimer, D.; Tang, L.; Hariharan, B. Few-shot classification with feature map reconstruction networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 20–25 June 2021; pp. 8012–8021.

19. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-Ucsd Birds-200-2011 Dataset; Technical Report CNS-TR-2011-
001; California Institute of Technology: Pasadena, CA, USA, 2011.

20. Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3D object representations for fine-grained categorization. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 554–561.

21. Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F.F. Novel dataset for fine-grained image categorization: Stanford dogs. In
Proceedings of the First Workshop on Fine-Grained Visual Categorization, Seattle, WA, USA, 18 June 2011; Volume 2.

22. Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; Vedaldi, A. Fine-grained visual classification of aircraft. arXiv 2013, arXiv:1306.5151.
23. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
24. Vaswani, A. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS

2017), Long Beach, CA, USA, 4–9 December 2017.
25. Simon, C.; Koniusz, P.; Nock, R.; Harandi, M. Adaptive subspaces for few-shot learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Virtual, 13–19 June 2020; pp. 4136–4145.
26. Lee, K.; Maji, S.; Ravichandran, A.; Soatto, S. Meta-learning with differentiable convex optimization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10657–10665.

http://doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.1109/TIP.2023.3293771
http://www.ncbi.nlm.nih.gov/pubmed/37440404
http://dx.doi.org/10.1109/TNNLS.2023.3240195
http://www.ncbi.nlm.nih.gov/pubmed/37022403
http://dx.doi.org/10.1109/TPAMI.2021.3126648
http://www.ncbi.nlm.nih.gov/pubmed/34752384


Electronics 2025, 14, 377 17 of 17

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. Huang, H.; Zhang, J.; Zhang, J.; Xu, J.; Wu, Q. Low-rank pairwise alignment bilinear network for few-shot fine-grained image
classification. IEEE Trans. Multimed. 2020, 23, 1666–1680. [CrossRef]

29. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; Kavukcuoglu, K. Matching networks for one shot learning. In Proceedings of
the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; Volume 29.

30. Afrasiyabi, A.; Lalonde, J.F.; Gagné, C. Mixture-based feature space learning for few-shot image classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Virtual, 10–17 October 2021; pp. 9041–9051.

31. Zha, Z.; Tang, H.; Sun, Y.; Tang, J. Boosting few-shot fine-grained recognition with background suppression and foreground
alignment. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3947–3961. [CrossRef]

32. Tang, H.; Yuan, C.; Li, Z.; Tang, J. Learning attention-guided pyramidal features for few-shot fine-grained recognition. Pattern
Recognit. 2022, 130, 108792. [CrossRef]

33. An, Y.; Xue, H.; Zhao, X.; Wang, J. From Instance to Metric Calibration: A Unified Framework for Open-World Few-Shot Learning.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9757–9773. [CrossRef] [PubMed]

34. Subramanyam, R.; Heimann, M.; Jayram, T.; Anirudh, R.; Thiagarajan, J.J. Contrastive knowledge-augmented meta-learning for
few-shot classification. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI,
USA, 2–7 January 2023; pp. 2479–2487.

35. Li, L.; Deng, J.; Huang, Y.; Chen, Y.; Luo, W. Structural Subspace Learning for Few-shot Fine-grained Recognition. In Proceedings
of the 2024 16th International Conference on Machine Learning and Computing, Shenzhen, China, 2–5 February 2024; pp. 693–699.

36. Xu, J.; Le, H.; Huang, M.; Athar, S.; Samaras, D. Variational feature disentangling for fine-grained few-shot classification.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 8812–8821.

37. Ma, Z.X.; Chen, Z.D.; Zhao, L.J.; Zhang, Z.C.; Luo, X.; Xu, X.S. Cross-Layer and Cross-Sample Feature Optimization Network
for Few-Shot Fine-Grained Image Classification. In Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence,
Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 4136–4144.

38. Zhu, H.; Gao, Z.; Wang, J.; Zhou, Y.; Li, C. Few-shot fine-grained image classification via multi-frequency neighborhood and
double-cross modulation. IEEE Trans. Multimed. 2024, 26, 10264–10278. [CrossRef]

39. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2020.3001510
http://dx.doi.org/10.1109/TCSVT.2023.3236636
http://dx.doi.org/10.1016/j.patcog.2022.108792
http://dx.doi.org/10.1109/TPAMI.2023.3244023
http://www.ncbi.nlm.nih.gov/pubmed/37022893
http://dx.doi.org/10.1109/TMM.2024.3405713

	Introduction
	Materials and Methods
	Problem Formulation
	Channel-Wise Attention Module (CAM)
	Feature Mutual Reconstruction Module (FMRM)
	Classifier and Loss

	Results
	Datasets
	Implementation Details
	Architecture
	Training Details
	Evaluation Details

	Comparison of Results
	Ablation Studies
	Analysis of Learnable Parameters
	The Effectiveness of CAM and FMRM
	The Effectiveness of Each Branch in FMRM
	The Effectiveness of Shots and Ways

	Visualization Analysis
	Reconstruction Visualization
	Feature Visualization


	Conclusions
	References

