
Academic Editor: Mehdi Sookhak

Received: 28 November 2024

Revised: 14 January 2025

Accepted: 17 January 2025

Published: 19 January 2025

Citation: Chen, T.; Ai, J.; Xiong, X.;

Hu, G. Cooperative Service Caching

and Task Offloading in Mobile Edge

Computing: A Novel Hierarchical

Reinforcement Learning Approach.

Electronics 2025, 14, 380. https://

doi.org/10.3390/electronics14020380

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Cooperative Service Caching and Task Offloading in Mobile
Edge Computing: A Novel Hierarchical Reinforcement
Learning Approach
Tan Chen 1 , Jiahao Ai 1 , Xin Xiong 2 and Guangwu Hu 3,*

1 College of Computer Science, Beijing University of Technology, Beijing 100124, China;
chentan@bjut.edu.cn (T.C.); aijiahao2021@emails.bjut.edu.cn (J.A.)

2 School of Information Technology, Beijing City University, Beijing 101309, China; xiongxin@bcu.edu.cn
3 School of Computer Sciences, Shenzhen Institute of Information Technology, Shenzhen 518172, China
* Correspondence: hugw@sziit.edu.cn

Abstract: In the current mobile edge computing (MEC) system, the user dynamics, diversity
of applications, and heterogeneity of services have made cooperative service caching and
task offloading decision increasingly important. Service caching and task offloading have a
naturally hierarchical structure, and thus, hierarchical reinforcement learning (HRL) can
be used to effectively alleviate the dimensionality curse in it. However, traditional HRL
algorithms are designed for short-term missions with sparse rewards, while existing HRL
algorithms proposed for MEC lack delicate a coupling structure and perform poorly. This
article introduces a novel HRL-based algorithm, named hierarchical service caching and
task offloading (HSCTO), to solve the problem of the cooperative optimization of service
caching and task offloading in MEC. The upper layer of HSCTO makes decisions on service
caching while the lower layer is in charge of task offloading strategies. The upper-layer
module learns policies by directly utilizing the rewards of the lower-layer agent, and the
tightly coupled design guarantees algorithm performance. Furthermore, we adopt a fixed
multiple time step method in the upper layer, which eliminates the dependence on the
semi-Markov decision processes (SMDPs) theory and reduces the cost of frequent service
replacement. We conducted numerical evaluations and the experimental results show
that HSCTO improves the overall performance by 20%, and reduces the average energy
consumption by 13% compared with competitive baselines.

Keywords: mobile edge computing (MEC); hierarchical reinforcement learning (HRL);
service caching; task offloading

1. Introduction
In recent years, as a promising technology, mobile edge computing (MEC) brings

computation, storage, and software resources from the cloud center to the edge of network.
By shortening communication times and reducing the energy consumption of mobile
terminals (MTs), it greatly facilitates users near edge servers (ESs) [1]. Various applications
exist that run on mobile terminals, and some tasks can be fully or partially offloaded to edge
servers to enhance the quality-of-use experience (QoE) [2–5]. Obviously, the corresponding
service, which is the server-side component of the application composed of executable code,
library, and database, should first be loaded on ESs to construct a running environment for
incoming tasks [6,7].

In order to simplify the model, some previous research works have made the primary
assumption that all tasks request the same type of service. Apparently, this assumption is

Electronics 2025, 14, 380 https://doi.org/10.3390/electronics14020380

https://doi.org/10.3390/electronics14020380
https://doi.org/10.3390/electronics14020380
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0004-8049-1774
https://orcid.org/0009-0002-0260-3959
https://orcid.org/0009-0003-4226-4477
https://doi.org/10.3390/electronics14020380
https://www.mdpi.com/article/10.3390/electronics14020380?type=check_update&version=1

Electronics 2025, 14, 380 2 of 22

invalid in most cases. For example, the process of handling an augmented reality (AR) task
may typically need an action tracking module, a visual processing module, and a light pre-
diction module. An image processing task may consist of a preprocessing module, a feature
extraction module, and a classification module [8]. Moreover, an intelligent healthcare task
application [9], which usually collects data from wearable devices, may normally require a
disease diagnosis module, a health alert and prediction module, and a security and privacy
module. Different functions cause different needs for various types of resources; therefore,
these services exhibit significant heterogeneity in terms of computing resource require-
ments, storage space occupation, and energy consumption. Unfortunately, one ES cannot
cache all types of services at the same time due to its limited resources. Hence, an ES should
establish its service caching policy to decide which services will be hosted according to its
available storage space and predictions of future task offloading. The combination of user
mobility, the randomness in the type of incoming task, the heterogeneity of service, and
the time-dependent state of the underlying wireless network causes highly dynamic and
diverse demands for computing resources. Therefore, in order to enhance the performance
of the MEC system for various applications, including delay-sensitive applications and
computationally intensive applications, the service caching decision and task offloading
decision should be made cooperatively and collaboratively.

Numerous works have been devoted to the research area of the joint optimization of
service caching and task offloading, and these have applied a Lyapunov-based optimization
framework [10,11], convex optimization technology [12,13], multi-agent and hierarchical
reinforcement learning [14–20], or a hybrid scheme [21–23] in various MEC scenarios to
address different optimization problems with different goals, including minimizing delay,
decreasing overall energy consumption, or maximizing the utility function, which involves
a trade-off between delay and energy consumption. Although these works have made
great contributions in this area, this article endeavors to tackle three open challenges.

First, with the expansion of the MEC scale and the rise of service types, the dimensions
of decision variables, simultaneously containing service caching and task offloading, will
grow exponentially, causing an increase in computational complexity. The hierarchical
reinforcement learning (HRL) algorithm [24–27] is an ideal way to combat the curse of
dimensionality, which can effectively reduce the dimensionality of each decision by parti-
tioning the complex problem into several subproblems to solve separately, and then learn
an optimal strategy to integrate them together. However, the majority of current typical
research works on HRL primarily focuses on handling sparse and delayed feedback, as well
as improving generalization. These algorithms commonly learn temporal abstractions
over action space at first to achieve intrinsically constructed goals, and then generate a
multi-layer hierarchical structure based on the theory of semi-Markov decision processes
(SMDPs). Due to the complicated computational process, these HRL algorithms are un-
suitable to be directly applied in real engineering scenarios. The main method to enable
HRL in the MEC scenario is currently relaxing the coupling degree between the higher and
lower layer in HRL and training them separately. Sometimes, the coupling of two layers
is maintained, solely relying on a common metric such as the user number served by one
ES. Such a compromise results in low performance. Obviously, there still exists a large
gap between the typical design of HRL and the real complex engineering environment.
The lack of a more effective joint policy to improve the performance while alleviating the
curse of dimensionality poses a considerable challenge.

Second, with the development of artificial intelligence, trained deep neural network
(DNN) models are gradually becoming the main component of service. Meanwhile, these
models maintain an increasing trend in size with the goal to ensure the high accuracy
of inference results. Aiming to meet the needs of users’ requests without violating their

Electronics 2025, 14, 380 3 of 22

deadline, ESs should proactively download services from the cloud center and load them
in GPU memory [28]. Such an operation will incur extra energy consumption, particularly
when services switch frequently. Therefore, it is another important challenge to carefully
design an intelligent policy of deploying and running services to save energy.

Third, there may be some limitations in a practice scenario that prevent the deploy-
ment of services as freely as in previous research works. For instance, under the protection
of intellectual property rights, commercial software venders usually apply a software li-
cense to regulate user rights and specify authorized usage and limitations. Edge computing
enables new IoT capabilities while posing software license compliance risks. Thus, the
service caching policy should take into account compliance within the range of software
license agreement during the process of deploying services, while maintaining high avail-
ability and high performance. The issue has been studied in cloud computing [29,30]. Such
constrains are rarely mentioned in the MEC field, and are challenging because services
cannot be arbitrarily and widely placed close to users and the algorithm will become
more complex.

