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Abstract: Soil is one of the most important factors of agricultural productivity, directly
influencing crop growth, water management, and overall yield. However, inefficient soil
moisture monitoring methods, such as manual observation and gravimetric in rural areas,
often lead to overwatering or underwatering, wasting resources and reduced yields, and
harming soil health. This study offers a digital twin approach for soil moisture measure-
ment, integrating real-time physical data, virtual simulations, and machine learning to
classify soil moisture conditions. The digital twin is proposed as a virtual representation of
physical soil designed to replicate real-world behavior. We used a multispectral rotocam,
and high-resolution soil images were captured under controlled conditions. Physically
based rendering (PBR) materials were created from these data and implemented in a game
engine to simulate soil properties accurately. Image processing techniques were applied
to extract key features, followed by machine learning algorithms to classify soil moisture
levels (wet, normal, dry). Our results demonstrate that the Soil Digital Twin replicates
real-world behavior, with the Random Forest model achieving a high classification accuracy
of 96.66% compared to actual soil. This data-driven approach conveys the potential of
the Soil Digital Twin to enhance precision farming initiatives and water use efficiency for
sustainable agriculture.

Keywords: digital twin; soil classification; physically based rendering; image processing;
machine learning; smart farming

1. Introduction
Agriculture security is a multi-faceted concept that aims to protect the agricultural

sector from threats, ensure food safety, and maintain a stable food supply worldwide.
According to the United Nations, the world population has risen from 1 billion in 1800 to
7.9 billion in 2020, with forecasts of 8.6 billion in 2030, 9.8 billion in 2050, and 11.2 billion in
2100 [1]. Due to the increasing population, challenges like climate change, political instabil-
ity, and economic disparities pose significant risks to our food supply. Understanding and
tackling these challenges is vital to ensure global food security [2].

Soil is one of the most important factors of agricultural productivity, directly influ-
encing crop growth, water management, and overall yield [3]. However, in many regions,
particularly those dominated by traditional farming practices, soil moisture monitoring,
such as manual observation and gravimetric, still needs to be solved. In particular, farmers
in rural and agricultural communities often manually estimate soil conditions, using visual
observations or physical touch to determine whether watering schedules are rigid or twice
daily, morning and afternoon, regardless of whether the soil needs water. This inefficient
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approach frequently results in overwatering or underwatering, leading to wasted resources
and reduced crop yields [4].

The challenges faced in this rural context reflect a broader, global issue. According
to the Food and Agriculture Organization, 33% of the world’s soils are degraded due
to erosion, salinization, compaction, acidification, and chemical pollution [3]. Human
activities are rapidly depleting fertile topsoil at an alarming rate. Salinization of soils also
impacts more than 424 million hectares globally, considerably limiting soil fertility. These
challenges are compounded by climate change and the scarcity of scalable, accessible soil
monitoring solutions, which endanger worldwide food security [5]. These challenges high-
light the urgent need for innovative and sustainable solutions to address soil degradation
and improve agricultural productivity.

In addition to traditional manual methods, advanced technologies such as sensor-
based systems and Internet of Things (IoT) devices have revolutionized precision agricul-
ture by enabling real-time soil moisture monitoring [6,7]. However, these technologies face
limitations that hinder widespread adoption, including high costs, limited digital literacy,
reliance on stable internet connectivity, and inadequate infrastructure—all of which are key
barriers to adopting agricultural technologies, especially for smallholder farmers [8]. These
barriers underscore the need for accessible, cost-effective solutions that can be scaled to
benefit resource-constrained communities.

Although great strides have been made in smart farming, significant barriers to
adoption remain for smallholder farmers due to the costs of modern technologies, low
levels of digital literacy, and gaps in infrastructure. These unique challenges have thus
increased the need for sustainable, affordable solutions. As highlighted in [9], creating
affordable and functional digital ecosystems empowers smallholder farmers and supports
their transition to modern agricultural practices. One study highlights how soil moisture
can be monitored and accurately predicted using a digital twin framework as a cost-effective
and scalable solution that integrates real-time data and machine learning to improve crop
practices and encourage sustainable agriculture [10]. Furthermore, image processing
methods, as described in [11], have proven useful in assessing soil moisture through soil
texture and feature analysis. These techniques form an essential part of the framework
we propose.

This study proposes a novel digital twin framework for soil moisture monitoring,
integrating physically based rendering (PBR) simulations, real-time data, and machine
learning techniques. The proposed framework addresses the limitations of traditional
sensor-based systems by offering a scalable, cost-effective, and environmentally friendly
solution for precision agriculture. The integration of imaging-based methodologies within
the framework facilitates the visualization of soil conditions, thereby enabling more precise
predictions of soil moisture content. This approach addresses the distinctive needs of
smallholder farmers and facilitates their adoption of advanced agricultural practices. The
contributions of this study include the following:

• Introducing a scalable and cost-effective digital twin framework for soil moisture
monitoring.

• Using PBR simulations to improve the accuracy of soil moisture predictions.
• Integrating imaging-based methods and machine learning to improve water manage-

ment and agricultural productivity.

The rest of this paper is structured as follows: Section 2 reviews related studies and
motivation, highlighting existing gaps in soil moisture monitoring techniques and the
advantages of a digital twin framework. Section 3 discusses the concept of digital twins
in practice, focusing on their application in agriculture and soil moisture monitoring.
Section 4 introduces the proposed scheme, detailing the integration of imaging-based
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methods and machine learning into the digital twin framework. Section 5 outlines the
materials and methods, describing the experimental setup, imaging techniques, and data
analysis processes. Section 6 presents the results, showcasing the performance of the
proposed framework across different soil types. Section 7 provides a detailed discussion,
analyzing the implications of the findings for precision agriculture and identifying areas
for improvement. Finally, Section 8 concludes the study by summarizing the key findings,
addressing limitations, and proposing future research directions.

2. Related Studies and Motivation
Traditional soil moisture monitoring techniques, like manual observation and gravi-

metric analysis, are still commonly used in rural farming because of their simplicity and
affordability. Manual observation involves visual checks or physical touch to assess mois-
ture levels, but these methods are highly subjective and often unreliable [12]. Gravimetric
analysis, though more accurate, is time-consuming and labor-intensive, making it imprac-
tical for regular monitoring, especially across larger fields [13]. This inefficient approach
frequently results in overwatering or underwatering, leading to wasted resources, reduced
crop yields, and harmed soil health [12]. An easily accessible soil monitoring system is
essential, and sensor-based technologies combined with IoT offer a promising way to
provide accurate and scalable real-time moisture measurements.

Recent sensor technologies and IoT developments have significantly impacted preci-
sion agriculture, enabling real-time data collection and analysis and supporting precision
irrigation and resource management. Soil moisture sensors, such as Time-Domain Reflec-
tometers (TDRs) and capacitance probes that measure volumetric water content, provide
accurate insights into soil conditions [14]. IoT devices enhance these systems by enabling
remote monitoring and automation integrated with decision support tools, making them
the cornerstone of innovative farming practices [15]. However, the widespread adoption
of sensor-based systems has been hindered by several limitations, such as high initial
costs, dependency on stable internet connectivity, and environmental concerns from battery
use, including resource depletion, pollution, and soil contamination, all of which present
significant barriers, especially for smallholder farmers in rural areas with limited resources
and infrastructure [8,12,15–17]. These issues highlight the need for cost-effective, sustain-
able alternatives. Imaging-based solutions with digital twin technology are proposed to
overcome sensor-based limitations.

