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Abstract: Next- generation wireless communications are projected to integrate reconfig-
urable intelligent surfaces (RISs) to perpetrate enhanced spectral and energy efficiencies. To
quantify the performance of RIS-aided wireless networks, the statistics of a single random
variable plus the sum of double random variables becomes a core approach to reflect how
communication links from RISs improve wireless-based systems versus direct ones. With
this in mind, the work applies the statistics of a single random variable plus the sum of dou-
ble random variables in the secure performance of RIS-based non-orthogonal multi-access
(NOMA) systems with the presence of untrusted users. We propose a new communi-
cation strategy by jointly considering NOMA encoding and RIS’s phase shift design to
enhance the communication of legitimate nodes while degrading the channel capacity of
untrusted elements but with sufficient power resources for signal recovery. Following
that, we analyze and derive the closed-form expressions of the secrecy effective capacity
(SEC) and secrecy outage probability (SOP). All analyses are supported by extensive Monte
Carlo simulation outcomes, which facilitate an understanding of system communication
behavior, such as the transmit signal-to-noise ratio, the number of RIS elements, the power
allocation coefficients, the target data rate of the communication channels, and secure data
rate. Finally, the results demonstrate that our proposed communication can be improved
significantly with an increase in the number of RIS elements, irrespective of the presence of
untrusted proximate or distant users.

Keywords: non-orthogonal multi-access (NOMA); Internet of Things; reconfigurable intelligent
surfaces (RISs); statistics of double random variables; secrecy effective capacity (SEC);
secrecy outage probability
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1. Introduction
1.1. Backgrounds and Concerns

Recently, the shift to massive interconnected Internet of Thing (IoT) devices has re-
sulted in several challenges for the fifth-generation (5G) and sixth-generation (6G) wireless
infrastructure networks, mainly in spectral efficiency, energy consumption, and commu-
nication latency [1,2]. However, increased interactions among unsynchronized networks
introduce several emerging flaws in security from physical-layer perspectives, especially
in coexistence networks with frequent access element changes [3] and when employing
advanced learning approaches in collecting network data to serve optimizing network
communications, like distributed learning [4] or generative artificial intelligent (GAI) [5]. In
this game, any party can become an unauthorized entity, potentially stealing information
or disrupting network operations.

With spectrum scarcity due to massive connectivity and outdated orthogonal multiple
access (OMA) technologies, new multiple access methods like non-orthogonal multiple
access (NOMA) have emerged [6]. NOMA allows simultaneous communication with
shared resources by focusing on the power domain and arranging signals based on channel
gains [7] or service priorities [8]. In downlink NOMA, weaker channels or higher priorities
obtain more power, which is reversed in uplink NOMA [9]. However, the receiver side must
employ successive interference cancellation (SIC) mechanisms to recover the broadcast
symbol and cancel the interference between users in decreasing power order. Due to its
advantages, NOMA has been extensively studied, addressing research challenges [10],
opportunities [11], and its interplay with emerging technologies [12].

Besides NOMA technology, reconfigurable intelligent surfaces (RISs), also known
as intelligent reflecting surfaces, have recently attracted significant attention from both
scientific and industrial communities due to their ability to alter the wireless propagation
medium [13,14]. This feature enables manageable wireless transmission, mitigating issues
like deep fading and blockages. Additionally, RISs can perform better than costly relay
nodes by increasing the reflective elements [15]. In structure terms, an RIS consists of
low-cost passive elements that vary phase shift and amplitude through a programmable
microcontroller. Early studies on RISs have focused on myths and critical questions [16],
fundamentals of physics, propagation, and path loss modeling [17], as well as initial proto-
typing, adaptive beamforming, and indoor/outdoor field trials [18]. Subsequent research
includes tutorials [19], single-reflection to multi-reflection design and optimization [20],
and channel estimation and practical passive beamforming design [21]. Additionally,
RIS applications span various contexts, such as cooperative communications [22], short-
packet communication [23–25], ambient backscatter [26], hardware impairments [27], aerial
RISs [28], wireless power transfer [29], two-way communication [30], millimeter-wave com-
munication [31,32], multi-hop RIS-aided relaying [33], imperfect channel estimation [34,35],
and energy/rate-reliability trade-offs [36].

On the other hand, physical layer security (PLS) enhances information security by
leveraging unique communication channel characteristics, complementing traditional cryp-
tographic methods. It exploits the differences between the channels used by legitimate
users and eavesdroppers, achieving perfect security if the legitimate channel is superior [37].
Techniques to improve PLS include relaying, which uses intermediate nodes to enhance
diversity gain and coverage, making it harder for eavesdroppers to intercept signals [38].
Other methods include artificial noise generation, which adds random noise to confuse
eavesdroppers; beamforming, which focuses the signal in a specific direction; and coopera-
tive jamming, where friendly nodes generate interference to protect communications [39].
PLS research covers various topics, including security and reliability trade-offs in two-way
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half-duplex wireless relaying networks [40] as well as secure communication using rateless
codes under the effects of interference and hardware impairments [41].

1.2. State of the Art

With the ongoing headway of NOMA applications, research on NOMA in PLS has
gained considerable attention. For example, the work in [42] investigated the PLS perfor-
mance of amplify-and-forward (AF) versus decode-and-forward (DF) protocols in cooper-
ative NOMA systems, where using AF schemes shows worse secrecy outage probability
(SOP) than the DF one. In [43], a cognitive radio-inspired NOMA scheme was designed to
manage the interferences among secondary users while ensuring primary users’ quality
of services. In [44], three friendly energy harvesting (EH) jammer selection schemes were
proposed to enhance SOP performance, including the random, maximal, and opportunistic
EH jammer selection schemes. In [45], the authors proposed to secure cooperative commu-
nication in large-scale NOMA networks by exploiting a full-duplex operation at nearby
NOMA users as friendly jammers to generate artificial noise to confuse eavesdroppers.
In [46], a joint power allocation and beamforming scheme was introduced to protect trusted
far users when selecting untrusted nearby users for the NOMA pairing process. In [47],
the authors investigated the performance of active reconfigurable repeater-assisted NOMA
networks with the presence of not only untrusted users but also external eavesdroppers,
focusing on deriving theoretical analysis first and then optimizing PLS performance.