We highlight our contributions as follows:

• We propose a novel HRL algorithm hierarchical service caching and task offloading
(HSCTO) to solve cooperative service caching and task offloading problem in MEC.
The lower layer is in charge of task offloading strategies, while the upper layer makes
decisions on service caching. We design the algorithm based on analyzing the in-
trinsic structure and a priori knowledge of the MEC scenario, and mostly focus on
specificity rather than generality. In contrast to current HRL algorithms, the action
of the upper-layer agent in HSCTO not only represents the temporal and behavioral
abstractions of the primitive actions of the lower-layer agent, but also corresponds to
concrete meaning, i.e., service caching decisions which can be manually defined in
advance. Within the hierarchical organization, the lower-layer module learns ordinary
offloading policies by interacting with its environment, and the upper-layer module
learns policies directly by exploiting the Q value functions of the lower-layer agents.
The tightly coupled training method guarantees the algorithm performance.

• HSCTO arranges two layer agents to work at different time granularities. The lower-
layer agent takes action upon the MEC environment in each time slot, and the upper-
layer agent makes a decision over multiple time slots. In addition, we adopt a fixed
multiple-time-step approach in the upper layer, so as to not rely on SMDP theory.
We theoretically analyze that the upper layer is also an MDP and derive the Bellman
optimal equations. As a result, current DRL algorithms can be employed in our
hierarchical architecture directly and seamlessly. Furthermore, this two-time-scale
framework ensures the stability of service deployment, while reducing the cost of
frequently switching services in terms of energy consumption.

• In terms of extra limitation in a practical scenario, we consider separate protection
and licensing methods in intellectual property, i.e., the number of MEC servers that
can legally host the same type of service at the same time is limited. We integrate this
constraint into our MEC model and address it.

• We conduct extensive numerical experiments to verify the performance of HSCTO,
and the results show that our algorithm can effectively reduce computational delay
while optimizing energy consumption, achieving significant performance improve-
ments over multiple baseline approaches.

The rest of this paper is organized as follows: Section 2 introduces the mathematical
model and problem formulation. The proposed HRL architecture is analyzed in Section 3
and the HSCTO algorithm is elaborated in Section 4. Section 5 shows evaluation experi-

Electronics 2025, 14, 380 4 of 22

ments and results. Related works are discussed in Section 6. Finally, Section 7 concludes
our work.

2. Mathematical Model and Problem Formulation
In this section, we discuss the system model and problem formulation. We discrete

the infinite time horizon T into slots with equal size, and make an assumption that system
states remain unchanged in one time slot.

2.1. MEC Scenario

Figure 1 demonstrates the scenario considered in this paper. Generally speaking,
the three-tier architecture consists of one cloud computing center, several edge computing
servers, and a group of mobile terminals. The cloud center has huge computational and
storage resources and hosts services for all kinds of applications. Edge servers are connected
to the cloud center through a wired backbone network, and hence, a variety of services
may be downloaded from the cloud center and deployed on each edge server under
the intelligent instruction of the system controller. By equipping a base station, an edge
server can communicate with mobile terminals via wireless communication, and the edge
network is divided into several disjoint regions centered around these base stations. At the
beginning of each time slot, based on user operations, mobile terminals generate various
computing tasks with different service requirements and computing resource demands.
Because of their limited computing resources and real-time task requirements, mobile
terminals need to make decisions to offload all or part of the tasks to edge servers with the
goal of minimizing latency and energy consumption. If and only if the required services
have already been placed on that edge server will the offloading process succeed. In the
case that the edge server does not cache the corresponding service, the offloaded task will
be relayed to the cloud center to complete the computation.

Wired Connection

Wi l C ti

Edge Network Region centered

around Base Station

Services

Cloud Cener

Figure 1. System model.

We use E and e to denote the set of ES and individual ES, use D and d denote the
set of MT and individual MT, and similarly use V and v to denote the set of service and
individual service. In addition, we use De to denote the set of MT which connects with
server e directly.

Electronics 2025, 14, 380 5 of 22

2.2. Decision Model

We consider partial offloading in this paper, i.e., MT may offload all or part of its
computing task to ESs in order to enhance the efficiency of the computation process. We
use µd,e,t ∈ [0, 1] to denote the proportion of MT d’s task to ES e in the time slot t. Also,
we use the vector µe,t = {µd,e,t|∀d ∈ De} to describe the whole offloading decision of ES
e. In terms of service caching, due to the limited storage space, each ES cannot cache all
services at the same time. Therefore, the caching policy has to judiciously decide which
services to cache on each ES in the next time slot. Let binary variable wv,e,t ∈ {0, 1} indicate
whether the service v is deployed onto the ES e in the time slot t or not. If ES e has service
v, wv,e,t = 1, otherwise, wv,e,t = 0. In addition, we use the vector we,t = {wv,e,t|∀vs. ∈ V}
to describe the service cache status on ES e. Let Cv be the storage requirement of service
v, and then ∑v∈V wv,e,tCv can represent the storage space that ES e actually uses to cache
services in the time slot t after the making service caching decision. Let Ce be the storage
resources allocated for service caching on ES e. Therefore, the following inequation should
be satisfied to guarantee that the storage needs of all cached services will not exceed the
available storage resources on ES e.

∑
v∈V

wv,e,tCv ≤ Ce, ∀e ∈ E (1)

Let Licv denote the number of authorized uses described in the software license
agreement of service v; obviously, it is an integer number. ∑e∈E wv,e,t presents the number
of services v deployed in the entire MEC system in time slot t. To ensure proper use,
we have

∑
e∈E

wv,e,t ≤ Licv, ∀vs. ∈ V (2)

2.3. Computation Delay and Energy Consumption Model
2.3.1. Transmission Model

We consider orthogonal frequency-division multiple access (OFDMA) technology,
in which subchannels are assigned to each pair of MT and ES exclusively, eliminating
co-channel interference. Let ld,e,t and bd,e,t denote the distance and bandwidth between ES
e and MT d, respectively, and the channel gain can be estimated by

hd,e,t =
ψd,e,t

ld,e,t
χ
2

(3)

where χ is the large scale path loss parameter, and ψd,e,t is the small scale path loss parameter
between ES e and MT d which obeys Rayleigh distribution. Suppose that the transmission
power of MT d in the current time slot is denoted by pd,t; then, the transmission rate
between ES e and MT d can be given by

rd,e,t = bd,e,tlog2
(
1 +

pd,thd,e,t
2

σ

)
(4)

where σ is Gaussian noise.

2.3.2. Computation Model

We use the tuple ξd,t = {zd,t, fd,t, vd,t} to denote the computing task generated by MT
d at time slot t, where zd,t is the size of the chunk data of the application following an
exponential distribution with mean Θd, fd,t is the computing resource demand of the task,
and vd,t is the corresponding service. We assume that task arrival follows a Poisson process.

Electronics 2025, 14, 380 6 of 22

Moreover, Υe,t = {ξd,t, ∀d ∈ De} stands for all tasks observed by the ES e. We decompose
the offloading process into several subprocesses.

1. Local computing
A computational task will be partitioned into two parts for local computing and
offloading computing, respectively, based on offloading decisions. The local part is
directly processed in MT, and thus, the computing delay can be calculated by

Tlocal
d,t =

(1− µd,e,t) fd,t

Fd
(5)

where Fd represents the local computing resources of MT d in CPU frequency. The en-
ergy consumption equation for the local computing process can be written as

Elocal
d,t = (1− µd,e,t) fd,t φd (6)

where φd is the energy consumption coefficient per unit of computing resources in d.
2. Offloading to edge server

Given the transmission rate rd,e,t by Equation (4), the time delay of offloading from
MT d to ES e is shown in next equation.