Digital twins have emerged as a powerful approach to modeling complex physical
systems in various domains, including precision agriculture. Digital twins offer a dy-
namic, digital replica of physical objects, beneficial for sustainable manufacturing and
maintenance by enabling data-driven insights, predictions, and improvements through-
out a product’s lifecycle [18]. In agriculture, digital twins enable virtual replicas of real
farms, facilitating remote management, real-time data analysis, and simulations to optimize
decision-making and resources [19]. In another study, digital twins provide insights into
soil health, irrigation needs, and environmental impacts [20]. However, current solutions
require expensive sensors, making them inaccessible for smallholder farmers [21]. A com-
bination of digital twins and imaging-based methods is proposed, providing an affordable
and scalable solution.

By building on the digital twin framework, imaging enhances simulations by provid-
ing detailed visual data for accurate soil moisture monitoring. Imaging systems, particularly
multispectral imaging, coupled with texture analysis using a Grey-Level Co-Occurrence
Matrix and classification via Artificial Neural Networks, effectively identify and classify
sashimi food quality and detect surface damage [22]. According to [23], integrating Sentinel-
1, Sentinel-2, and SMAP data improves soil moisture mapping accuracy by addressing
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spatial variability limitations and highlighting the need for advanced simulation tools. This
work integrates imaging and physically based rendering within a digital twin framework,
offering a cost-effective, sustainable solution for soil moisture mapping.

Physically based rendering (PBR), a technique originating from computer graphics,
enhances realism in soil simulations by accurately simulating light interactions with soil
surfaces based on physical properties like reflectivity and texture [24]. The approach applies
PBR within a digital twin framework to create realistic soil visualizations and improve soil
moisture classification accuracy.

Machine learning further enhances the proposed framework by enabling predictive
modeling and automation. Machine learning algorithms, such as Random Forest, SVM,
and ANNs, demonstrate excellence in managing intricate datasets with precision [25,26].
Existing studies demonstrate machine learning’s effectiveness in classifying soil moisture
based on visual, spectral, and textural features [27]. Hossain and Kabir [28] explored ma-
chine learning models for estimating soil moisture from smartphone images, highlighting
the potential of integrating such techniques within a digital twin framework for accessible
and cost-effective soil moisture assessment.

This study presents a cost-effective, adaptable, and eco-friendly approach to soil
moisture monitoring by integrating real-time physical data, virtual modeling, and machine
learning. The soil digital twin, driven by realistic PBR simulations, image processing
techniques, and predictive machine learning algorithms, delivers accurate and dependable
soil moisture forecasts. This approach addresses the limitations of sensor-based systems
and contributes to more efficient and improved agricultural productivity.

3. Digital Twin in Practice
As conceptualized by Grieves, a digital twin is a virtual model that mirrors a physical

product or system, allowing for comparison between the planned and actual states [29]. So
far, digital twins have found various applications, mostly in architecture, product design,
plant, warehouse, urban infrastructure planning and design, and medicine, to name a
few. The digital twin concept can be applied to soil moisture measurement in agriculture.
Developing a virtual soil model that integrates real-world data, simulations, and machine
learning to enhance soil moisture monitoring and management. This section bridges the
gap between existing research on soil moisture monitoring and the proposed digital twin
framework by clarifying the practical implications, definition, and evaluation criteria for
digital twins in this context.

A digital twin for soil moisture is a practical tool for monitoring and managing soil,
providing valuable insights to optimize agricultural practices and ensure sustainable soil
usage [19]. It allows us to analyze soil properties like moisture and texture in real time
within a virtual environment, separating the actual physical processes from planning
and control. For instance, as discussed in [30], it offers a way to model and optimize
irrigation strategies by creating a virtual representation of the soil–water–plant system.
This capability, which simulates the impact of different irrigation schedules on crop growth
and water usage, can significantly improve water management and contribute to soil
health and agricultural sustainability, leading to more efficient and sustainable water
management practices.

A system must encounter several key criteria to qualify as a digital twin. A critical
requirement is integrating physical data with virtual simulations, ensuring an accurate
physical system representation [29]. As hinted at in [31], a digital twin for soil moisture
measurement needs reliable data (imaging, sensors) for real-world accuracy and real-time
interaction between physical and virtual models for up-to-date, actionable feedback. An-
other important characteristic is the ability to perform high-fidelity simulations replicating
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physical conditions under various scenarios, such as changing soil moisture levels or envi-
ronmental stresses [20]. Finally, the digital twin, like the sensor guidance in [32], should
generate actionable insights for practical soil management decisions, such as optimizing
irrigation and improving soil health.

When evaluating and comparing different digital twin approaches, several key factors,
such as accuracy, scalability, integration ease, and environmental sustainability, come into
play. Accuracy is crucial in soil moisture prediction, which assesses how well the digital
twins’ predictions match real soil moisture levels. Scalability is also a key consideration
in agriculture, as solutions must be adaptable to diverse farming scales. Research on
Spatial Digital Twins (SDTs) and their applications in various fields, such as smart cities
and agriculture, demonstrates their potential for scalability [33]. It highlights how ease
of integration, including cost and ease of use, are important considerations for practical
applications. Furthermore, [21] has shown that using digital twins to improve maintenance
and lifecycle management can minimize waste and contribute to more sustainable practices.
The emphasis on modeling also suggests that digital twins can be used to consider the
environmental impact of different strategies before real-world implementation.

This study presents a novel imaging-based digital twin designed for soil moisture
monitoring. By combining multispectral imaging and physically based rendering (PBR),
this approach achieves high accuracy in replicating soil behavior and has a cost-effective
nature compared to sensor-dependent systems. The scalability and sustainability of the
digital twin systems make them quite useful for smallholder farming, further strengthening
some broader objectives within precision agriculture. Integrating imaging systems and
machine learning algorithms offers actionable insights for soil moisture classification and
irrigation optimization.

4. Proposed Scheme
The proposed framework outlines a digital twin approach that leverages advanced

imaging techniques, physically based rendering simulations, and machine learning models
to accurately predict soil moisture conditions. The proposed digital twin framework is
illustrated in Figure 1.

The main components of the proposed digital twin system are as follows:

1. Real Soil Workflow
The Real Soil Workflow involves collecting and preprocessing physical soil data to
establish the ground truth:

• Soil moisture and temperature are measured using sensors to capture the physical
properties of the soil.

• Soil samples are categorized into three moisture levels: dry, normal, and wet.
• Multispectral images are captured using six filters and lighting control via four

LED combinations (red, green, blue, and yellow) to enhance visual soil properties.

2. Digital Twin Workflow
The Digital Twin Workflow involves the generation and validation of simulated soil
environments to replicate real soil properties accurately:

• PBR Texture Creation:
Physically based rendering (PBR) techniques are utilized to develop realistic soil
textures that mimic real soil samples’ visual and structural characteristics.

• Game Engine Integration:
The generated soil textures are integrated into a game engine, enabling the simula-
tion of environmental conditions and soil interactions under controlled scenarios.

• Image Comparison:
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Real soil images and digital soil images are compared to validate the fidelity
of the digital twin. This comparison ensures that the digital twin accurately
reproduces critical properties, including texture, color, and structure of real soil.

• Rendering and Simulation:
Once validated, the digital twin is rendered to create high-quality simulations
suitable for downstream analysis, ensuring high realism and reliability.

Figure 1. The soil digital twin development scheme.

3. Data Preprocessing
A unified preprocessing and analysis pipeline is implemented for both real soil images
and digital soil images, ensuring consistency in feature extraction and classification:

• Color ratios such as Red–Green (RG), Red–Blue (RB), and Green–Blue (GB) are
computed to analyze color intensity relationships.