Similarly, there is also a variety of works investigating RISs in PLS in recent years.
While the work in [48] investigated the PLS performance of downlink RIS-aided networks
with random user location in the surveillance of a multi-antenna eavesdropper, the work
in [49] designed a joint RIS beamforming and power allocation sub-optimal scheme to
combat the eavesdropping of untrusted users on the information of far-end users. In
contrast, the work in [50] proposed three wireless-powered communication RIS systems to
degrade the quality reception of passive eavesdroppers for IoT applications. In [51], the
authors considered the promise of RISs in cognitive networks to not only improve PLS
performance but also resolve the spectrum scarcity.

Of course, the interaction between NOMA and RISs in PLS has certainly been studied
in the literature. For instance, the work in [52] investigated the SOP performance of
multi-group pairing in NOMA communication, where RISs are deployed to enhance the
performance of distant NOMA users. In [53], the authors studied the impact of residual
transceiver hardware impairment characteristics on the SOP performance of the actual
transceiver equipment, whereas the work in [54] analyzed the SOP of RISs with hardware
limitations operating via a 1-bit coding scheme. In addition to that, the work in [55]
inspected the SOP performance of a combination of radio frequency and free space optical
connections in dual-hop transmission to guarantee the confidentiality of information while
preventing unauthorized access. Meanwhile, the work in [56] comprehensively examined
the SOP performance of the downlink and uplink NOMA scenario with a pernicious
eavesdropper. On the other hand, the work in [57] proposed to use active RIS architecture
to compensate for SOP performance loss due to the double fading phenomenon in cascaded
RIS channels. At the same time, the authors in [58] proposed two protocols, namely the
time-switching protocol and energy splitting, to simultaneously charge batteryless devices
and secure legitimate transmission. The work in [59] focused on analyzing the marginal
distributions of the legitimate receiving vehicles’ channels in vehicle-to-vehicle (V2V)
communication systems with double RIS implementations, thereby gaining more insights
into secrecy performance. Meanwhile, the authors in [60] proposed to deploy multiple
aerial RIS platforms with two strategies of optimal and sub-optimal aerial RIS selection in
order to maximize the secrecy capacity. To do so, they first derived analytical expressions
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for the SOP and probability of non-zero secrecy capacity to capture PLS performance
and then jointly optimize the cooperation of aerial RIS locations and their phase shifts to
achieve the secrecy capacity maximization. Recently, the authors in [61] proposed to exploit
a mathematical SOP frame to assist in optimizing the power allocation resource and the
number of RIS elements to enhance PLS performance.

1.3. Motivations and Contributions

One may be worried about the efficacy of the research on the PLS performance of
RIS-based NOMA systems in the literature, as elaborated above, since most of the works
only investigate PLS with the presence of external eavesdroppers, with very little study
on untrusted users. However, in practice, the presence of untrusted near users might
introduce a big flaw in security if they are paired with trusted users [46,49]. Therefore,
the concern of random untrusted users in NOMA pairing in RIS-based systems remains
an open question, which is the main focus of this work. Moreover, investigating the
performance of RIS-secured NOMA systems mostly relies on a certain fading model with
and without direct channel communication, lacking a generalized mathematical evaluation
framework. Until now, to the best of the authors’ knowledge, there are only three published
works highlighting the applications of statistics of two produced variables’ sums, including
α −F [62], Nakagami-m random vectors [63], and generalized double variables’ form [64],
whereas the statistics of the sum of single variable plus two variables has only one published
work in [65] covering the sum of single α −F and double α −F variables. Explicitly, the
application of the statistics of a single random variable (RV) plus the sum of double RVs
has not been discussed in the literature, especially in the context of security performance.
Table 1 summarizes the main differences, contributions of the considered work with the
state-of-the-art.

The following covers the summary of this work’s contributions in light of previously
explained motivations:

1. We provide a comprehensive review of the statistics of a single random variable plus
the sum of double RVs, including an analysis of the cumulative distribution function
(CDF) and/or the probability density function (PDF) for cascaded channels with an
optimal RIS phase shifter. This plays a core approach in guiding how to analyze
the performance analysis of RIS-aided networks in general and RIS-secured systems
in particular.

2. We propose a novel communication strategy that combines the mutual benefits of
NOMA encoding and an RIS phase shifter by allocating higher power levels for
untrusted nodes while optimally configuring the RIS phase shifter. This helps achieve
the following three goals: enhancing legitimate channel quality, serving untrusted
nodes, and reducing leaks of eavesdropping activities.

3. In addition to that, we provide detailed guidance on how to achieve the CDF and PDF
for cascaded channels with random RIS phase shifters, which lays the foundation for
measuring the impacts of untrusted parties.

4. Capitalizing on the CDF and PDF in modeling channel characteristics, we derive
closed-form expressions for the secrecy effective capacity and SOP, considering both
exact and asymptotic analysis in high signal-to-noise ratio (SNR) regions. This serves
as an effective way for probing key insights into system designs, such as the secrecy
ergodic slope or diversity order gain.

5. Through simulation results based on the Monte Carlo method, we not only demon-
strate the efficacy of our proposed communication method in favor of RIS-secured
undertaking but also exhibit several impacts of system parameters, which reflects the
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importance of choosing a resource power allocation policy and transmission target
data rate.

Table 1. Comparison of the proposed scheme with other works.

Context Our Work [52–61] [49] [46]

Generalized Fading Channels Yes No No No
PLS with RIS systems Yes Yes Yes No
Joint beamforming and power allocation No No Yes Yes
Modified NOMA combining RIS design Yes No No No
SOP Yes Yes Yes No
SEC Yes Yes/No No Yes
Free untrusted user Yes No No No

1.4. Review of the Statistics of Single Random Variable Plus the Sum of Double Random Variables

This section reviews the statistical analysis of a single RV plus the sum of double RVs,
focusing on how to derive the PDF and/or CDF under different distribution types.