Td2e
d,t =

µd,e,tzd,t

rd,e,t
(7)

Suppose the power of MT d remains unchanged in one time slot, the energy consump-
tion of the transmitting task between MT d and ES e can be estimated as:

Ed2e
d,t = pd,tTd2e

d,t (8)

where pd,t is the transmission power of MT d in that time slot.
3. Computing in edge server

Let Fe denote the computational resource allocated for MEC computing in ES e, and
the time of computing the task from MT d is given by

Tes
d,t =

µd,e,t fd,t

ζd,e,tFe
(9)

where ζd,e,t ∈ (0, 1] denotes the proportion of computing resources of ES e allocated
for MT d. Moreover, the energy consumption of the MEC server is related to the
required computing resources and can be calculated by

Ees
d,t = keµd,e,t fd,t (10)

where ke is the energy consumption coefficient of ES e.
4. Offloading to the cloud center

If there is no required service vd,t, the ES e will transmit the task to the cloud computing
center for computation. Since the wired backbone network is adopted between the
edge servers and cloud center, the transmission rate is supposed to be a constant rc.
Therefore, in time slot t, the transmission delay can be estimated as follows:

Te2c
d,t =

µd,e,tzd,t

rc
(11)

Electronics 2025, 14, 380 7 of 22

Furthermore, let pe,t denote the transmission power of ES e, and the energy consump-
tion of the previous relay process can be written as

Ee2c
d,t = pe,tTe2c

d,t (12)

5. Service caching
To simplify, we use ov and µv to denote the transmission delay and energy consump-
tion of downloading and deploying service vd,t, respectively. Thus, the delay and
energy required to update the caching situation of vd,t will be

Tsc
v,e,t = ov × (wv,e,t−1 ⊕ wv,e,t) (13)

Esc
v,e,t = µv × (wv,e,t−1 ⊕ wv,e,t) (14)

where ⊕ is the XOR operator. Obviously, wv,e,t−1 ⊕ wv,e,t = 1 indicates that ES e will
cache a new service vd,t.
Consequently, the time and energy consumption of the offloading process can be
calculated by the next two equations, respectively.

To f f
d,t = Td2e

d,t + (Tes
d,t + Tsc

vd,t ,e,t)× 1wvd,t ,e,t=1 + Te2c
d,t × 1wvd,t ,e,t=0 (15)

Eo f f
d,t = Ed2e

d,t + (Ees
d,t + Esc

vd,t ,e,t)× 1wvd,t ,e,t=1 + Ee2c
d,t × 1wvd,t ,e,t=0 (16)

If the required service vd,t is cached on ES e in time slot t, i.e., wvd,t ,e,t = 1, the indicator
function 1wvd,t ,e,t=1 = 1, the values of Tes

d,t + Tsc
vd,t ,e,t and Ees

d,t + Esc
vd,t ,e,t will be added into

the To f f
d,t and Eo f f

d,t , respectively. Otherwise, the indicator function 1wvd,t ,e,t=0 = 1, Te2c
d,t

and Ee2c
d,t will be considered. In summary, taking into account both local and offloading

computing, the total delay and energy consumption of the task generated by MT d
can be estimated by

Ttot
d,t = max{Tlocal

d,t , To f f
d,t } (17)

Etot
d,t = Elocal

d,t + Eo f f
d,t (18)

Furthermore, let V idle
e,t denote the set of new caching services that no one uses in ES e,

and the corresponding energy consumption can be expressed as

Eidle
e,t = ∑

v∈V idle
e,t

νv(wv,e,t−1 ⊕ wv,e,t) (19)

2.4. Problem Formulation

In this subsection, we formulate the cooperative service caching and task offloading
(CSCTO) problem with the objective of minimizing the utility function of weighted delay
and energy consumption.

min
µe ,we ,ζe

lim
T→∞

1
T

T

∑
t=0,

∑
e∈E

(
α ∑

d∈De

Ttot
d,t + (1− α)(∑

d∈De

Etot
d,t + Eidle

e,t)
)

(20)

Electronics 2025, 14, 380 8 of 22

s.t. c1 : µd,e,t ∈ [0, 1], ∀d ∈ De, ∀e ∈ E

c2 : wv,e,t ∈ {0, 1}, ∀v ∈ V , ∀e ∈ E

c3 : ∑
v∈V

wv,e,tCv ≤ Ce, ∀v ∈ V , ∀e ∈ E

c4 : ∑
e∈E

wv,e,t ≤ Licv, ∀v ∈ V , ∀e ∈ E

c5 : ζd,e,t ∈ (0, 1], ∀d ∈ De, ∀e ∈ E

c6 : ∑
d∈De

ζd,e,t ≤ 1, ∀d ∈ De, ∀e ∈ E

c1 indicates that each MT may offload part of its computing task to ES, c2 states that ES
may or may not host each service; c3 ensures that the total amount of resources for caching
service cannot exceed the maximum available storage capacity of ES, while c4 guarantees
that the number of deployments of the same service is within the legal range specified in
the software license. c5 and c6 demonstrate that the sum of computing resources allocated
to each ES cannot exceed its total computing resource.

3. Hierarchical Reinforcement Learning Framework
There is a significant gap between the design goal of typical HRL algorithms and

the characteristic of the MEC environment we discussed above. First, current typical
HRL algorithms mainly focus on handling a short-term mission with sparse and delayed
rewards, like video games, but the MEC scenario consists of a long-term and stochastic
mission with instant rewards. Second, the higher-layer action of HRL usually refers to a
temporal abstraction of a group of primitive actions, namely option, and thus the algorithm
needs to learn how to first find the optimal option, and then exploit it. On the contrary,
in the MEC scenario, by having prior knowledge, a hierarchical algorithm may define super
action manually; moreover, these actions are concrete rather than abstraction. Although
typical HRL algorithms are not directly suitable for MEC environment, their hierarchical
idea inspires us to decompose complex problems into related subproblems to combat
the curse of dimensionality. In this section, we propose a novel fixed multiple time step
hierarchical reinforcement learning architecture (FSHRL). The upper layer makes decisions
over a longer time scale and the upper and lower layers are closely coupled to achieve the
overall optimal value. Figure 2 illustrates our HRL architecture.

Figure 2. Architecture of hierarchical reinforcement learning.

Electronics 2025, 14, 380 9 of 22

3.1. MDP
3.1.1. The Lower Layer

Similar to traditional RL algorithms, the lower-layer agent performs actions upon the
environment and directly obtains a reward. Based on the main assumption that a highly
stochastic and uncertain MEC scenario evolves in an ergodic manner, the state system
is supposed to have a Markov property. We use st to denote the system state in time
slot t and S to be the state space. The lower layer can be modeled by an MDP, which is
composed of tuple < S , Φ,A,P, γ, r >. Furthermore, in order to emphasize the impact
of the higher-layer actions on the lower-layer states, we use sL

t = {st, ϕt} to denote the
augmented state, as well as SL to be the augmented state space, where ϕt and Φ represent
the super action of the upper layer at that time and the super action space, respectively.
Moreover, A is an action space, P is the state transition function, γ is the discount factor,
and r is the reward function.

3.1.2. The Upper Layer

The term super action is utilized to describe the action of the upper-layer agent. This
agent makes a decision over a broader range of time scales, i.e., η slots, where η is a constant
integer. We use τ to denote the sequence number of the upper time step, and then we have
τ = t/η, where the operator / means integer division. A tuple < SU , Φ, P, γ, κ > is adopted
to describe the decision process of the upper layer. SU represents the state space; clearly,
for each sU

τ ∈ SU , we have sU
τ = sτ×η . Φ is a super action space and κ : SU × Φ → R

is the upper layer’s reward function. In addition, we use Π(ϕτ |sU
τ) to denote the policy

function. The upper-layer agent does not receive any reward by directly interacting with
the environment, but calculates the expectation of rewards of the lower-layer agents during
the period of η time slots using Equation (21).