• Statistical measures, including Mean, Median, Standard Deviation, Min, Max,
Range, 25th Percentile, and 75th Percentile, are calculated to summarize pixel
intensities’ central tendencies and spread.

• Texture properties are evaluated using the Grey-Level Co-Occurrence Matrix
(GLCM), focusing on metrics such as Contrast, Correlation, Energy, Homogeneity,
and Entropy to assess spatial texture patterns and variability.

• Distribution metrics such as Skewness and Kurtosis are computed to assess the
asymmetry and peakedness of pixel intensity distributions.

4. Machine Learning
Advanced machine learning algorithms are employed to classify soil moisture levels
(dry, normal, wet) based on the extracted features:

• Artificial Neural Networks (ANNs) are used as deep learning models with
multiple hidden layers to capture non-linear patterns in the data.

• Random Forest (RF) is implemented as an ensemble-based decision tree algo-
rithm for robust classification.

• Support Vector Machines (SVMs) are kernel-based models optimized for high-
dimensional feature spaces.

• The dataset is divided into 70% for training and 30% for testing to evaluate
the performance of these models. Classification metrics such as accuracy, preci-
sion, recall, and F1-score are computed on the test set to ensure robustness and
reliability in soil moisture classification.

5. Comparison and Evaluation
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The final component assesses the performance of the proposed framework by
comparing the results from real and digital soil workflows and evaluating the
classification models:

• Comparison
Classification results from the actual soil workflow and the digital twin work-
flow are compared to assess the accuracy and reliability of the digital twin in
replicating real-world soil properties. This comparison ensures that the digital
twin faithfully mimics the physical characteristics of soil, including moisture
classification for the dry, normal, and wet categories.

• Evaluation
The performance of machine learning models is evaluated using standard metrics
such as accuracy, precision, recall, F1-score, Matthews Correlation Coefficient,
and other metrics, providing a comprehensive assessment of model performance.
These metrics are calculated for both workflows to determine the robustness and
effectiveness of the models in classifying soil moisture levels. The evaluation
ensures that the digital twin framework produces results comparable to real soil
data, validating its application for soil moisture analysis.

5. Materials and Methods
In this study, we investigated the ability of digital soil twins to replicate real-world

soil samples’ properties accurately. The research used a comparative approach, using a
custom imaging system to collect data on physical soil samples and advanced physically
based rendering techniques to generate digital soil models. The subsequent sections
provide a detailed account of the materials and methodologies used for real and digital
soil experiments.

5.1. Materials
5.1.1. Real Soil Workflow

This study collected data from four representative soil types: Loam, Clay, Sand,
and Silt, which collectively encompass the range of soil varieties typically encountered
in agricultural contexts. The samples were prepared and categorized into three moisture
levels: dry (moisture content below 12%), normal (moisture content between 12% and 21%),
and wet (moisture content above 21%).

A custom-built multispectral rotocam was employed to collect real soil data. The roto-
cam, controlled by a Raspberry Pi 3, was equipped with six spectral filters (purple, blue,
green, yellow, brown, and red), enabling high-resolution image capture across various spec-
tral ranges. The camera was mounted on a tripod, and the distance between the camera and
the soil sample was maintained at a constant 40 cm to ensure consistency across all images.
The experiments were conducted under room temperature conditions. The experimental
setup, including the rotocam and soil sample placement, is shown in the Figure 2.

Four high-intensity Light Emitting Diodes (LEDs)—blue (465–470 nm), green
(520–525 nm), yellow (590–610 nm), and red (630–640 nm)—provided illumination. These
LEDs were arranged into 15 unique lighting combinations to ensure sufficient spectral di-
versity in the captured images. The LEDs were controlled through a resistor-based circuit
integrated with the Raspberry Pi, allowing precise LED intensity and sequence management.
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Figure 2. Experimental setup for real soil: (Left) Indoor setup for soil moisture analysis with LED
lighting and real-time data display. (Right) Low-light indoor setup capturing soil properties with
LED lighting for digital twin modeling.

Soil moisture levels were measured using a Vernier soil moisture sensor, with values
expressed as percentages. To maintain consistency, an ambient temperature sensor recorded
the environmental conditions during the experiments.

5.1.2. Digital Twin Workflow

The digital soil experiment was conducted using physically based rendering (PBR)
techniques to replicate the optical and physical properties of the real soil used in the
experiment. Digital soil twins were created for the same four soil types and moisture levels
as those used in the real soil workflow. The implementation and experimental setup in
Unreal Engine, including camera placement, lighting configurations, and spectral filters,
are shown in Figure 3.

Figure 3. Experimental setup in Unreal Engine for soil texture and lighting analysis: (Left) daylight
scene with camera placement and spotlight direction shown by arrows; (Right) simulation of blue
LED lighting effect on soil texture.

The soil models, filters, and LED configurations were implemented as materials within
Unreal Engine to replicate the real soil setup accurately. A Cine Camera Actor was used to
simulate the camera system, with LED light sources represented as Spotlights for precise
control over intensity, directionality, and color. The arrows shown in the figure indicate
the directionality of the spotlights, which play a crucial role in accurately simulating the
lighting conditions of the experiment. The spectral filters were set directly within the
camera settings, enabling the generation of filtered images for each lighting configuration.

To ensure consistency, all ambient light sources, including sunlight, were manually
disabled, creating a dark environment to prevent interference with the controlled LED
lighting setup. Exposure settings on the Cine Camera Actor were also manually adjusted
to match the lighting conditions and optimize image quality. These adjustments ensured
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that only the LED light sources contributed to the illumination of the digital soil models,
maintaining a controlled and replicable setup.

Using Materialize, an open-source application, PBR materials were developed based
on the real photos taken during the study to generate texture maps, including albedo,
normal, roughness, metallic, and ambient occlusion (AO). The open-source GNU Image
Manipulation Program (GIMP) (version 2.10.38) was utilized to create and refine specular
maps manually, ensuring an accurate representation of surface reflectivity and glossiness
under varying moisture conditions. These texture maps captured the soil samples’ key
visual and physical characteristics.

The digital soil twins were implemented in Unreal Engine, which provides an efficient
real-time rendering and simulation platform. The soil models were rendered under experi-
mental conditions that mimicked the real soil setup, including camera placement, lighting
configurations, and spectral filters. The use of Unreal Engine allowed precise adjustments
to lighting and material properties, ensuring consistency and fidelity in the digital dataset.
Simulations were performed using 15 unique lighting combinations to replicate the spectral
diversity observed in the real soil experiments.

The digital soil models were validated by comparing their visual and spectral proper-
ties to the corresponding real soil data to ensure consistency and accuracy. Rendering was
conducted on a high-performance MSI laptop equipped with 16 GB of RAM, an NVIDIA
GeForce RTX 3050 Ti GPU, and a 12th Gen Intel(R) Core(TM) i7-1280P processor (2.00 GHz).

5.2. Methods

The real soil experiment was designed to capture high-quality datasets for training
machine learning models to predict soil moisture levels. A systematic workflow, including
the innovative use of multispectral images, was developed to measure soil moisture and
extract relevant features for subsequent analysis. As illustrated in the framework, the ex-
periment followed the proposed scheme in Figure 1 to ensure consistency between real soil
and digital twin workflows.