In recent years, the problem of finding CDF/PDF for a single RV plus the sum of
double RVs was identified as a common topic in wireless communications, especially in
the field of RISs [62–66]. Specifically, if Z, Xk, and Yk are, respectively, the channels of links
from source information to the destination, from source information to the k-th element
of RISs, and from the k-th element of RISs to the destination, the end-to-end channel gain
received by the destination takes the form

U = Z︸︷︷︸
Direct Channel

+ ∑K
k=1 XkYk︸ ︷︷ ︸

Cascaded Channel

. (1)

The common method to have the CDF/PDF of U is to fit it into Gamma distribu-
tion [64], with the shape parameter α and the inverse scale β, which can be expressed as

α =
(E{U})2

Var{U} =

(
E
{

∑K
k=1 XkYk + Z

})2

Var
{

∑K
k=1 XkYk + Z

}
=

(
∑K

k=1 E{Xk}E{Yk}+E{Z}
)2

∑K
k=1 Var{XkYk}+ Var{Z}

=

(
∑K

k=1 E{Xk}E{Yk}+E{Z}
)2

∑K
k=1
(
E
{

X2
k
}
E
{

Y2
k
}
− (E{Xk}E{Yk})2

)
+E{Z2} − (E{Z})2

, (2)

β =
E{U}

Var{U} =
E
{

∑K
k=1 XkYk + Z

}
Var
{

∑K
k=1 XkYk + Z

}
=

∑K
k=1 E{Xk}E{Yk}+E{Z}

∑K
k=1
(
E
{

X2
k
}
E
{

Y2
k
}
− (E{Xk}E{Yk})2

)
+E{Z2} − (E{Z})2

, (3)

where E{U} and Var{U} denote the expectation and variance operators of RV U, respec-
tively. Having obtained α and β in hand, the CDF and PDF of U can be written as

fU(x) =
xα−1

Γ(α)
βα exp(−βx), FU(x) =

1
Γ(α)

γ(α, βx) = 1 − 1
Γ(α)

Γ(α, βx), (4)

where Γ(•), γ(•, •), and Γ(•, •) are, respectively, the Gamma function, lower-incomplete
Gamma function, and upper-incomplete Gamma function.
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In what follows, we will guide a simple method when dealing with different popular
distribution types, including Rayleigh fading, Nakagami-m fading, and Rician fading. It
is worth noting that our analysis is not limited to the case where Xk, Yk. Moreover, Z has
the same type of fading but can extend to the case of different types of fading statuses, for
example, Xk is Rayleigh, Yk is Nakagami-m, and Z is Rician fading.

1.4.1. Rayleigh Fading Environment

For the Rayleigh fading medium, the PDF of variable V ∈ {Xk, Yk, Z} with inverse
scale λ ∈ {λXk , λYk , λZ} can be given as in [67–69] as

fV(x) = 2λx exp(−λx2). (5)

Based on this, the n-th moment of V can be derived as

µ̂V(n) = E{Vn} =
∫ ∞

0
xn fV(x)dx =

∫ ∞

0
2λxn+1 exp(−λx2)dx =

1

λ
n
2

Γ
(n

2
+ 1
)

, (6)

which is obtained using the aid of ([70] Equation (3.326.2)). Having obtained (6) in hand,
we can fit V into the Gamma distribution with

α =

(
∑K

k=1 µ̂Xk (1)µ̂Yk (1) + µ̂Z(1)
)2

∑K
k=1
(
µ̂Xk (2)µ̂Yk (2)− (µ̂Xk (1)µ̂Yk (1))

2
)
+ µ̂Z(2)− (µ̂Z(1))2

, (7)

β =
∑K

k=1 µ̂Xk (1)µ̂Yk (1) + µ̂Z(1)

∑K
k=1
(
µ̂Xk (2)µ̂Yk (2)− (µ̂Xk (1)µ̂Yk (1))

2
)
+ µ̂Z(2)− (µ̂Z(1))2

. (8)

Since Γ( 1
2 + 1) = 1

2 Γ( 1
2 ) =

1
2
√

π ([70] Equation (8.338.2)) and Γ(1) = Γ(2) = 1 ([70]
Equation (8.338.1)), we can rewrite α and β as

α =

(
K
∑

k=1

√
π

2
√

λXk

√
π

2
√

λYk
+

√
π

2
√

λZ

)2

K
∑

k=1

(
1

λXk

1
λYk

− π
4λXk

π
4λYk

)
+ 1

λZ
− π

4λZ

, β =

K
∑

k=1

√
π

2
√

λXk

√
π

2
√

λYk
+

√
π

2
√

λZ

K
∑

k=1

(
1

λXk

1
λYk

− π
4λXk

π
4λYk

)
+ 1

λZ
− π

4λZ

. (9)

Note that if λX = λXk , ∀k, and λY = λYk , ∀k, we can rewrite α and β as

α =

(
Kπ

4
√

λXλY
+

√
π

2
√

λZ

)2

K
λXλY

(
1 − π2

16

)
+ 1

λZ

(
1 − π

4
) , β =

Kπ
4
√

λXλY
+

√
π

2
√

λZ

K
λXλY

(
1 − π2

16

)
+ 1

λZ

(
1 − π

4
) . (10)

1.4.2. Nakagami-m Fading Environment

For the Nakagami-m fading medium, the PDF of variable V ∈ {Xk, Yk, Z} with shape
m ∈ {mXk , mYk , mZ} and inverse scale λ ∈ {λXk , λYk , λZ} can be given as in [55,60] as

fV(x) =
2mm

Γ(m)
λmx2m−1 exp(−mλx2). (11)

From (11) and ([70] Equation (3.326.2)), the n-th moment of V can be derived as

µ̂V(n) = E{Vn} =
∫ ∞

0
xn fV(x)dx =

∫ ∞

0

2mm

Γ(m)
λmx2m+n−1 exp(−mλx2)dx

=
Γ(m + n/2)

Γ(m)(mλ)n/2 . (12)
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By substituting (12) in (7) and (8), we can now readily map V into the Gamma distri-
bution, similar to the Rayleigh fading case.

1.4.3. Rician Fading Environment

For the Rician fading medium, the PDF of variable V ∈ {Xk, Yk, Z} having the Rician
factor K and scale parameter λ can be given as in [71–73] as

fV(x) =
2(K + 1)x

λ
exp

(
−K − (K + 1)

λ
x2
)

I0

(
2

√
K(K + 1)

λ
x

)
, (13)

where I0(•) is the modified Bessel function of the first kind with the zero order.
From (13), the n-th moment of V can be derived in terms of the confluent hypergeo-

metric function 1F1(•; •; •) as

µ̂V(n) = E{Vn} =
∫ ∞

0
xn fV(x)dx

=
∫ ∞

0
xn 2(K + 1)x

λ
exp

(
−K − (K + 1)

λ
x2
)

I0

(
2

√
K(K + 1)

λ
x

)
dx

= exp(−K)Γ
(n

2
+ 1
)( (K + 1)

λ

)− n
2

1F1

(n
2
+ 1; 1; K

)
, (14)

which is obtained by first exchanging variable x =
√

y, then applying the standard form
in ([70] Equation (6.643.2)), and finally using two transformations as in ([70] Equations
(9.220.2) and (9.210.1)).