κ(sU
τ , ϕτ) =

η−1

∑
i=0

∑
a

P(sL
t+i|sL

t+i−1, at+i−1)π(sL
t+i, at+i)r(sL

t+i, at+i) + Ψ(ϕτ) (21)

where Ψ : Φ → R is the extra reward function and t = τ × η. It is worth noting that this
reward function ensures that the two layers are tightly coupled. Additionally, the lower
and upper layers are relatively independent, and each layer regards the other as a part of
the environment; therefore, the curse of dimensionality will be effectively alleviated.

Due to the design of a fixed step size, the upper-layer decision process is also an
MDP, rather than SMDP. The main reasons are three-fold. First, the state transition has a
Markovian property, i.e.,

P(sU
τ+1|sU

τ , sU
τ−1, sU

τ−2, · · ·) (a)
= P(sτ×η+η |sτ×η , sτ×η−η , sτ×η−2×η , · · ·)
(b)
= P(st+η |st, st−η , st−2η , · · ·)
(c)
= P(st+η |st)

(d)
= P(sU

τ+1|sU
τ)

According to the relationship of t and τ, i.e., τ − k = t− k× η, and the definition of sU
τ

mentioned above, we have sU
τ−k = st−k×η , then

(a)
= ,

(b)
= and

(d)
= hold. Moreover, because of

the fact that the k-step transition Markov chains still possess Markov properties,
(c)
= holds.

Second, the state-value function also only depends on the current state sU
τ .

V(sU
τ) = Et(GU

τ |s = sU
τ) = Et(κτ + γκτ+1 + γ2κτ+2 + · · · |s = sU

τ) (22)

Electronics 2025, 14, 380 10 of 22

where GU
τ is the decaying sum of all rewards in the decision process, sampled from the

current state sU
τ to the termination state. Third, for the policy function Π, we make Markov

assumptions as usual. The probability of taking action ϕτ in state sU
τ is only related to the

current state sU
τ and is independent of other factors.

Our framework is different from the option presented in [24]. Because there exist many
options not being Markov, it requires that all the moments it has passed are recorded—not
just the previous moment. As a result, the option of this technology is based on SMDP
theory. On the contrary, the decision process in our framework is an MDP, and we can
adopt various existing reinforcement learning algorithms in the upper layer.

3.2. Bellman Optimality Equation

In reinforcement learning, the Bellman optimality Equation [31] reveals the fact that
the state value of the optimal policy must be equal to the expected return of the best
action from the state, and is the fundamental of a value iterative operation. Let V∗ and Q∗

denote the optimal state value function and optimal action value function, respectively,
and the traditional Bellman optimality equations are defined as

V∗(st) = max
α

(
r(st, at) + γ ∑

st+1

P(st+1|st, at)V∗(st+1)
)

(23)

Q∗(st, at) = r(st, at) + γ ∑
st+1

P(st+1|st, at)max
at+1

Q∗(st+1, at+1) (24)

Next, we discuss the Bellman optimality equations of our hierarchical framework.
We use VL∗ and QL∗ to present an optimal state value function and optimal action value
function of the lower layer, respectively, and the Bellman optimality equations can be
expressed as:

VL∗(st) = max
α∈A

(
r(st, ϕt/η , at) + γ ∑

st+1∈S
P(st+1|st, ϕt/η , at)VL∗(st+1)

)
(25)

QL∗(st, ϕt/η , at) = r(st, ϕt/η , at) + γ ∑
st+1∈S

P(st+1|st, ϕt/η , at) max
at+1∈A

QL∗(st+1, ϕ(t+1)/η , at+1) (26)

It should be noted that, since we take the super action of the upper layer as part of the
lower-layer state, we use (st, ϕt/η) to represent the augmented state of the lower layer in
the two above equations. Furthermore, because we use different time scales for the upper
and lower layers, in order to obtain the time number τ in the super action ϕτ of the upper
layer, we adopt operation τ = t/η to convert the sequence number from the lower-layer
time space to the upper-layer time space in the calculation process.

Let VU∗ be the optimal state value function, QU∗ be the optimal action value function,
and the Bellman optimality equations of the upper layer are the same as the traditional
form, and given by

VU∗(sU
τ) = max

ϕ∈Φ

(
κ(sU

τ , ϕτ) + γ ∑
sU

τ+1∈SU

P(sU
τ+1|sU

τ , ϕτ)VU∗(sU
τ+1)

)
(27)

QU∗(sU
τ , ϕτ) = κ(sU

τ , ϕτ) + γ ∑
sU

τ+1∈SU

P(sU
τ+1|sU

τ , ϕτ) max
ϕτ+1∈Φ

QU∗(sU
τ+1, ϕτ+1) (28)

4. Algorithm
With the help of the FSHRL framework, we introduce an algorithm named HSCTO.

Apparently, HSCTO will learn two policies, one of which is the upper policy Πϑ for
handling service caching issues, the other is the lower policy πθ to be responsible for

Electronics 2025, 14, 380 11 of 22

making offloading decisions, where θ and ϑ are parameters. In theory, the goal pursued by
the overall strategy is to maximize the expected return given the initial state s0 and super
action ϕ0, i.e., the service caching decision ω0.

ρ(θ, ϑ, s0, ϕ0) = Eθ,ϑ(
∞

∑
τ=0

γτκτ |sτ , ϕτ) (29)

In the context of the MEC specific algorithm, we replace the lower and the upper
layer with task offloading and service caching algorithm; moreover, we use service caching
time slot length (SCTSL) to represent the time slot length of the service caching, i.e., η,
in Section 3.

4.1. Task Offloading Algorithm

The task offloading algorithm is employed on each ES, consequently, multiple agents
will exist that are working on the MEC scenario, running the algorithm simultaneously
and independently.

• Observation
Firstly, we discuss the observation of each agent in multi-agent environment.
sL

e,t = {le,t, he,t, Fd, Fe,t, be,t, Υe,t, we,t} is the partial observation of ES e; moreover, the to-
tal state at each time step t is denoted by sL

t = {sL
e,t|∀e ∈ E}, and le,t = {ld,e,t|∀d ∈ De},

he,t = {hd,e,t|∀d ∈ De} and be,t = {bd,e,t|∀d ∈ De} denote the set of distance,
channel gain and bandwidth between ES e and each MT d in De, respectively.
Fd = { fd|∀d ∈ De} is the computing capacity of each MT in De. As defined
in the previous section, Υe,t is the set of all tasks observed by ES e. In addition,
we,t = {wv,e,t|∀vs. ∈ V} is the current service set cached in ES e. Obviously,
wt = {we,t|∀e ∈ E} is the current super action ϕt/η of the upper-layer algorithm.

• Action
As mentioned before, we consider a partial offloading method and the corresponding
decision for MT d is µd,e,t ∈ [0, 1], and thus, µe,t = {µd,e,t|∀d ∈ De} is the action of ES
e. Moreover, we use µt = {µe,t|∀e ∈ E} to be the action of the lower-layer algorithm.

• Reward
Since the optimization objective of the task offloading decision is to minimize the av-
erage delay and energy consumption of all mobile terminal tasks, the reward function
for each ES e is defined as the weighted value of the overall energy consumption for
computation and the penalty for latency.

re,t = −
1
|De| ∑

d∈De

(αTtot
d,t + (1− α)Etot

d,t) (30)

The smaller the weighted sum of the completion delay and energy consumption,
the greater the reward of the task offloading decision.

Because the deterministic policy gradient algorithm (DDPG) [32] can effectively handle
continuous actions, we design a task offloading algorithm based on DDPG. Our algorithm
maintains two neural networks to learn policy and Q value separately, i.e., the actor network
and critic network; furthermore, each has a target network to alleviate the overestimation
by differentiating the calculation of target Q value and the selection of target Q value
actions. Given the TD target yt = rt + γQ(sL

t+1, π(sL
t+1|θπ′)|θQ′), where θπ′ and θQ′ are

the parameters of the target actor network and target critic network, respectively; the loss
function, which estimates how well the critic network matches the desired outcome, is
defined as follows:

L(θQ) = E
[
(yt −Q(sL

t , at|θQ))2] (31)

Electronics 2025, 14, 380 12 of 22

where θQ is the parameter of the critic network. In addition, the critic network updates its
parameters based on gradient descent.