5.2.1. Data Collection for Real Soil Workflow

As illustrated in Section 5.1.1 regarding the framework depicted in Figure 1, the initial
phase of the research entailed data acquisition from physical soil samples. The study encom-
passed four representative soil types: loam, clay, silt, and sand, which were analyzed under
three distinct moisture conditions: dry, normal, and wet. A Vernier soil moisture sensor
measured soil moisture content, while room temperature was also recorded to maintain a
controlled environmental condition. The soil samples were categorized according to their
respective moisture levels based on these measurements.

The images were acquired with a multispectral rotocam controlled by a Raspberry
Pi 3. The imaging system used six spectral filters to isolate specific wavelengths of light,
enabling enhanced feature extraction. The details of the filters are presented in Table 1.

Table 1. Specifications of spectral filters used in the imaging system.

Filter Name Color Spectral Range
(nm)

Intensity
Coefficient

Filter1 Purple <380 0.480
Filter2 Blue 380–480 0.608
Filter3 Green 480–560 0.828
Filter4 Yellow 560–590 0.933
Filter5 Brown 590–630 0.693
Filter6 Red >630 0.427
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These filters facilitated the spectral separation of light reflected from the soil, providing
critical data for feature extraction in subsequent machine learning analysis.

To ensure consistent and replicable lighting conditions, the soil samples were illumi-
nated using four high-intensity LED light sources, each with specific wavelengths and
intensities. The details of the LEDs are presented in Table 2.

Table 2. Specifications of LEDs used for soil illumination.

LED Color Wavelength (nm) Intensity (mcd) Intensity
Coefficient

Blue 465–470 8400 0.961
Green 520–525 39,000 0.958
Yellow 590–610 19,000 0.974

Red 630–640 12,500 0.961

This precise LED and filter configuration ensured a controlled and consistent lighting
environment for capturing high-quality soil images. The LEDs were configured into
15 unique lighting combinations. For each combination, images were sequentially captured
through the six spectral filters, resulting in 90 images per soil sample and moisture condition.

5.2.2. Data Collection for Digital Twin Workflow

According to Section 5.1.2 regarding the framework given in Figure 1, data collection
for the digital twin experiment involved simulating the optical and physical properties of
real soil using physically based rendering (PBR) techniques in Unreal Engine. Digital soil
models were created for four soil types under the same moisture conditions as the real soil
experiment (dry, normal, and wet). These digital models replicated the properties of real
soil samples to provide comparable datasets.

The physically based rendering (PBR) materials applied to the digital soil models
were designed to simulate realistic surface characteristics. These materials incorporated
color reflectance, texture, and moisture-dependent surface effects. Using high-fidelity PBR
techniques in Unreal Engine, the soil models accurately mimicked the interaction of light
with soil surfaces.

The virtual imaging setup in Unreal Engine replicated the controlled conditions of
the real soil experiment. The LED lighting system, composed of four virtual light sources
(red, green, blue, and yellow), was calibrated to provide consistent lighting conditions.
The intensity and directionality of the LEDs were carefully configured to mimic the real
setup. At the same time, rendering was conducted in low-light or dark conditions to
minimize interference from ambient light. The specific LED settings, including RGB values
and intensity coefficients, are shown in Table 3.

Table 3. Specifications of LEDs used for digital soil illumination.

LED Color RGB Value Intensity (cd) Intensity
Coefficient

Blue (0, 0, 1) 2.0 0.961
Green (0, 1, 0) 1.7 0.958
Yellow (1, 0.5, 0) 1.5 0.974

Red (1, 0, 0) 3.0 0.961

Six virtual color filters (purple, blue, green, yellow, brown, and red) were applied
during rendering to replicate the spectral effects of real soil imaging. Each filter simulated
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specific spectral properties based on its RGB values and intensity coefficients, as detailed in
Table 4.

Table 4. Specifications of filters used for digital soil imaging.

Filter Name Color RGB Value Intensity
Coefficient

Filter1 Purple (0.681, 0.185, 0.611) 0.480
Filter2 Blue (0.072, 0.381, 0.814) 0.608
Filter3 Green (0.642, 0.837, 0.359) 0.828
Filter4 Yellow (0.967, 0.909, 0.255) 0.933
Filter5 Brown (0.435, 0.166, 0.052) 0.693
Filter6 Red (1, 0.056, 0.054) 0.427

Moisture levels were simulated by dynamically adjusting the material properties of
the soil models. Changes in specularity, glossiness, and darkening were applied to reflect
varying moisture conditions accurately. Before rendering, a side-by-side comparison of
real and digital soil images was conducted to validate their similarity, ensuring that the
digital models accurately represented the optical properties of the real samples, as shown
in Figure 4.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4. Comparison of real soil images (top row) and digital twin images (bottom row) across
different color channels: (a,e) blue; (b,f) green; (c,g) red; (d,h) yellow.

For each combination of LED light source and filter, images were rendered using
Unreal Engine’s real-time rendering pipeline, producing six filtered images for each of the
15 lighting combinations. This process resulted in 90 images per soil type and moisture
condition. The rendering process was efficient, with each image requiring approximately
3–3.33 s. A single soil type and moisture condition (e.g., dry loam) produced 900 images,
while a complete dataset for one soil type (all moisture conditions) resulted in 2700 images.
Rendering all 2700 images required approximately 2.5 h.

As shown in Figure 4, slight cracks are visible in the digitally rendered clay soil images.
These cracks are caused by the extreme dryness of the clay soil during the experiments
and were accurately captured in the rendering process. Despite these artifacts, the digital
models remain faithful representations of the physical soil samples.

To ensure consistency, virtual environmental conditions, such as ambient light and
temperature, were kept constant across all simulations. The generated images were visually
inspected after rendering to confirm accurate feature representation.
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5.2.3. Feature Extraction

The acquired images from the real soil and digital soil experiments were processed
at their original resolutions of 640 × 480 pixels, as captured and rendered. No resizing
or additional preprocessing was conducted to preserve the integrity of the data. Instead,
feature extraction was directly applied to the images to extract meaningful characteris-
tics, including color ratios, statistical features, texture features, and distribution metrics,
for further analysis.

1. Color Ratios
Color ratios are critical features that capture the relative intensity of different color
channels in soil images, providing insights into spectral properties that vary with
soil type and moisture conditions [11]. These ratios are computed by comparing the
intensity values of the red, green, and blue channels, normalized for each pixel in
the image.

• Red/Green Ratio: This ratio captures the balance between reddish and greenish
hues, which can correlate with soil mineral content and organic matter levels;

• Red/Blue Ratio: This ratio highlights the balance between reddish and
bluish tones, which may indicate the presence of specific soil constituents or
moisture content;

• Green/Blue Ratio: This ratio reflects the relative abundance of greenish and
bluish shades, which can be linked to soil organic matter, water content, and mi-
crobial activity.

These color ratios serve as valuable features for the subsequent machine learning
models, enabling the digital twin system to accurately predict soil moisture conditions
based on the visual characteristics of the soil samples.

2. Statistical Features
Statistical measures are fundamental features used to describe the distribution and
variability of pixel intensity values in soil images, similar to their application in
multispectral imaging for food and fruit classification [34]. These measures provide
insights into the overall characteristics of the image, aiding in distinguishing soil
types and moisture levels. The statistical measures extracted include Mean, Median,
Standard Deviation, Min, Max, Range, 25th Percentile, and 75th Percentile [35].