Having (14) in hand, we can fit V into the Gamma distribution, similar to two previous
fading considerations.

2. System Model
2.1. Model Description

Let us consider an RIS-assisted NOMA system, including one source node (S), one
trustworthy user—Bob (B), one untrustworthy user—Willie (W), and one RIS (R). In terms
of setups, all nodes are single antenna devices and the RIS has L programmable elements,
indexed by l = 1, 2, . . . , L. Due to long-distance communication, the source node employs
the NOMA protocol to communicate with both Bob and Willie, and its superimposed signal
is encoded as the form of

√
ρWxW +

√
ρBxB, where E{|xW|2} = E{|xB|2} = P, with P

being the source transmit power and ρB and ρW being the power allocation (PA) coefficients
of signals of Bob (xB) and Willie (xW), respectively.

Denote hSR ∈ C1×L, hRW ∈ CL×1, and hRB ∈ CL×1 by the channel vectors from the
source to the RIS, from the RIS to Willie, and from RIS to Bob, respectively. hSW and hSB are
direct links from the source to Will and Bob, respectively. θ ∈ CL×K is the diagonal matrix
at RIS, with θ = diag(exp(jϕ1), . . . , exp(jϕl), . . . exp(jϕl)), where ϕl is the phase shifter of
the l-th RIS element and uniformly distributes within (−π, π] [64].

Under NOMA transmission, the signals received by Bob and Willie will have the form

yB = (
√

ρWxW +
√

ρBxB)[hSRθhRB + hSB] + wB, (15)

yW = (
√

ρWxW +
√

ρBxB)[hSRθhRW + hSW] + wW, (16)

where wB, wB are the additive white Gaussian noises with zero mean and variance σ2.
Since Bob is a trustworthy user while Willie is an untrustworthy one, we consider

configuring the phase shifter at the RIS so that the cascaded channel from the source node
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to Bob is maximized while that from the source to Willie is arbitrary. Accordingly, the phase
shifter at the RIS is configured with the criterion

ϕ⋆
l = ∠hSB −∠hSRl

−∠hRlB, ∀l = 1, 2, . . . K, (17)

where ∠h is the phase of channel h. Moreover, to better protect Bob’s information, we apply
the modified NOMA protocol wherein Bob’s signal is allocated a power level lower than
that of Will, i.e., ρB < ρW, and we provide the necessary information from Willie for Bob to
perform the SIC process [46]. It is worth noting that a joint consideration of an RIS phase
shifter and NOMA allocation yields two advantages:

1. Bob has optimal cascaded channel gains to perform SIC in descending power order.
2. Bob’s information is protected better from Willie’s eavesdropping since the signal

strength of Bob (
√

ρBxB) is much lower than that of Willie (
√

ρWxW). If Willie wants to
optimally wiretap Bob’s information (xB), he needs to perform SIC to first decode their
signal (xW), then remove their signal from the received signal using SIC to obtain Bob’s
signal (

√
ρBxB[hSRθhRW + hSW] + wW), and finally intercept Bob’s information (xB).

Based on the above observation, it is clear that the proposed scheme can be adopted
in various scenarios. For instance, in securing Internet of Vehicle (IoV) communications,
RISs can be effectively combined with NOMA transmission to enhance the PLS by creating
reflecting paths that strengthen legitimate signals and weaken signals received by potential
eavesdroppers. Specifically, an RIS deployed on roadside infrastructure could dynamically
adjust to route signals only to authorized vehicles while scattering the signals away from
potential eavesdroppers. Another practical example is protecting multi-user communi-
cations systems, where RISs can provide an extra layer of security by combining NOMA
pairing processing to serve two users per cluster. Moreover, with RISs aiding in directing
signals, the primary user can maximally enhance its received signal while minimizing the
ability for internal eavesdroppers to intercept the data.

To provide a better security observation, this work will focus on the worst-case sce-
nario when Willie tries to wiretap Bob’s information using the SIC mechanism. Let us
assume perfect channel state information at the terminals. (Obtaining accurate channel
state information can be achieved using some common techniques. First, in pilot-assisted
channel estimation, pilot signals or training sequences are sent by the transmitter, which
the receiver uses to estimate the channel. This method involves inserting known symbols
(pilots) into the transmitted signal. These pilots then help the receiver to measure and
estimate the channel’s characteristics accurately. Second, with least squares and minimum
mean square error methods, these approaches are frequently used statistical techniques
for channel estimation. Compared to minimum mean square error methods, least square
methods are simpler and require less computational power but need more pilot signals
and lower performance in noisy conditions. Third, regarding blind and semi-blind esti-
mates, blind estimation does not require pilot signals and can be used when there are no
pilots available but has less accuracy compared to pilot-assisted methods) and derive the
signal-plus-interference-to-noise ratios (SINRs) achieved at node X ∈ {B, W} via a perfect
SIC process (In this study, we consider a perfect SIC process for performance evaluation to
establish a theoretical benchmark, showcasing the maximum potential of a system in ideal
conditions. This approach also facilitates relatively secure performance metrics by provid-
ing a consistent baseline, enabling easier comparison across different configurations and
innovations. Moreover, it yields theoretical insights into secure capacity limits and secrecy



Electronics 2025, 14, 392 9 of 21

outage performance, facilitating the development of robust communication protocols and
standards) as

γxW
X =

ρWγ|τX|2
ρBγ|τX|2 + 1

, γxB
X = ρBγ|τX|2, γ = P/σ2, (18)

where τX is the short notation of the cascaded channel gain at node X, with

τX =

∑L
l=1 |hSRl

||hRlB|+ |hSB|, X = B, (19)

∑L
l=1 |hSRl

||hRlW| exp(j[ϕ⋆
l +∠hSRl

+∠hRlW]) + |hSW| exp(j∠hSW), X = W. (20)