θQ ← θQ + λQ∇θQ L(θQ) (32)

where λQ is learning rate.
In order to improve the exploration efficiency of our algorithm and avoid getting

stuck in local optimal solutions, it is necessary to add exploration noise to action at,
i.e., at = πθ(sL

t) + σn, σn is a random noise.
The gradient for the actor parameters can be approximated by

∇θπ J(θπ) ≈ E
[
∇θπ π(sL|θπ)|sL=sL

t
∇aQ(sL, a|θQ)|a=π(sL

t |θπ)

]
(33)

Thus, the parameters of actor network updates can be updated by:

θπ ← θπ + λπ∇θπ J(θπ) (34)

where λπ is the learning rate.
To accelerate the gradient policy, target networks utilize the following equation to

perform soft updates of their parameters, where λt < 1 is an adjustable hyperparameter.

θQ′ ← λtθ
Q + (1− λt)θ

Q′ (35)

θπ′ ← λtθ
π + (1− λt)θ

π′ (36)

The pseudocode of the task offloading algorithm is illustrated in Algorithm 1.

Algorithm 1 Task offloading algorithm

1: Initialize network parameters θπ , θQ and target network parameters θπ′ , θQ′

2: Initialize experience replay buffer Dd, λt, λπ and λQ
3: for episode = 0→ N do
4: randomly initialize the MEC environment
5: obtain state sL

0 from the system
6: for t=0→ T do
7: select action to explore with the policy at = πθ(sL

t) + σn
8: execute action at and obtain reward rt and new state sL

t+1
9: save transition (sL

t , at, rt, sL
t+1) in Dd

10: select a minibatch of K transitions {(sL
k , ak, rk, sL

k+1)}k=0,...,K−1 from Dd
11: for k = 0→ K− 1 do
12: calculate TD target yk = rk + γQ(sL

k+1, π(sL
k+1|θ

π′)|θQ′)
13: end for
14: calculate L(θQ) = 1

K ∑K−1
k=0 [(yt −Q(sk, π(sk|θQ)))2]

15: update critic network parameter θQ ← θQ − λQ∇θQ L(θQ)
16: calculate the gradient

∇θπ J(θπ) = 1
K ∑K−1

j=0 [∇θπ π(sL|θπ)|sL=sL
k
∇aQ(sL, a|θQ)|a=π(sL

k |θπ)]

17: update actor network parameter θπ ← θπ − λπ∇θπ Ji(θ
π)

18: update target networks
θQ′ ← λtθ

Q + (1− λt)θQ′

θQ′ ← λtθ
Q + (1− λt)θQ′

19: sL
t = sL

t+1
20: end for
21: end for

Electronics 2025, 14, 380 13 of 22

4.2. Service Caching Algorithm

In contrast to the task offloading algorithm, the service caching algorithm is supposed
to run on a central controller, which is capable of monitoring the global status of the entire
MEC system. Considering that the service caching action is discrete, we implement the
high-layer algorithm based on DDQN [33].

• State
According to the design principle of FSHRL, the state observed by the service caching
layer is sU

τ = {sU
e,τ , ∀e ∈ E}, where τ = t× η and

sU
e,τ = {le,τ , he,τ , Fd, Fe,τ , be,τ , Υe,τ}

• Super action
Obviously, the super action is the service caching operation in next macro time step, i.e.,

ϕτ = {we,τ |∀e ∈ E}

where we,τ = {wv,e,τ |∀v ∈ V} and wv,e,τ ∈ {0, 1}.
• Reward

The reward function κτ is the sum of the lower-layer agents’ rewards of each time step
t within the current macro time step τ, and an extra cost of super action ϕτ , i.e., Ψe(ϕτ).

κτ = ∑
e∈E

((τ+1)×η−1

∑
t=τ×η

re,t + Ψe(ϕτ)
)

(37)

Ψe(ϕτ) = ∑
v∈V

µv1wv,e,τ−wv,e,τ−1=1 (38)

where µv is the energy cost when deploying the service v to the edge server.

The service caching algorithm makes caching decisions for all MEC servers. The agent
consists of the current Q network Qϑ and its corresponding target Q network Qϑ′ , where ϑ

and ϑ′ are parameters, respectively. The loss function of the current Q network is defined as

L(ϑ) = E
[
(Q(sU

τ , ϕτ |ϑ)− κτ − γ max
ϕτ+1∈Φ

Q(sU
τ+1, ϕτ+1|ϑ′))2] (39)

The agent selects the service caching decision wτ , i.e., super action ϕτ , by employing
an ϵ-greedy strategy, and ϕτ+1 is the super action corresponding to the max value selected
in the target Q network using the argmax function. The current Q network updates its
parameters based on gradient descent.

ϑ← ϑ + λs∇ϑL(ϑ) (40)

where λs is the learning rate.
Moreover, the target Q network soft updates its parameter as follows

ϑ′ ← λtϑ + (1− λt)ϑ
′ (41)

where λt < 1 is an adjustable hyperparameter. The pseudocode of the service caching
algorithm is illustrated in Algorithm 2.

Electronics 2025, 14, 380 14 of 22

Algorithm 2 Service Caching Algorithm

1: Initialize networks parameters ϑ, ϑ′

2: Initialize experience replay buffer Du, λt and λs
3: for episode = 0→ N do
4: generate authorized super action Φ set using Lic = {Licv|∀v ∈ V}
5: randomly initialize the MEC environment
6: get state sU

0 from the system
7: for τ = 0→ T/η do
8: select super action ϕτ based on Q value and ϵ-greedy strategy
9: execute super action ϕτ

10: collect each ES’s rewards in next η slots and then get the state sU
τ+1

11: calculate Ψ(ϕτ)
12: calculate κτ using Equation (37)
13: save transition (sU

τ , ϕτ , κτ , sU
τ+1) in Du

14: select a minibatch of K transitions {(sU
k , ϕk, κk, sU

k+1)}k=0,...,K−1 from Du
15: for k = 0→ K− 1 do
16: calculate Yk = κk + γ maxϕk+1 Q(sU

k+1, ϕk+1|ϑ′)
17: end for
18: calculate L(ϑ) = 1

K ∑K−1
k=0 [(Q(sU

k , ϕk|ϑ)−Yk)
2]

19: update Q network parameter ϑ← ϑ + λs∇ϑL(ϑ)
20: update actor network parameter θπ ← θπ − λπ∇θπ Ji(θ

π)
21: update target networks parameter ϑ′ ← λtϑ + (1− λt)ϑ′

22: sU
τ = sU

τ+1
23: end for
24: end for

5. Evaluation
5.1. Evaluation Configuration

In order to verify the performance of our hierarchical algorithm, we conducted ex-
tensive simulations. We developed a simulator utilizing PyTorch [34] , and adopted the
scenario containing 3 edge servers, 27 mobile terminals, 5 types of service, and 1 cloud
center. Moreover, the communication range of each MEC server is set to be 1000 m without
intersections between the different servers. Mobile terminals are randomly distributed,
and each user will move randomly. Other detailed parameters are shown in Tables 1 and 2.

To extensively compare the performance of our algorithm HSCTO with others, the
baseline algorithms used in this experiment are shown below.

• DDPG. A typical single-agent reinforcement learning algorithm. In our experiment,
DDPG makes action decisions for task offloading and service caching simultaneously.

• H-DQN [35]. A typical HRL algorithm. In order to cope with the continuous action of
task offloading, we first discretize the action space, and then make an offloading decision.