3. Texture Features
This study used the Grey-Level Co-occurrence Matrix (GLCM) technique to analyze
texture. The GLCM is a square matrix that can provide insights into the spatial
distribution of gre00y-level pixels by examining their immediate neighbors within the
texture image [22].
The co-occurrence matrix CCM = CC(Dx ,Dy)(N, M) is defined as follows:

f (n) = CCD
M(g1, g2) =

1
N · M

N

∑
n=1

M

∑
m=1

1 if I(n, m) = g1 ∧ I(n + Dx, m + Dy) = g2,

0 otherwise,
(1)

where I(N, M) is the image of size, N × M, (n, m) is a central pixel (reference pixel),
and the D = (Dx, Dy) offset is defined as Dx = D · cos(θ) and Dy = D · sin(θ), where
θ defines the direction of the matrix from the central pixel (nc, mc), and D is the
distance from the central pixel (nc, mc).
From the co-occurrence matrix CCM, each θ direction (i.e., contrast, correlation, energy,
and homogeneity) can be calculated as follows:
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Contrast =
G

∑
i=1

G

∑
j=1

(i − j)2CCD
M(i, j)

µi =
1
N

G

∑
k=1

CCD
M(i, k)

µj =
1
M

G

∑
k=1

CCD
M(k, j),

(2)

Correlation =
1

GxGy

G

∑
i=1

G

∑
j=1

ijCCD
M(i, j)− µiµj, (3)

Energy =
G

∑
i=1

G

∑
j=1

(
CCD

M(i, j)
)2

, (4)

Homogeneity =
G

∑
i=1

G

∑
j=1

CCD
M(i, j)

1 + |i − j| , (5)

where i is the number of pixels in the vertical direction, j is the pixels in the horizontal
direction, µ is the mean of the probability matrix, and σ is the standard deviation of
the probability matrix. In our proposed work, we considered only one neighboring
pixel D (D = 1), which defines four possible spatial relationships (directions):

[0 1] for 0◦, [−1 1] for 45◦, [−1 0] for 90◦, and [−1 − 1] for 135◦.

In addition to the features derived from the Grey-Level Co-occurrence Matrix (GLCM),
entropy is another critical metric that provides insights into the complexity and ran-
domness of the pixel intensity distribution. Entropy captures the overall unpredictabil-
ity in the image data, offering complementary information to the spatial relationships
described by GLCM features. It is calculated as follows:

Entropy = −
N

∑
i=1

pi log2(pi), (6)

where pi represents the probability of a pixel intensity value i occurring in the image,
and N is the total number of unique intensity values in the image. Higher entropy
indicates greater randomness and complexity, while lower entropy reflects a more
uniform distribution of pixel intensities [36].

4. Distribution Metrics
Additionally, measures of distribution shape, including Skewness and Kurtosis, were
analyzed. Skewness describes the asymmetry of the pixel intensity distribution,
while Kurtosis reflects the peakedness or flatness of the distribution. These higher-
order statistical moments provide further insights into the characteristics of the soil
images [37]. High Kurtosis indicates a distribution with heavy tails and a sharp
peak, while low Kurtosis suggests lighter tails and a flatter peak. These metrics
provide critical insights into the distribution’s shape, allowing for the analysis of
subtle variations in soil texture and moisture conditions.

5.2.4. Soil Dataset Overview

This research collected datasets for four common soil types: loam, clay, sand, and silt,
under controlled conditions. For each soil type, images were categorized into three moisture
levels: dry, normal, and wet. The datasets were created using real soil experiments and
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digital twin simulations in Unreal Engine, ensuring consistency and comparability between
the two approaches.

The real soil dataset was collected by capturing high-resolution images of physical
soil samples under varying moisture conditions. Each soil type was prepared by adjusting
its moisture content and allowing sufficient drying time for the dry category. The real soil
dataset is summarized in Table 5.

Table 5. Summary of real soil dataset.

Soil Type Number of
Samples Drying Time Moisture

Categories

Loam 8796 3 days (56 h) Dry, Normal, Wet
Clay 6198 10 days (240 h) Dry, Normal, Wet
Sand 4476 1 day (23 h) Dry, Normal, Wet
Silt 5028 2 days (35 h) Dry, Normal, Wet

The dataset reflects each soil type’s unique physical and moisture-related characteris-
tics, providing a comprehensive basis for feature extraction and classification tasks.

The digital twin dataset was generated by simulating soil properties in Unreal Engine
using physically based rendering (PBR) techniques. High-resolution images were rendered
under controlled lighting and filter configurations, replicating the conditions of the real
soil experiments. Each soil type was simulated to produce a consistent number of samples
across moisture levels. The digital twin dataset is summarized in Table 6.

Table 6. Summary of digital twin dataset.

Soil Type Number of
Samples Render Time Moisture

Categories

Loam 2700 2 h 25 min Dry, Normal, Wet
Clay 2700 2 h 20 min Dry, Normal, Wet
Sand 2700 2 h 17 min Dry, Normal, Wet
Silt 2700 2 h 16 min Dry, Normal, Wet

The digital twin dataset was designed to replicate the physical and optical character-
istics of the real soil samples, ensuring that both datasets could be directly compared in
subsequent analysis.

5.2.5. Machine Learning

The machine learning framework was implemented using Python 3.10, with scikit-
learn 1.0.2 for specific algorithms, and TensorFlow 2.10.0 with a Keras frontend for deep
learning-based approaches. The extracted features obtained in Section 5.2.3, including
color ratios, texture metrics, statistical measures, and distribution metrics, were used as
input variables for the machine learning models. These features captured the soil images’
spectral, spatial, and statistical properties under varying lighting and moisture conditions.
The output of the models was the soil moisture class, categorized into three levels: dry,
normal, and wet.

In the data preparation stage, the target variable (soil moisture class) was numerically
encoded as 0 (dry), 1 (normal), and 2 (wet). The features were standardized using the
StandardScaler from Scikit-learn to ensure equal weight for all variables during training.
The dataset was then split into training (70%) and testing (30%) subsets, with stratified
sampling to preserve the class distributions across splits.

Three machine learning models, Artificial Neural Networks (ANNs), Support Vector
Machines (SVMs), and Random Forests (RFs), were trained to classify soil moisture.
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The first machine learning model used in this study was Artificial Neural Networks
(ANNs), which are powerful tools for solving classification problems due to their abil-
ity to learn complex patterns from data [38]. This study implemented an ANN using
TensorFlow and Keras to classify soil moisture levels into three categories: dry, normal,
and wet. The network architecture consisted of an input layer, four fully connected hidden
layers, and an output layer. Each hidden layer employed the Rectified Linear Unit (ReLU)
activation function to introduce non-linearity:

f (x) = max(0, x), (7)

while dropout regularization (rate: 0.3) and batch normalization were applied to stabi-
lize the learning process and prevent overfitting. The output layer utilized the Softmax
activation function to compute probabilities for each soil moisture class:

f (xi) =
exi

∑N
j=1 exj

, (8)

The ANN was trained using the RMSprop optimizer with a learning rate of 0.0005
and sparse categorical cross-entropy as the loss function:

L = − 1
N

N

∑
i=1

log(pi,yi ), (9)

where pi,yi is the predicted probability for the true class yi, and N is the batch size [39].
The training was conducted for up to 100 epochs with early stopping and learning rate
schedules to optimize performance. These techniques enabled the ANN to classify soil
moisture levels robustly based on extracted features.