From this formulation, we can see that the randomness of |hSRl
|, |hRlX| and |hSX|

causes the RV τX. Thus, to evaluate the system performance, it is necessary to find out the
CDF of the PDF of the RVs τX. Details are outlined in the following:

2.2. Legitimate Channels of Link Sources: RIS and Bob

As for the case of X = B, the distribution of |τB| can be derived similar to Section 1.4.3
(i.e., Gamma distribution). Let TB = |τB|2. Since |τB| =

√
TB, the PDF of TB can be

derived as

fTB(x) =
1

2
√

x
f|τB|(

√
x) =

√
xαB−2

2Γ(αB)
βαB

B exp(−βB
√

x). (21)

Making use of ([70] Equation (3.351.2)), the CDF of TB can be derived as

FTB(x) =
∫ x

0
fTB(y)dy =

1
Γ(αB)

γ(αB, βB
√

x). (22)

2.3. Eavesdropping Channels of Link Sources: RIS and Willie

As for the case of X = W, the distribution of |τW| is obtained by two following steps:

• Step 1: Denote by Q = ∑L
l=1 |hSRl

||hRlW| exp(jψl) + |hSW| exp(j∠hSW), with
ψl = ϕ⋆

l +∠hSRl
+∠hRlW. Let us rewrite Q as

Q =∑L
l=1 |hSRl

||hRlW| sin(ψl) + |hSW| sin(∠hSW)︸ ︷︷ ︸
Qre

+j ∑L
l=1 |hSRl

||hRlW| cos(ψl) + |hSW| cos(∠hSW)︸ ︷︷ ︸
Qim

. (23)

Since the weighted sum of a uniform RV is a uniform RV, ψl is uniformly distributed
within (−π, π]. Accordingly, we can derive the following:

E{sin(ψl)} =
∫ π

−π
sin(x)

1
2π

dx = 0, E{cos(ψl)} =
∫ π

−π
cos(x)

1
2π

dx = 0, (24)

E{sin2(ψl)} =
∫ π

−π
sin2(x)

1
2π

dx =
∫ π

−π

1 − cos(2x)
4π

dx =
1
2

, (25)

E{cos2(ψl)} =
∫ π

−π
cos2(x)

1
2π

=
∫ π

−π

1 + cos(2x)
4π

dx =
1
2

, (26)

E{sin(∠hSW)} = E{cos(∠hSW)} = 0,E{sin2(∠hSW)} = E{cos2(∠hSW)} =
1
2

. (27)

On this basis, we can derive
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E{Qre} = ∑L
l=1 E{|hSRl

|}E{|hRlW|}E{sin(ψl)}+E{|hSW|}E{sin(∠hSW)|} = 0, (28)

E{Qim} = ∑L
l=1 E{|hSRl

|}E{|hRlW|}E{cos(ψl)}+E{|hSW|}E{cos(∠hSW)|} = 0, (29)

Var{Qre} = ∑L
l=1 E{|hSRl

|2}E{|hRlW|2}E{sin2(ψl)}+E{|hSW|2}E{sin2(∠hSW)|}

= ∑L
l=1 µ̂|hSRl

|(2)µ̂|hRlW
|(2) + µ̂|hSW|(2)

1
2

, (30)

Var{Qim} = ∑L
l=1 E{|hSRl

|2}E{|hRlW|2}E{cos2(ψl)}+E{|hSW|2}E{cos2(∠hSW)|}

= ∑L
l=1 µ̂|hSRl

|(2)µ̂|hRlW
|(2)

1
2
+ µ̂|hSW|(2)

1
2

. (31)

where µ̂|hSRl
|(·), µ̂|hRlW

|(·), and µ̂|hSW|(·) can be derived as in (6) for Rayleigh, (12) for
Nakagami-m, and (14) for Rician fading types. Since E{Qre} = E{Qim} and Var{Qre},
we can approximate RV Q as a circularly symmetric complex Gaussian noise with
variance Var{Qre}+ Var{Qim} = ∑L

l=1 µ̂|hSRl
|(2)µ̂|hRlW

|(2) + µ̂|hSW|(2).

• Step 2 : Making use of the relation between circularly symmetric complex Gaussian
noise, we can map TW = |τW|2 into the exponential distribution with inverse variance
βW = 1/

(
∑L

l=1 µ̂|hSRl
|(2)µ̂|hRlW

|(2) + µ̂|hSW|(2)
)

, i.e.,

fTW(x) = βW exp(−βWx). (32)

Making use of ([70] Equation (3.351.2)), the CDF of TB can be derived as

FTW(x) =
∫ x

0
fTW(y)dy = 1 − exp(−βWx). (33)

3. Performance Evaluation Framework
In this section, we will evaluate the secure performance of the considered system.
According to [37], the secrecy rate of legitimate transmission under an eavesdropping

activity is defined as the difference between the main channel capacity Cm and wiretap
channel capacity Ce. Mathematically, the secrecy rate that an eavesdropper wiretaps the
legitimate signal can be written as

Cs = [Cm − Ce]
+, [x]+ = max{x, 0}. (34)

Linking this definition with the considered system, the secrecy rate of Bob’s informa-
tion can be derived as

Cs = [log2(1 + γxB
B )− log2(1 + γxB

W )]+ =

 log2

(
1+γ

xB
B

1+γ
xB
W

)
, γxB

B > γxB
W ,

0, γxB
B ≤ γxB

W .
(35)

3.1. SEC Analysis

Let rW be the target rate for decoding xW. Thus, the SEC that Willie wiretaps xB based
on the SIC process can be derived as referenced in [29] for the case of effective capacity as

SEC = Pr
[
log2

(
1 + γxW

W
)
< rW

]︸ ︷︷ ︸
p1

E{log2(1 + γxB
B )}+ (1 − p1)E{Cs}. (36)

where the first probability on the right-hand side (RHS) indicates the probability that Willie
fails to decode xW while the second one is the complementary probability. Herein, the SEC
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can be interpreted as follows: if Willie fails to decode xW, represented by the probability on
the RHS p1, the SINR for decoding xB at Willie will turn to zero, leading to the term Cs to be
converged to log2

(
1 + γxB

B
)

and with the average secrecy capacity being E{log2(1 + γxB
B )}.