• Random-DQN. An HRL algorithm, in which a random policy is adopted to handle
service caching, while task offloading uses DQN for decision making.

• Random-DDPG. An HRL algorithm, similar to the previous one, but using DDPG
algorithm for decision making.

• Random. A hierarchical algorithm, which randomly makes both service caching and
task offloading decisions.

Electronics 2025, 14, 380 15 of 22

Table 1. MEC parameters.

Parameter Numerical Values

Number of mobile terminals 27
Number of MEC servers 3
Number of service types 5
Transmission power of MT [1,2] W
Transmission power of MEC server 10 W
Transmission rate between MEC server
and cloud center 20 Mbps

Bandwidth of MEC server 100 MHz
Computational capacity of MT 2 GHz
Computational capacity of MEC server [15,20] GHz
Number of service authorizations 3
Number of available resources in server 3
Energy consumption of downloading and
deploying a service 5

Size of one task [1,2] MB
CPU cycles for one bit task [100,200] cycle/bit
Energy consumption coefficient of MT 6× 10−10 J/Cycle
Energy consumption coefficient of MEC
server 5× 10−10 J/Cycle

Large-scale path loss parameter 3

Table 2. Algorithm parameters

Parameter Numerical Values

Replay buffer size 20,000
Batch size 256
Episode 10,000
Dimension of hidden layer 512
Learning rate 0.0001
Discount factor 0.95
ϵ 0.9
Soft update rate 0.1
Explore noise 0.1

5.2. Performance Analysis

We first verified the convergence of our algorithm. Figure 3 shows the result of the
service caching algorithm. The horizontal axis represents the number of training steps, and
η is set to be 10, while the vertical axis represents the service cache reward. The dark line
denotes the average rewards of the service cache agent in five random experiments, and the
shaded area represents the interval between maximum and minimum experimental results.
As we can see, the value fluctuates greatly in the initial time interval, then decreases with
the increase in training iterations. This phenomenon indicates the good stability of our
algorithm. After training about 900 steps, the service caching reward converged at around
−29, demonstrating the perfect convergence and effectiveness of our algorithm.

Next, we evaluate the performance of our task offloading agents separately and the
results are illustrated in Figure 4. Although we used different time granularity at two levels,
in order to compare the results clearly, Figure 4 also used the same time granularity as
Figure 3, and displayed the reward value as the sum of rewards within these 10 steps.
As we can see, all three of the agent’s rewards converge quickly after about 900 steps, this
demonstrates that both the upper and lower layers converge synchronously due to the
tightly coupled design. Also, the algorithm fluctuation range became smaller as the training

Electronics 2025, 14, 380 16 of 22

times increases. These results indicate that both service caching and task offloading agents
have good convergence; moreover, the two layers can collaborate well.

Figure 3. Reward of service caching agent during training process.

(a) (b) (c)

Figure 4. Rewards of task offloading agents during training process. (a–c) show the reward curves of
the 3 agents respectively.

Furthermore, we analyze the impact of different upper time slots’ length η on the
algorithm. Figure 5 shows the performance of HSCTO with different η values. When
η is set to be 10, the maximum reward value can reach around −27; on the contrary, it
achieves a relatively poor performance and more severe oscillation if it is 1. When we
set the η be 5 or 15, our algorithm can acquire medium results. Clearly, when η is small,
the agent is unable to predict hotspot services based on limited information, resulting in
the frequent switching of services and increasing total energy consumption. At the same
time, this situation also leads to unstable environment observation for the lower-layer
agents, causing task offloading decisions to fall into suboptimal results. Additionally, if η is
set to be a large number, due to the impossibility of making timely decisions in terms of
service caching, the lower-layer agent cannot capture the feature of time varying demand
on service. The increase in mismatch will give rise to more computing tasks being offloaded
to the distant cloud platforms, resulting in a decrease in algorithm performance.

We evaluate the performance of our algorithm with a different η value in terms of
average utility, and Figure 6 demonstrates the result. The horizontal axis represents the
values of different η, while the vertical axis corresponds to the average utility function,
which consists of computational energy consumption, transmission energy consumption,
task completion delay, and service switching energy consumption. The smaller the average
utility, the better the task unloading and service caching strategy. It can be seen that the
algorithm with a η of 10 has the best average utility, and two items, namely the D2E
transmission energy consumption and MEC server computation energy consumption, are

Electronics 2025, 14, 380 17 of 22

relatively higher than the others. The reason for this phenomenon is because the servers
make efficient predictions for hotspot services; therefore, the mobile terminal can offload
proper tasks to the servers in this situation. The minimum value of E2C also indicates that
when η = 10, the number of tasks offloaded to the cloud platform is the least, revealing a
higher hit rate in terms of requesting services. In terms of additional energy consumption,
consistent with our theoretical analysis, the value of service caching energy consumption
decreases as the value of the service caching time slot length increases. In summary,
the effective joint decision of the task offloading and service caching results in a better
average system utility.

� ���� ���� ���� ����

����

���

���

���

���

���

��
��

η	�
η	�
η	��
η	��
η	��

Figure 5. Comparison of rewards with different η.

Figure 6. Comparison of average utility with a different η.

Figure 7 illustrates the rewards of HSCTO algorithms and 5 baseline algorithms
during the training process. We carried out this experiment 100 times, and show an average
result. η is set to be 10 in HSCTO. As we can see, HSCTO algorithm outperforms others
with a better performance and faster convergence. Compared with H-DQN and DDPG,
HSCTO improves the overall performance by around 20% and 27%, respectively. Moreover,
the typical HRL-based algorithms, H-DQN is better than DDPG because it benefits from
the hierarchical architecture, which can minimize the curse of dimensionality as much as
possible. Both Random-DQN and Random-DDPG make the service caching decision in a
random manner, and there is no tight coupling between the two layers, resulting in poor
performance. The random algorithm performs the worst due to its completely random task
offloading and service caching decisions.

Electronics 2025, 14, 380 18 of 22

Figure 7. Comparison of the reward for different algorithms.

Figure 8 illustrates more details of the average utility values for different algorithms.
Although both our algorithm and H-DQN are tightly coupled algorithms, the higher service
caching energy consumption results in H-DQN being inferior to ours. The reason is that
H-DQN focuses more on finding the optimal temporal abstraction of primitive actions,
neglecting the specific meaning and cost of the super action, which is more suitable for
turn-based scenario, rather than infinite horizon MEC scenario. Higher values of the
task completion time, D2E communication energy consumption and MEC server energy
consumption reveal that HSCTO can offload more tasks for server-side computation while
achieving the goals of reducing computational latency and saving energy.

Figure 8. Comparison of average utility for different algorithms.

6. Related Works
In this section, we discuss the related works about the HRL scheme for service caching

and task offloading in MEC from the perspective of two categories.

6.1. Service Caching and Task Offloading in MEC

Joint service caching and task offloading approaches are regarded as basic techniques
in mobile edge computing and they arise great interest in both academia and industries.

Xu et al. [10] conducted an earlier research work to solve the service caching and task
offloading problem in dense mobile edge network, aiming to minimize the computational
delay of generating tasks for mobile terminals under long-term energy constraints. They
adopted the Lyapunov optimization technique, whose core idea is to stabilize the data
queue while maximizing the utility function as much as possible, and obtained a proven

Electronics 2025, 14, 380 19 of 22

close-to-optimal solution. Zhou et al. [11] proposed a Lyapunov optimization-based algo-
rithm to reduce the computational latency of user equipment in the UAV-assisted MEC
system through jointly optimizing service caching and task offloading. The similarity
with our work is that in order to reduce the cost of the service caching process, they also
employed a different time scale principle, updating the service cache of every fixed T
time slots while arranging task offloading at each time slot. Ko et al. [12] proposed a
joint task offloading and service caching strategy to achieve optimal delay, considering
each user’s service preference. Premsankar et al. [13] treated deep neural network model
as service, considering the fast development of AI applications. They formulated a mul-
tiperiod optimization problem which jointly places services and schedules requests to
achieve minimized overall energy consumption and low latency. After that, a heuristic
algorithm with a lower bound guarantee is proposed by solving a Lagrangian relaxation of
the original problem. Yao et al. [16] proposed a deep reinforcement learning with graph
attention mechanism for a digital twin-empowered MEC system to improve the perfor-
mance of task offloading and service caching. In contrast to RL, due to the increasing
computational burdens, the traditional optimization algorithm becomes less applicable in a
highly dynamic environment with demands for real time. Furthermore, a traditional RL- or
DNN-based algorithm will suffer from the curse of dimensionality in solving this complex
joint optimization problem, especially in a large-scale environment.