The next machine learning model was Support Vector Machine (SVM), implemented
to classify soil moisture into three categories: dry, normal, and wet. The model utilized the
SVC class from scikit-learn, with hyperparameter tuning performed using GridSearchCV.
The SVM decision function is expressed as:

f (x) =
n

∑
i=1

αiyiK(xi, x) + b, (10)

where xi represents the support vectors, αi are the Lagrange multipliers, yi are the class
labels of the support vectors, K(xi, x) is the kernel function, and b is the bias term. The radial
basis function (RBF) kernel was primarily used, defined as follows:

K(xi, x) = exp(−γ∥xi − x∥2), (11)

where xi and x represent data points, and γ controls the kernel’s influence. The founda-
tional theory of SVMs, including the RBF kernel, was introduced by Cortes and Vapnik [40].
Hyperparameters, including C (regularization parameter), kernel type (linear, RBF, polyno-
mial), and γ, were tuned using five-fold cross-validation.

The third machine learning method used in this research is Random Forest (RF),
an ensemble learning approach that constructs multiple decision trees and aggregates
their predictions for robust classification performance [25]. RF was implemented using
100 estimators to classify soil moisture into three categories: dry, normal, and wet. Each
tree was trained on a random subset of the data (bagging), with random feature selection
at each split, ensuring diversity among the trees and reducing overfitting.

The RF classifier predicts the final class using majority voting:

ŷ = mode{ht(x)}T
t=1, (12)
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where ht(x) represents the prediction of the t-th tree, and ŷ is the aggregated class. Prob-
abilities for each class were calculated as the average of the probabilities predicted by
all trees.

Model performance was evaluated using several metrics derived from the confusion
matrix, which summarizes the classification results. The true positives (TPs) represent
correctly classified instances for a given class, true negatives (TNs) are correctly classified
instances for all other classes, false positives (FPs) are instances incorrectly classified as
the target class, and false negatives (FNs) are instances belonging to the target class but
classified as another class [41]. These parameters formed the foundation for constructing the
evaluation metrics, including accuracy (A), precision (P), recall (R), F1-score (F1), Matthews
Correlation Coefficient (MCC), and other metrics, providing a comprehensive assessment
of model performance.

Additionally, the models were evaluated using the area under the Receiver Operating
Characteristic curve (ROC Area) and the precision–recall Curve area (PRC Area). (ROC
Area) mmeasures the model’s ability to discriminate between classes, while (PRC Area)
focuses on performance under imbalanced class distributions.

6. Results
As described in the preceding sections of the data processing methodology, the real

soil and digital soil datasets were subjected to the same feature extraction technique in
Section 5.2.3. This consistent approach ensures that the input data for both datasets is
uniform and comparable, enabling a robust and rigorous analysis. The extracted features
provide a constant and reliable foundation for evaluating the performance of machine
learning models across real soil and digital soil twin datasets. Following the feature
extraction phase, classification tasks were performed using various machine learning
models. The results of the classification models applied to real soil and digital twin datasets
are presented in Table 7, along with the corresponding performance comparisons illustrated
in Figure 5, provide detailed insights into the classification performance for neural networks
(NNs), Random Forest (RF), and Support Vector Machine (SVM) across the four soil types
(loam, clay, silt, and sand). The confusion matrices, depicted in Figures 6–8, illustrate the
classification performance, providing detailed insights into true positive, false positive,
and misclassification rates.

Table 7. Model accuracy comparison for real soil vs. digital twin.

Soil Type Model Accuracy (Real Soil) Accuracy (Digital Twin)

Loam Neural Networks (NN) 93.82% 89.14%
Random Forest 96.89% 95.67%

Support Vector Machine
(SVM) 94.80% 88.76%

Clay Neural Networks (NN) 91.34% 91.11%
Random Forest 95.32% 92.22%

Support Vector Machine
(SVM) 91.29% 95.06%

Silt Neural Networks (NN) 83.43% 89.26%
Random Forest 96.02% 96.66%

Support Vector Machine
(SVM) 87.54% 92.83%

Sand Neural Networks (NN) 85.11% 87.41%
Random Forest 95.60% 92.96%

Support Vector Machine
(SVM) 87.49% 90.00%

As shown in Figure 5, Random Forest achieved the best performance for both real
soil 96.89% and digital twin data 95.67% for loam soil. However, ANN and SVM showed
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noticeable declines in digital twin accuracy, which aligns with the confusion matrices in
Figures 6–8, indicating increased misclassifications for loam’s variable composition.

Figure 5. Accuracy comparison across soil types.

For clay soil, Random Forest achieved the highest accuracy for real soil, 95.32%, while
SVM slightly outperformed RF on digital twin data, 95.06% vs. 92.22%. The confusion
matrices Figures 6–8 highlight the strong predictive performances of both RF and SVM for
this relatively homogenous soil type.

Silt soil results show Random Forest as the most effective model, achieving the highest
accuracy for both real 96.02% and digital twin datasets 96.66%, as illustrated in Figure 5.
The confusion matrices in Figures 6–8 reveal reduced misclassifications for digital twin
data, indicating that silt’s intermediate properties are well simulated in the digital twin.

For sand soil, Random Forest again demonstrated the best performance for both real
(95.60%) and digital twin (92.96%) datasets, with SVM following closely on the digital twin
at 90.00%. The confusion matrices Figures 6–8 highlight the challenges ANN faced with
this soil type, particularly for digital twin data.

Figure 6. Confusion matrix results for Artificial Neural Networks (ANNs): real soil (top row) vs.
digital twin (bottom row).
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As shown in Figure 6, ANN exhibited moderate classification performance across
soil types. For real soil datasets, ANN achieved high accuracy for loam, 93.82%, and clay,
91.34%, while its performance declined for silt (83.43%) and sand (85.11%). On the digital
twin datasets, ANN’s accuracy decreased for all soil types, with significant drops for loam
(89.14%) and sand (87.41%), highlighting its sensitivity to subtle variations that may not be
fully captured in the digital twin framework.

Figure 7. Confusion matrix results for Random Forest (RF): real soil (top row) vs. digital twin
(bottom row).

Random Forest consistently achieved the highest accuracy across real soil and digital
twin datasets, as depicted in Figure 7. For real soil, RF achieved 96.89% for loam, 95.32%
for clay, 96.02% for silt, and 95.60% for sand. On digital twin data, RF maintained strong
performance, with accuracies of 95.67% for loam, 92.22% for clay, 96.66% for silt, and 92.96%
for sand. These results underscore RF’s robustness and ability to generalize effectively
across datasets.

Figure 8. Confusion matrix results for Support Vector Machine (SVM): real soil (top row) vs. digital
twin (bottom row).

As shown in Figure 8, SVM performed competitively on both real and digital twin
datasets. For real soil, SVM achieved high accuracy for loam (94.80%) and clay (91.29%),
with slightly lower performance for silt (87.54%) and sand (87.49%). On the digital twin,
SVM’s accuracy improved for clay (95.06%) and silt (92.83%) but decreased for loam
(88.76%) and sand (90.00%). These results highlight SVM’s effectiveness in structured
datasets such as clay and silt.
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7. Discussion
7.1. Key Findings

The results confirm the effectiveness of the digital twin framework in replicating soil
dynamics and enabling accurate soil moisture classification. However, the accuracy of real
soil data was consistently higher than that of digital twin data, particularly for machine
learning models like ANN and SVM.

This discrepancy is particularly evident for variable soil types like loam, which ex-
hibit complex properties such as irregular texture and moisture retention patterns. These
challenges could stem from limitations in the physically based rendering (PBR) simula-
tions, which may not fully capture the intricate variability of loam soil structures or their
optical properties. Addressing these inconsistencies will require further refinement of
PBR parameters, including adjustments to material reflectance, absorption, and texture
mappings. Introducing subclasses for variable soil types, such as sandy loam, silty loam,
or fine sand, could provide a more granular representation of soil variability and improve
classification accuracy. The performance gap was more pronounced for variable soil types,
such as loam and sand, which exhibit significant variability. In contrast, the digital twin
performed comparably to real soil data for structured soils like clay and silt, demonstrating
its reliability.