The probability p1 can be derived using the formulated SINR in (18) as

p1 = Pr
[
log2

(
1 + γxW

W
)
< rW

]
= Pr

[
γxW

W < 2rW − 1
]

= Pr
[

ρWγ|τW|2
ρBγ|τW|2 + 1

< 2rW − 1
]
= Pr

[
|τW|2 <

(2rW − 1)
γ(ρW − (2rW − 1)ρB)

]

=

 F|τW|2
(

ϵ
γ

)
, ρW > (2rW − 1)ρB,

1 ρW ≤ (2rW − 1)ρB,
(37)

where ϵ = (2rW−1)
(ρW−(2rW−1)ρB)

.
Meanwhile, the term E{Cs} can be derived as

E{Cs} = max
{
E{log2(1 + γxB

B )− log2(1 + γxB
W )}, 0

}
= max

E{log2(1 + γxB
B )}︸ ︷︷ ︸

c1

−E{log2(1 + γxB
W )}︸ ︷︷ ︸

c2

, 0

. (38)

Making use of (22) and (32), the terms c1 and c2 can be derived, respectively, as

c1 =
∫ ∞

0
log2(1 + ρBγx) f|τB|2(x)dx

=
1

ln(2)

∫ ∞

0

1 − F|τB|2(x/[ρBγ])

1 + x
dx

=
1

ln(2)

∫ ∞

0

1
Γ(αB)

1
1 + x

Γ(αB, βB

√
x/[ρBγ])dx (39)

c2 =
∫ ∞

0
log2(1 + ρBγx) f|τW|2(x)dx

=
1

ln(2)

∫ ∞

0
ln(1 + ρBγx)βW exp(−βWx). (40)

Herein, we solve the integral of c1 by first employing the following transformations:

1
1 + x

= G1,1
1,1

(
x
∣∣∣0
0

)
, Γ

(
αB, βB

√
x/[ρBγ]

)
= G2,0

1,2

(
βB√
ρBγ

x1/2
∣∣∣ 1
αB, 0

)
. (41)

Next, we apply the standard form in ([74] Equation (07.34.21.0013.01 )) to solve c1.
Meanwhile, the standard form in ([70] Equation (4.337)) to directly address c2.

Gathering all the above analyses together, we obtain the following Lemma:

Lemma 1. Conditioned on ρW > (2rW − 1)ρB, the SEC that Willie wiretaps xB based on the SIC
process can be derived as

SEC = c1

[
1 − exp

(
−βW

ϵ

γ

)]
+ exp

(
−βW

ϵ

γ

)
max{c1 − c2, 0}, (42)

where

c1 =
1

ln(2)
1

Γ(αB)

2αB−1
√

π
G5,1

3,5

(
β2

B
4ρBγ

∣∣∣ 0, 1
2 , 1

0, 0, 1
2 , αB

2 , αB+1
2

)
, (43)
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and

c2 = − 1
ln(2)

exp
(

βW
ρBγ

)
Ei
(
− βW

ρBγ

)
. (44)

To understand the SEC performance trend at the high-SNR case (i.e., γ → ∞), where
the noise becomes negligible, we next focus on the asymptotic SEC. Specifically, under the
fact that 1/γ → 0 as γ → ∞, we make use of 1 − exp(−x) ≃ x as x → 0 to approximate
p1 as

p1 ≃

 βWϵ/γ, ρW > (2rW − 1)ρB,

1 ρW ≤ (2rW − 1)ρB.
(45)

Next, under the fact that 1 + γ ≃ γ as γ → ∞, we can approximate c1 and c2 as

c1 ≃ E{log2(γ
xB
B )} = log2(ρBγ) +E{log2(|τB|2)}

= log2(ρBγ) +
1

ln(2)

∫ ∞

0
ln(x) f|τB|2(x)dx

= log2(ρBγ) +
1

ln(2)

∫ ∞

0
ln(x)

√
xαB−2

2Γ(αB)
βαB

B exp(−βB
√

x)dx

= log2(ρBγ) +
2

ln(2)

∫ ∞

0
ln(x)

xαB−1

Γ(αB)
βαB

B exp(−βBx)dx, (46)

c2 ≃ E{log2(γ
xB
W )} = log2(ρBγ) +E{log2(|τW|2)}

= log2(ρBγ) +
1

ln(2)

∫ ∞

0
ln(x) f|τW|2(x)dx

= log2(ρBγ) +
1

ln(2)

∫ ∞

0
ln(x)βW exp(−βWx). (47)

Now, applying the aid of ([70] Equation (4.352)), we obtain the following:

c1 ≃ log2(ρBγ) +
2

ln(2)
[ψ(αB)− ln(βB)], (48)

c2 ≃ log2(ρBγ) +
1

ln(2)
[ψ(1)− ln(βW)]. (49)

Thus, at a high SNR, the SEC with that Willie wiretaps xB based on the SIC process
with ρW > (2rW − 1)ρB can be approximated as

SEC ≃ βW
ϵ

γ

[
log2(ρBγ) +

2
ln(2)

[ψ(αB)− ln(βB)]

]
+

[
1 − βW

ϵ

γ

]
max

{
1

ln(2)
[2ψ(αB)− 2 ln(βB)− ψ(1) + ln(βW)], 0

}
, (50)

herein, if we further let 1/γ = 0, the SEC will converge to a constant value

SEC ≃ max
{

1
ln(2)

[2ψ(αB)− 2 ln(βB)− ψ(1) + ln(βW)], 0
}

. (51)

3.2. SOP Analysis

Given the secure target rate RB for protecting xB, the SOP that Willie wiretaps xB based on
the SIC process can be derived as referenced in [47] for the case of the untrusted user as

SOP = Pr
[
log2

(
1 + γxW

W
)
≥ rW, Cs < RB

]
. (52)
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where the probability in the RHS indicates the probability that Willie successfully decodes
their information but fails to decode Bob’s information.