Fang et al. [21] presented joint task offloading and content caching scheme for the
NOMA edge network with the goal of minimizing network latency, in which the task
offloading subproblem is solved utilizing DQN, and the allocations of network resources
are optimized utilizing successive convex approximation (SCA), and the contents cached at
the network nodes are updated by the LSTM-based approach. Lin et al. [22] also proposed
a hybrid structure to solve the joint problem of service caching and task offloading in
the UAV-assisted MEC environment, and a greedy dual-size frequency (GDSF)-based
algorithm is utilized to deploy services into the MEC servers, while a single agent RL
algorithm is adopted to make the task offloading decision. Xu et al. [23] separated the
complex optimization problem of minimizing the delay and computational cost into two
subproblems so as to reduce the complexity, and then proposed the hybrid approach in
which the RL-based part makes a service caching decision and a convex optimization-
based part decides the task offloading policy. Although these schemes divide the joint
optimization problem into multiple subproblems to reduce the computational complexity,
compared with our HRL-based algorithm, the hybrid scheme does not break away from
the limitations of a traditional optimization algorithm.

6.2. Hierarchical Reinforcement Learning in MEC

Hierarchical reinforcement learning is receiving increasing attention from MEC. Ex-
isting works have applied different algorithms to tackle different optimization problems
with different optimal goals in various MEC scenarios. Shi et al. [18] proposed a trajectory
planning and resource allocation algorithm in multi-DC-assisted RANs with the objec-
tive of optimizing the accumulative network throughput for high-mobility users. They
decomposed the original complex problem into two hierarchical subproblems, global tra-
jectory planning, and local resource allocation. The higher-level algorithm is responsible
for planning the trajectories of UAVs, aiming to maximize the number of users who can
be served over a longer period of time. After the sequence of served areas is determined,
the lower level algorithm addresses the subproblem to allocate the resources for each UVA.
Ren et al. [19] proposed a two-layer HRL algorithm to reduce the complexity of a large-scale
UAV-assisted MEC network in dynamic environment by partitioning the sophisticated
original scheduling problem into several subproblems based on “divide-and-conquer” idea.

Electronics 2025, 14, 380 20 of 22

Zhang et al. [17] introduced a hierarchical method in a backscatter data collection scenario
based on an option idea to first generate multiple clusters of the backscatter sensor node
and then schedule multiple UAVs to process the data collection, with the goal of maximize
the total flight time under the energy constraints of the UAV. Considering a hybrid wireless
network where RF communication and backscatter technology coexist, Zhou et al. [15] pro-
posed an HRL scheme, in which the high-level agent learns to optimize the beamforming
of an access point while the lower-level agents solve the problem of efficiently offloading
individuals workloads to the edge servers. Geng et al. [14] investigated the cooperative
communication with the goal of reducing the outage probability, in order to extend the
scale of cooperative network, they divide the problem into two subproblems, i.e., a relay
selection and power allocation; after that, they proposed an HRL approach to optimize the
subproblems separately. As mentioned above, existing HRL-based algorithms in MEC
always relaxed the coupling degree between the higher- and lower-layer, and trained them
individually. Such a trade-off will lead to poor performance.

7. Conclusions
In this article, we are devoted to applying the HRL algorithm to the joint optimization

problem of service caching and task offloading in practical MEC environments, in order to
alleviate the curse of dimensionality while improving the system performance. In order
to bridge the gap between the typical HRL algorithm and real-world MEC scenario, we
firstly introduce a novel HRL architecture, in which two different layers leverage different
time granularities, and differing from other HRL algorithms, the higher layer employs
fixed multiple time steps. This two-time-scale design expands the range of algorithms that
can be adopted, simplifies algorithm design, and enhances the stability of the upper layer.
Then, we propose an algorithm HSCTO based on the above architecture. The upper layer
of HSCTO makes service caching decisions by utilizing the rewards of the task offloading
agent in the lower layer. The algorithm performance can be guaranteed by this tightly
coupled method. Numerical experiments are carried out and the evaluation results show
that HSCTO outperforms other baseline algorithms.

Author Contributions: Conceptualization, T.C.; methodology, T.C.; software, J.A.; validation, X.X.;
formal analysis, G.H.; investigation, T.C. resources, X.X.; data curation, J.A.; writing—original draft
preparation, T.C. writing—review and editing, T.C. visualization, J.A.; supervision, G.H.; project
administration, T.C. funding acquisition, G.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by The Key Project of the Shenzhen Municipality (Granted
No. JSGG20211029095545002), Education and Teaching Reform Research Project of Guangdong
Higher Vocational Electronic Information and Communication Teaching Committee, Guangdong
Provincial Demonstration Industry College Project (SZIIT-SangFor Cyber-Security Service Project),
2023 Education and Teaching Reform Research and Practice Project of Guangdong Higher Vocational
Electronic Information and Communication Education Advisory Committee (Guangdong Higher
Vocational Electronic Information and Communication Education Advisory Committee (2023) No.
9), College-level Teacher Teaching Innovation Team Project (Cyber-Security Team), School-level
Key Teaching Reform Project of SZIIT (Information Security Vocational Education Undergraduate
Talent Training Project), and 2024 College-level Demonstration Virtual Simulation Training Base of
SZIIT(Cyber-Range Project).

Data Availability Statement: The original contributions presented in the study are included in the
article, whilst further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2025, 14, 380 21 of 22

References
1. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge Computing in Industrial Internet of Things:Architecture,

Advances and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]
2. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A Survey on Computation Offloading Modeling for Edge Computing. J. Netw.

Comput. Appl. 2020, 169, 102781. [CrossRef]
3. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C.M. An Efficient Computation Offloading Management Scheme in the Densely

Deployed Small Cell Networks With Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]
4. Hortelano, D.; De Miguel, I.; Barroso, R.J.D.; Aguado, J.C.; Merayo, N.; Ruiz, L.; Asensio, A.; Masip-Bruin, X.; Fernández, P.;

Lorenzo, R.M.; et al. A Comprehensive Survey on Reinforcement-Learning-Based Computation Offloading Techniques in Edge
Computing Systems. J. Netw. Comput. Appl. 2023, 216, 103669. [CrossRef]

5. Xu, X.; Liu, K.; Dai, P.; Jin, F.; Ren, H.; Zhan, C.; Guo, S. Joint Task Offloading and Resource Optimization in NOMA-based
Vehicular Edge Computing: A Game-Theoretic DRL Approach. J. Syst. Archit. 2023, 134, 102780. [CrossRef]

6. Wang, L.; Jiao, L.; He, T.; Li, J.; Mühlhäuser, M. Service Entity Placement for Social Virtual Reality Applications in Edge
Computing. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA,
16–19 April 2018; pp. 468–476.

7. Pasteris, S.; Wang, S.; Herbster, M.; He, T. Service Placement with Provable Guarantees in Heterogeneous Edge Computing
Systems. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2
May 2019; pp. 514–522.