7.2. Performance Evaluation

Overall, the digital twin model is reliable for soils with clear structure, like clay and
silt, but shows limitations for soils with more significant variability, such as loam and sand.
Incorporating subclasses for complex soils into the analysis could refine the model’s ability
to handle the inherent variability within these types. These findings suggest that incor-
porating more diverse training data, particularly for complex soils, could improve model
performance by enhancing its ability to generalize across soil types. Additionally, augment-
ing the digital twin framework with high-fidelity simulations and dynamic environmental
parameters could bridge the observed gaps.

While the digital twin provided a scalable and cost-effective alternative for data
generation, its limitations in capturing variability for complex soils like loam and sand
highlight areas for improvement; the success of this framework also depends on the
availability of high-quality and representative data for training machine learning models.
As detailed in Section 5.1.1 and illustrated in Figure 1, the study employed standardized
protocols for soil sampling and imaging to ensure data consistency. Advanced multispectral
imaging with six spectral filters and controlled lighting conditions using high-intensity
LEDs (Tables 1 and 2) was used to capture diverse soil characteristics under varying
moisture levels. These rigorous methods are critical to building robust datasets for model
training and improving the reliability of the framework.

7.3. Validation and Limitations

Multispectral imaging with visible light combinations (e.g., red, green, blue, and yel-
low LEDs) leverages soils’ distinct reflectance and absorption properties to distinguish
moisture levels. Wetter soils generally appear darker due to reduced reflectance, while drier
soils reflect more light. These light combinations can pick up slight soil texture, moisture,
and color changes. This information is critical for the training of computer programs to iden-
tify the moisture content of soil accurately. To validate the digital twin framework, moisture
levels were simulated by adjusting material properties such as specularity, glossiness,
and darkening to reflect varying conditions. Before rendering, a side-by-side comparison
of real and digital soil images was conducted to validate their similarity, ensuring that the
digital models accurately represented the optical properties of the real samples, as shown



Electronics 2025, 14, 395 20 of 26

in Figure 4. This validation ensures that the digital twin framework can simulate realistic
soil conditions essential for accurate classification.

Physically based rendering simulations enhance scalability and cost-effectiveness,
but these simulations face limitations in replicating complex soil structures or environ-
mental factors, such as organic matter decomposition. Although PBR simulations provide
significant scalability and cost-efficiency, they cannot currently model complex biophys-
ical processes such as microbial activity and soil nutrient dynamics. Addressing these
limitations will improve their fidelity for precision agriculture applications.

To complement the limitations of PBR simulations, machine learning algorithms
play a critical role in bridging gaps by analyzing complex datasets and predicting soil
moisture levels. Algorithms like ANNs, SVMs, and Random Forest showed varying
performance levels, with overfitting being challenging on complex datasets like loam and
sand. Regularization techniques, cross-validation, and hyperparameter tuning were applied
to address this issue, but challenges such as model transparency and interpretability persist,
particularly for ANNs. In future implementations, techniques such as SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) could
be adopted to enhance the interpretability of machine learning predictions [42].

7.4. Real-Time Applications

We also explored how well the framework could perform in real time under realistic
conditions. While it shows promise, more optimization is needed to improve processing
speed and data management to ensure reliable operation on live data feeds. Early tests
suggest that the system could be adjusted to make immediate decisions by making small
changes to the algorithms and workflows that run the system. Furthermore, addressing
the challenges posed by real-world lighting variability remains a critical objective for
outdoor applications.

Incorporating preprocessing techniques, such as illumination normalization, adap-
tive contrast enhancement, and real-time image correction, is expected to enhance the
framework’s robustness under varying lighting conditions. Additionally, future improve-
ments in handling temporal dependencies, such as varying light intensities and changing
moisture levels, could benefit from advanced sequence-learning techniques like attention
mechanisms in video transformers, which have demonstrated success in dynamic scenarios
and could enhance the robustness of multispectral imaging pipelines [43]. This adaptabil-
ity renders the framework a promising contender for real-time applications in precision
agriculture, including outdoor scenarios.

7.5. Comparative Analysis

To better understand the framework, we compared the digital twin framework’s
performance to other leading soil moisture monitoring approaches. We evaluated key
factors such as accuracy, cost, scalability, sustainability, and applicability to smallholder
farming operations. This framework’s affordability is enhanced by relying on low-cost
components, such as Raspberry Pi-based multispectral rotocams, significantly reducing
setup costs compared to sensor-based or satellite imagery-based IoT systems. The modular
design also supports scalability and ease of integration, making it accessible to smallholder
farmers. Furthermore, integrating digital twin simulation is key to achieving cost efficiency.
It allows for virtual testing and evaluation before real-world implementation, eliminating
the need for extensive physical testing. This ensures practical deployment in settings
with limited resources. Digital twin simulations also support environmentally sustainable
practices by reducing physical resource consumption, such as soil and water, during the
experimental phase.
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A comparative analysis with existing soil monitoring approaches is necessary to pro-
vide a comprehensive understanding of the capabilities of the digital twin framework. This
comparison highlights the framework’s advantages over traditional and modern methods
while addressing challenges related to cost, scalability, and adaptability in agricultural ap-
plications. Traditional gravimetric methods, while excelling in accuracy, are labor-intensive
and impractical for large-scale applications. In contrast, sensor-based IoT and satellite
ML approaches provide scalability but face constraints in terms of high costs and exten-
sive infrastructure requirements [44,45]. Imaging-based methods balance accuracy and
sustainability, yet they are often hindered by significant computational demands [11].

While IoT-based soil monitoring excels in real-time data acquisition and scalability,
it often faces limitations such as high setup costs, reliance on stable internet connectivity,
and potential environmental concerns due to battery disposal [44,45]. These challenges, par-
ticularly in resource-limited settings, make the digital twin framework a more cost-effective,
adaptable, and environmentally friendly alternative. By using low-cost modular compo-
nents, such as Raspberry Pi-based multispectral rotocams, and reducing electronic waste
through component reuse and upgrades, the digital twin framework offers virtual testing
via simulations. This minimizes the need for physical experimentation, conserves resources,
and addresses the unique needs of smallholder farming applications, as summarized in
Table 8.

This comparison illustrates how the proposed digital twin framework addresses
the limitations of existing methods, particularly in terms of cost, scalability, and suit-
ability for smallholder farms. While gravimetric methods excel in accuracy, they are
labor-intensive and impractical for large-scale applications. Sensor-based IoT and satellite
ML approaches offer scalability but are constrained by costs and infrastructure require-
ments [44,45]. Imaging-based methods balance accuracy and sustainability but are limited
by computational demands [11]. On the other hand, the digital twin framework uniquely
combines high accuracy with cost-effectiveness and adaptability, making it a promising
and practical solution for precision agriculture.

Table 8. Comparison of soil moisture measurement methods.