To achieve the SOP in (52), we start by invoking the formulated SINR in (18) and the
formulated secrecy rate in (35). The second probability in the RHS of (52) can be derived as

SOP = Pr

[
log2

(
1 + γxW

W
)
≥ rW, log2

(
1 + γxB

B
1 + γxB

W

)
< RB, γxB

B > γxB
W ,

]
+ Pr

[
log2

(
1 + γxW

W
)
≥ rW, 0 < RB, γxB

W ≤ γxB
B
]

= Pr
[
|τW|2 ≥ (2rW − 1)/γ

ρW − (2rW − 1)ρB
, 1 + ρBγ|τB|2 < 2RB

[
1 + ρBγ|τW|2

]
, |τB|2 > |τW|2

]
+ Pr

[
|τW|2 ≥ (2rW − 1)

γ(ρW − (2rW − 1)ρB)
, 0 < RB, |τB|2 ≤ |τW|2

]
= Pr

[
|τW|2 ≥ ϵ

γ
, |τW|2 < |τB|2 <

2RB − 1
ρBγ

+ 2RB |τW|2
]
+ Pr

[
|τW|2 ≥ ϵ

γ
, |τB|2 ≤ |τW|2

]
= Pr

[
|τW|2 ≥ ϵ

γ
, |τB|2 <

2RB − 1
ρBγ

+ 2RB |τW|2
]

=
∫ ∞

ϵ
γ

F|τB|2

(
2RB − 1

ρBγ
+ 2RB x

)
f|τW|2(x)dx. (53)

Now, using the PDF of |τW|2 in (32) and CDF of |τB|2 in (22), we can rewrite the SOP
expression as

SOP =
∫ ∞

ϵ
γ

1
Γ(αB)

γ

(
αB, βB

√
2RB − 1

ρBγ
+ 2RB x

)
βW exp(−βWx)dx

=
βW

2RBΓ(αB)
exp

(
− βW(2RB − 1)

2RBρBγ

)∫ ∞

δ
γ(αB, βB

√
y) exp

(
− βW

2RB
y
)

dy, (54)

which is achieved using variable exchange y = 2RB−1
ρBγ + 2RB x and δ = 2RB−1

ρBγ + 2RB ϵ
γ .

Next, we apply the Heaviside step transfer function for the integral above to obtain

I(y) =
∫ ∞

0
H
(y

δ
− 1
)

γ(αB, βB
√

y) exp
(
− βW

2RB
y
)

dy

=
∫ ∞

0
G1,0

0,1

(
βB

βW
2RB

y
∣∣∣−

0

)
G1,1

1,2

(
βB

√
y
∣∣∣ 1
αB, 0

)
G0,1

1,1

(
y
δ

∣∣∣1
0

)
dy, (55)

where the last step is obtained using the following transformations:

H
(y

δ
− 1
)
= G0,1

1,1

(
y
δ

∣∣∣1
0

)
, (56)

γ(αB, βB
√

y) = G1,1
1,2

(
βB

√
y
∣∣∣ 1
αB, 0

)
, (57)

exp
(
− βW

2RB
y
)
= G1,0

0,1

(
βB

βW
2RB

y
∣∣∣−

0

)
. (58)

Finally, applying the standard form as in ([25] Equation (51)), we can achieve a solution
for I(y).

From the above analysis, we obtain the following theorem:
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Theorem 1. Exact closed-form expressions for the SOP that Willie wiretaps xB based on the SIC
process can be derived as

SOP =

 p2, ρW > (2rW − 1)ρB,

0 ρW ≤ (2rW − 1)ρB,
(59)

where

p2 =
exp

(
− βW(2RB−1)

2RB ρBγ

)
βBΓ(αB)

H0,1;1,1;0,1
1,0;1,2;1,1

(
(0; 1

2 , 1)
−

∣∣∣ (1, 1)
(αB, 1), (1, 0)

∣∣∣(1, 1)
(1, 0)

∣∣∣√βB2RB√
βW

;
2RB

δβBβW

)
. (60)

To obtain insights into the performance and reliability of secure communication
systems in the high-SNR case (i.e., γ → ∞), we study the asymptotic SOP next. By
understanding SOPs in these asymptotic modes, one can draw theoretical boundaries,
identify potential weaknesses, and design more robust and efficient protocols that ensure
security even in the most challenging situations. This analysis also simplifies complex
performance metrics, making it easier to evaluate and compare different system designs.
Specifically, we make use of 1 + γ ≃ γ as γ → ∞ to approximate SOP in (53) as

SOP
γ→∞
≃ Pr

[
log2

(
1 + γxW

W
)
≥ rW, log2

(
|τB|2
|τW|2

)
< RB, |τB|2 > |τW|2,

]
+ Pr

[
log2

(
1 + γxW

W
)
≥ rW, 0 < RB, |τB|2 ≤ |τW|2

]
= Pr

[
|τW|2 ≥ ϵ

γ
, 2RB |τW|2 > |τB|2 > |τW|2

]
+ Pr

[
|τW|2 ≥ ϵ

γ
, |τB|2 ≤ |τW|2

]
=
∫ ∞

ϵ/γ
F|τB|2(2

RB x) f|τW|2(x)dx. (61)

Herein, we can see that if ϵ/γ is set to zero, SOP can be rewritten in terms of the
Parabolic cylinder function D•(•) as

SOP
γ→∞
≃

∫ ∞

0
F|τB|2(2

RB x) f|τW|2(x)dx

=
βW

Γ(αB)

∫ ∞

0
γ(αB, βB

√
2RB x) exp(−βWx)dx

=

(
βB

√
2RB√

2βW

)αB

exp

(
β2

B2RB

8βW

)
D−αB

(
βB

√
2RB√

2βW

)
, (62)

which is achieved by making use of ([70] Equation (6.454)). Since SOP is a constant value,
increasing the SNR γ does not improve the SOP performance at a high SNR.

4. Numerical Results and Discussion
This section quantifies the theoretical analysis regarding the SOP performance of the

considered system, where the Monte Carlo simulation method is utilized. Specifically, we
randomly generate a 104 sample for channels τB and τW. Then, we compute the SINRs
as in (18). Finally, we evaluate the SEC and SOP by injecting the SINRs into (36) and (52),
and then we take the average. In this work, all results are implemented using Matlab
software with version 2023b on a computer simulation. For each set of system parameters,
the average running time is 11.1363 s for SOP simulation results, 4.6461 s for SOP analytical
results, 1.827821 s for SEC simulation results, and 0.2779 s for SEC analytical results. For
the sake of notation, we use (sim.) to denote the simulation result. Parameters used for this
section are listed in Table 2.
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Table 2. Main parameters for simulations.