8. Liu, S.; Yu, Y.; Lian, X.; Feng, Y.; She, C.; Yeoh, P.L.; Guo, L.; Vucetic, B.; Li, Y. Dependent Task Scheduling and Offloading
for Minimizing Deadline Violation Ratio in Mobile Edge Computing Networks. IEEE J. Sel. Areas Commun. 2023, 41, 538–554.
[CrossRef]

9. Plageras, A.P.; Psannis, K.E. IoT-based Health and Emotion Care System. ICT Express 2023, 9, 112–115. [CrossRef]
10. Xu, J.; Chen, L.; Zhou, P. Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks. In

Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018;
pp. 207–215.

11. Zhou, R.; Wu, X.; Tan, H.; Zhang, R. Two Time-Scale Joint Service Caching and Task Offloading for UAV-assisted Mobile Edge
Computing. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May
2022; pp. 1189–1198.

12. Ko, S.W.; Kim, S.J.; Jung, H.; Choi, S.W. Computation Offloading and Service Caching for Mobile Edge Computing Under
Personalized Service Preference. IEEE Trans. Wirel. Commun. 2022, 21, 6568–6583. [CrossRef]

13. Premsankar, G.; Ghaddar, B. Energy-Efficient Service Placement for Latency-Sensitive Applications in Edge Computing. IEEE
Internet Things J. 2022, 9, 17926–17937. [CrossRef]

14. Geng, Y.; Liu, E.; Wang, R.; Liu, Y. Hierarchical Reinforcement Learning for Relay Selection and Power Optimization in Two-Hop
Cooperative Relay Network. IEEE Trans. Commun. 2022, 70, 171–184. [CrossRef]

15. Zhou, H.; Long, Y.; Zhang, W.; Xu, J.; Gong, S. Hierarchical Multi-Agent Deep Reinforcement Learning for Backscatter-aided
Data Offloading. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX,
USA, 10–13 April 2022; pp. 542–547.

16. Yao, Z.; Xia, S.; Li, Y.; Wu, G. Cooperative Task Offloading and Service Caching for Digital Twin Edge Networks: A Graph
Attention Multi-Agent Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2023, 41, 3401–3413. [CrossRef]

17. Zhang, Y.; Mou, Z.; Gao, F.; Xing, L.; Jiang, J.; Han, Z. Hierarchical Deep Reinforcement Learning for Backscattering Data
Collection With Multiple UAVs. IEEE Internet Things J. 2021, 8, 3786–3800. [CrossRef]

18. Shi, W.; Li, J.; Wu, H.; Zhou, C.; Cheng, N.; Shen, X. Drone-Cell Trajectory Planning and Resource Allocation for Highly Mobile
Networks: A Hierarchical DRL Approach. IEEE Internet Things J. 2021, 8, 9800–9813. [CrossRef]

19. Ren, T.; Niu, J.; Dai, B.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling Efficient Scheduling in Large-Scale UAV-Assisted
Mobile-Edge Computing via Hierarchical Reinforcement Learning. IEEE Internet Things J. 2022, 9, 7095–7109. [CrossRef]

20. Birman, Y.; Ido, Z.; Katz, G.; Shabtai, A. Hierarchical Deep Reinforcement Learning Approach for Multi-Objective Scheduling
With Varying Queue Sizes. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen,
China, 18–22 July 2021; pp. 1–10.

21. Fang, C.; Xu, H.; Zhang, T.; Li, Y.; Ni, W.; Han, Z.; Guo, S. Joint Task Offloading and Content Caching for NOMA-Aided
Cloud-Edge-Terminal Cooperation Networks. IEEE Trans. Wirel. Commun. 2024, 23, 15586–15600. [CrossRef]

22. Lin, N.; Han, X.; Hawbani, A.; Sun, Y.; Guan, Y.; Zhao, L. Deep Reinforcement Learning Based Dual-Timescale Service Caching
and Computation Offloading for Multi-UAV Assisted MEC Systems. IEEE Trans. Netw. Serv. Manag. 2024. [CrossRef]

23. Xu, Y.; Peng, Z.; Song, N.; Qiu, Y.; Zhang, C.; Zhang, Y. Joint Optimization of Service Caching and Task Offloading for Customer
Application in MEC: A Hybrid SAC Scheme. IEEE Trans. Consum. Electron. 2024. [CrossRef]

http://doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1016/j.jnca.2023.103669
http://dx.doi.org/10.1016/j.sysarc.2022.102780
http://dx.doi.org/10.1109/JSAC.2022.3233532
http://dx.doi.org/10.1016/j.icte.2022.03.008
http://dx.doi.org/10.1109/TWC.2022.3151131
http://dx.doi.org/10.1109/JIOT.2022.3162581
http://dx.doi.org/10.1109/TCOMM.2021.3119689
http://dx.doi.org/10.1109/JSAC.2023.3310080
http://dx.doi.org/10.1109/JIOT.2020.3024666
http://dx.doi.org/10.1109/JIOT.2020.3020067
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/TWC.2024.3432150
http://dx.doi.org/10.1109/TNSM.2024.3468312
http://dx.doi.org/10.1109/TCE.2024.3443168

Electronics 2025, 14, 380 22 of 22

24. Sutton, R.S.; Precup, D.; Singh, S. Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning. Artif. Intell. 1999, 112, 181–211. [CrossRef]

25. Parr, R.; Russell, S. Reinforcement Learning with Hierarchies of Machines. Adv. Neural Inf. Process. Syst. 1997, 10, 1043–1049.
26. Dietterich, T.G. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. J. Artif. Intell. Res. 2000,

13, 227–303. [CrossRef]
27. Al-Eryani, Y.; Hossain, E. Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming: A Hierarchical

DRL-Based Design. IEEE Trans. Commun. 2022, 70, 3169–3185. [CrossRef]
28. Jahanshahi, A.; Sabzi, H.Z.; Lau, C.; Wong, D. Gpu-Nest: Characterizing Energy Efficiency of Multi-Gpu Inference Servers. IEEE

Comput. Archit. Lett. 2020, 19, 139–142. [CrossRef]
29. Caron, E.; Chevalier, A.; Baillon-Bachoc, N.; Vion, A.L. Heuristic for License-Aware, Performant and Energy Efficient Deployment

of Multiple Software in Cloud Architecture. In Proceedings of the 2021 12th International Conference on Information and
Communication Systems (ICICS), Valencia, Spain, 24–26 May 2021; pp. 297–304.

30. Chevalier, A.; Caron, E.; Baillon-Bachoc, N.; Vion, A.L. Towards Economic and Compliant Deployment of Licenses in a Cloud
Architecture. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA,
USA, 2–7 July 2018; pp. 718–724.

31. Sutton, R.S.; Barto, A.G. Reinforcement Learning, Second Edition: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
32. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.M.O.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
33. Hasselt, H.v.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-Learning. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI Press: Cambridge, MA, USA, 2016;
pp. 2094–2100.

34. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Vancouver BC, Canada, 8–14 December 2019; pp. 8026–8037.

35. Kulkarni, T.D.; Narasimhan, K.R.; Saeedi, A.; Tenenbaum, J.B. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, Barcelona, Spain, 5–10 December 2016; pp. 3682–3690.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1613/jair.639
http://dx.doi.org/10.1109/TCOMM.2022.3159836
http://dx.doi.org/10.1109/LCA.2020.3023723

	Introduction
	Mathematical Model and Problem Formulation
	MEC Scenario
	Decision Model
	Computation Delay and Energy Consumption Model
	Transmission Model
	Computation Model

	Problem Formulation

	Hierarchical Reinforcement Learning Framework
	MDP
	The Lower Layer
	The Upper Layer

	Bellman Optimality Equation

	Algorithm
	Task Offloading Algorithm
	Service Caching Algorithm

	Evaluation
	Evaluation Configuration
	Performance Analysis

	Related Works
	Service Caching and Task Offloading in MEC
	Hierarchical Reinforcement Learning in MEC

	Conclusions
	References