Feature Proposed
Framework

Gravimetric-Based
Methods Sensor-Based IoT Satellite Imagery +

ML Imaging-Based

Accuracy High (reliable
predictions) High High (real-time

monitoring)
Moderate to High
(spatial coverage)

High (detailed visual
data)

Cost Low (imaging-based) High
(labor-intensive)

Medium (sensor
costs)

Medium to High
(data acquisition)

Medium
(computational
resources)

Scalability High (adaptable) Low (labor-intensive) High (networked
sensors)

High (broad
coverage)

Medium
(computational
resources)

Sustainability High (minimal
resources) High (no electronics) High (low power) Medium (data

processing)
High (minimal
intervention)

Suitability for
Smallholder Farms High (cost-effective) Low (labor-intensive) High (adaptable) Medium (resolution

limitations)

Medium
(computational
needs)

7.6. Future Directions

Despite its advantages, implementing and maintaining such systems may face practical
challenges in developing countries, including limited technical skills and infrastructure.
To address these issues, the proposed framework supports modular pre-assembled kits
and localized training programs. In addition, its simplified interfaces and the ability to test
virtually through digital twin simulations provide a wide range of options for resource-
limited settings.
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From an environmental perspective, the proposed system minimizes ecological im-
pact by relying on digital twin simulations. These simulations significantly reduce the
need for physical experiments, thereby conserving water and reducing soil disturbance.
Furthermore, the framework employs energy-efficient components, such as Raspberry Pi
and LEDs, which align with environmentally sustainable practices. The modular design
further reduces electronic waste by enabling easy upgrades or replacements of specific
components, extending the system’s lifecycle. These measures ensure that the digital twin
framework remains accessible and practical across diverse agricultural contexts.

These findings suggest that the digital twin framework can be effectively employed
in precision agriculture and soil management applications, especially for structured soils.
Further research on improving simulation fidelity and integrating additional environmental
parameters could expand its applicability to more diverse soil conditions.

8. Conclusions and Future Work
8.1. Summary of Findings

This study showcases the viability of a digital twin framework for soil moisture predic-
tion, bridging the gap between traditional manual assessments and emerging sensor-based
technologies. By combining the advantages of machine learning and virtual simulations,
this approach promises to deliver a scalable, cost-effective, and environmentally friendly
solution to address the global challenge of sustainable soil management. The digital twin
approach demonstrates promising potential as a cost-effective and scalable alternative
to physical soil experiments, with performance matching that of real soil for specific soil
types. While some discrepancies remain for loam and sand, the consistent outperformance
of the Random Forest model positions it as the optimal choice for future soil moisture
classification endeavors. By integrating advanced visualization techniques and imaging
with multiple wavelengths of light (multispectral or hyperspectral imaging), we can gather
more detailed information for machine learning models. This enables the models to better
distinguish between soil types and their moisture content.

8.2. Future Improvements to the Digital Twin Framework

While the current study demonstrates the effectiveness of multispectral imaging
with visible light combinations for distinguishing soil moisture levels, we have not yet
systematically evaluated whether certain combinations are more effective for specific soil
types or conditions. Instead, the focus has been on validating the general capability of the
digital twin framework to simulate and classify soil moisture across diverse conditions
using machine learning. Future research will investigate the effectiveness of specific light
combinations for different soil types, such as loam, clay, and sand, to refine further and
optimize the approach for targeted applications.

Future research will also enhance the generalizability of the digital twin framework to
be more applicable to different soils and environmental conditions. This includes using
real-time weather data, like rainfall, temperature, and humidity, to allow the digital twin to
respond to changing environmental conditions. Using algorithms that can process live data
feeds, the system can predict soil moisture at the right time, which helps manage things
better in different weather situations.

Additionally, future work will focus on developing efficient algorithms and hardware
configurations to enhance real-time performance in large-scale applications. Real-time
image preprocessing algorithms, such as illumination normalization and dynamic contrast
adjustments, will be developed to handle unpredictable lighting conditions in outdoor
settings, ensuring consistent data quality. These improvements will make the model
more robust and applicable to real-world situations. Specific attention will be given to
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adapting the framework for smallholder farmers in developing countries by addressing
technical skills, infrastructure, and cost challenges. Modular systems, simplified interfaces,
and targeted training programs will support deployment in resource-limited settings.

8.3. Advancements in Imaging and Sensing

Future research will explore the use of more advanced sensing methods, such as a
broader range of light-emitting diodes (LEDs) with different wavelengths and brightness
levels, to strengthen the digital twin system. These LEDs, configured with various settings,
can capture more nuanced details about soil properties, such as moisture, texture, and nu-
trient availability. This information can improve soil classification models and extend the
system’s applicability to more complex soil types.

Integrating digital twin simulation, mainly physically based rendering (PBR), signif-
icantly reduces the environmental and financial costs of physical soil experiments. This
approach allows extensive virtual testing and refinement before implementation in real-
world settings, conserving natural resources such as water and soil while maintaining high
experimental accuracy.

8.4. Deep Learning and Broader Applications

Future advancements will involve integrating deep learning techniques, such as
convolutional neural networks (CNNs), to automatically learn spatial and textural patterns
from soil images, potentially enhancing classification accuracy, particularly for complex
soil types. The digital twin can also be used for more things, including weather simulation
and climate modeling. The framework could represent real soil conditions under varying
climatic scenarios by mimicking environmental factors such as rain, changes in temperature,
and moisture.

The digital twin’s ability to generate large-scale, consistent datasets enables the integra-
tion of deep learning models like CNNs. Such models often outperform traditional machine
learning methods when sufficient training data are available. The framework provides
a scalable means to create these datasets, eliminating reliance on extensive physical data
collection. Larger models like CNNs usually need a large training set. It is actually the idea
of the whole approach to have a means to obtain those huge datasets, based on the digital
twin and not using hand-crafted features. So, the work can also be seen as a preparational
effort to actually allow the use of DL in such tasks. Future research will explore using
these datasets to apply CNNs and other deep learning models for improved classification
accuracy and broader applicability in soil moisture prediction tasks.

While PBR simulations have been proven effective, they can be improved in their
ability to accurately replicate complex soil structures and environmental factors, such as
organic matter decomposition. Future work will focus on enhancing simulation fidelity to
address these challenges and improve the representational accuracy of the digital twin.

8.5. Real-Time Validation and Interpretability

Future research will also explore specific metrics for real-time system validation, such
as response time to environmental changes, accuracy of instantaneous predictions, and sys-
tem reliability under fluctuating data inputs. Evaluating these aspects can thoroughly
assess the framework’s readiness for dynamic, real-world applications.

Overfitting emerged as a predominant challenge in the considered machine learning
models, particularly for complex datasets like loam and sand. Regularization techniques,
cross-validation, and hyperparameter tuning were employed to address this issue, improv-
ing robustness but leaving challenges with transparency and interpretability. Future efforts
will explore advanced techniques like SHAP (SHapley Additive exPlanations) and LIME
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(Local Interpretable Model-Agnostic Explanations) to enhance explainability, ensuring
predictions are accessible and actionable for agricultural practitioners.

External validation using independent datasets from diverse agricultural regions and
soil types will be conducted to validate the framework’s robustness and generalizability.
This will provide critical insights into the model’s reliability under varied environmental
conditions, confirming its scalability and practical applicability. Collaborating with local
organizations will further enhance system accessibility and sustainability, ensuring the
digital twin framework is tailored to meet the unique needs of smallholder farmers and
supports long-term adoption across diverse agricultural contexts.

8.6. Conclusions

Integrating digital twin simulation, particularly PBR, significantly reduces the envi-
ronmental and financial costs of physical soil experiments. This method enables extensive
virtual testing and refinement before implementation, conserving natural resources while
maintaining high accuracy. The digital twin framework holds significant potential to
revolutionize soil moisture management by combining advanced simulation techniques
with real-time data processing and machine learning. By addressing current limitations
and focusing on scalability, generalizability, and accessibility, this framework can support
precision agriculture practices and sustainable farming across diverse agricultural contexts.
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