Parameter Notation Values

Number of RIS elements L {16,24}
Number of RIS elements L {16,24}
Power allocation coefficient for Willie’s signal ρW 0.7
Power allocation coefficient for Bob’s signal ρB 0.3
Target data rate for Willie’s signal rW 0.5 bps/Hz
Secured target data rate for Bob’s signal RB 1.5 bps/Hz

Rayleigh parameters Notation Values

Inverse scale parameter of link S to R λSR 0.5
Inverse scale parameter of link S to W λSW 0.25
Inverse scale parameter of link S to B λSB 0.5
Inverse scale parameter of link R to W λRW 1
Inverse scale parameter of link R to B λRB 0.5

Nakagami-m Notation Values

Shape parameter of link S to R mSR 2.2
Shape parameter of link S to W mSW 2
Shape parameter of link S to B mSB 2.3
Shape parameter of link R to W mRW 2.5
Shape parameter of link R to B mRB 1

Rician parameters Notation Values

Rician factor of link S to R KSR 2
Rician factor of link S to W KSW 2
Rician factor of link S to B KSB 3
Rician factor of link R to W KRW 3
Rician factor of link R to B KRB 3

In Figure 1, we plot the PDF and CDF for |τB|2 and |τW|2 under different settings of
RIS elements (L = 16, 20, 24). The left-hand-side parts (a,c,e) show the CDF of |τB|2, where
the curves increase with an increase in the target input, revealing higher input values x.
Conversely, the right-hand-side parts (b,d,f) represent the PDF of |τW|2, where the curves
decrease with an increase in the target input, revealing higher input values x. Overall, it
can be seen that the simulation outputs, represented by markers, are closely consistent with
the analytical approximation results, represented by solid lines, confirming the accuracy of
the approximation approach.

In Figure 2, we plot the SOP performance as a function of the SNR γ (in sub-figure
(a)) and power allocation coefficient ρW (in sub-figure (b)) under three common channels
models (Rayleigh, Nakagami-m, and Rician). It is observed from Figure 2a that the SOP
results follow an increasing trend with a small SNR value, return to a decreasing trend
with a moderate SNR, and finally become saturated at high SNR regions, returning to a
zero diversity order for secure performance. Notably, all channel models have the same
performance behavior, where the Rician model displays the lowest SOP performance,
followed by Nakagami-m and Rayleigh. As for the SNR setting at 5 dB (for example), from
Figure 2b, we get that the larger the power allocation level for Willie’s signal, the higher
the SOP performance. This justifies that Willie’s signal reception is increased, increasing
the chance to wiretap Bob’s information. Again, it can be found that the analytical results
closely match the simulated results, verifying the developed mathematical solutions.
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Figure 1. PDF and CDF validation under different settings of RIS elements. (a,c,e) illustrate the CDF of
|τB|2 and (b,d,f) show the PDF of |τW|2 under different settings of RIS elements and channel distributions.

-20 -15 -10 -5 0 5 10 15

Transmit SNR

10
-2

10
-1

10
0

S
e
c
re

c
y
 O

u
ta

g
e
 P

ro
b
a
b
ili

ty
 (

S
O

P
)

0.6 0.7 0.8 0.9

Power Allocation 
 W

10
-2

10
-1

10
0

S
e
c
re

c
y
 O

u
ta

g
e
 P

ro
b
a
b
ili

ty
 (

S
O

P
)

(a) (b)

Figure 2. SOP performance against transmit SNR and power allocation. (a) shows the SOP with
respect to (w.r.t.) the SNR γ and (b) illustrates the SOP w.r.t. power allocation coefficient ρW.
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Next, in Figure 3, we explore the SOP performance as a function of the target data
rates, including one for Willie’s rate rW and the other for Bob’s secure rate RB, with varying
RIS elements from 12 to 20. Under the transmit SNR of 5 dB, we can obtain some insights
from the figures. First, the SOP performance in Figure 3a tends to be stable with a small
value of rW and then becomes zero when rW is larger than 1.7 bps/Hz, at which Willie
fails to decode its information, yielding information protection that is better than Bob’s.
This highlights the positive impact of transmission data on secure performance but harms
Willie’s service quality. Second, the SOP performance in Figure 3b increases with a higher
secure rate requirement, demonstrating the risk of information leakage. However, we
observe that the higher the number of RIS elements, the smaller the SOP performance. This
improvement is due to the superior signal-focusing capabilities of RISs to Bob’s expectation,
instead of Willie’s.
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Figure 3. SOP performance against target rate transmission. (a) shows the SOP w.r.t. the Willie’s
target data rates and (b) illustrates the SOP regarding the Bob’s secure rate RB.

In Figure 4, we plot the SEC performance as a function of the transmit SNR and
power allocation coefficient, as well as different numbers of RIS elements. As observed,
the analysis reveals several key insights. First, across all channel models in Figure 4a,
the SEC curves shift to the RHS as the transmit SNR increases, where the SEC becomes
saturated as γ exceeds 15 dB; however, it can be further improved with an increase in
RIS elements. Second, the SEC’s performance in Figure 4a has a decreasing trend with an
increase in the power allocation coefficient ρW, which can be interpreted as the same reason
as SOP analysis.
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Figure 4. SEC performance against transmit SNR and power allocation. (a) shows the SEC with
respect to (w.r.t.) the SNR γ and (b) illustrates the SEC w.r.t. power allocation coefficient ρW.
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5. Conclusions
In this paper, we studied the performance of RIS-secured NOMA systems, where a

joint design of power allocation and RIS’s phase shift alignment are proposed to deal with
untrusted users in NOMA transmission. Focusing on three common channel models, we
provided a generalized closed-form expression for the SEC and SOP performance. Through
numerical results, it was demonstrated that our developed mathematical frameworks
can highly predict simulation results. Additionally, it was also shown that increasing the
number of RIS elements could indeed significantly boost SEC and SOP performance.

Future studies could focus on further improving the performance of RIS-secured
NOMA systems with potential directions, including multiple transceiver transmissions
with beamforming designs, active or hybrid active-and-passive RIS operations, multiple
eavesdropper scenarios with collaborative monitoring situations, and issues of optimizing
resource power allocation to minimize SOP or maximize SEC—subject to OP constraints of
users—or address the trade-off between reliability and security performance, involving
intercept probability and outage probability.
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