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Abstract: Graph Contrastive Learning (GCL) seeks to learn nodal or graph representations
that contain maximal consistent information from graph-structured data. While node-level
contrasting modes are dominating, some efforts have commenced to explore consistency
across different scales. Yet, they tend to lose consistent information and be contaminated
by disturbing features. We propose MUX-GCL, a novel cross-scale contrastive learning
framework that addresses these key challenges in GCL by leveraging multiplex representa-
tions as effective patches to enhance information consistency. Our method introduces a
soft-negative contrasting strategy based on positional affinities to reduce false negatives,
thereby minimizing information loss during multi-scale contrasts. While this learning mode
minimizes contaminating noises, a commensurate contrasting strategy using positional
affinities further avoids information loss by correcting false negative pairs across scales.
Extensive downstream experiments demonstrate that MUX-GCL yields multiple state-
of-the-art results on public datasets. Our theoretical analysis further guarantees the new
objective function as a stricter lower bound of mutual information of raw input features
and output embeddings, which rationalizes this paradigm.

Keywords: graph contrastive learning; cross-scale contrast; information consistency;
soft negatives

1. Introduction
The rapid growth of graph-structured data across diverse domains such as social

networks, biological systems, and recommendation engines has made graph representation
learning (GRL) a critical area of research. Traditional supervised learning methods [1–5]
have achieved considerable success in extracting meaningful patterns from graph data.
However, these approaches rely heavily on labeled data, which are often scarce or expensive
to obtain in real-world scenarios. This limitation has driven a surge of interest in self-
supervised learning (SSL) techniques [6], particularly Graph Contrastive Learning (GCL),
which seeks to leverage the inherent structure of graphs to learn useful representations
without relying on labels.

In essence, GCL aims to learn nodal or graph representations by maximizing the
information consistency between augmented views of the graph. Most of the established
methods share the spirit of operating same-scale contrast between nodal representations
through positive and negative pairs [7–9]. For graph-structured data, however, feature
consistency can be well conveyed in structures of different scales [10]. Some efforts have
thus expanded the scope to cross-scale modes, including the patch-global contrast of
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nodal and graph representations [10–12], and context-global contrast between contextual
subgraph and graph levels [13,14]. The contrasts of patches at diverse scales prove to be
highly beneficial.

Yet, with the gain of richer information, cross-scale contrasting modes tend to suffer
from contamination by inconsistent features [15]. The expansion to larger-scale patches
tends to join out-of-class nodes and hence more feature inconsistency. The following is
thus an intriguing question: How to enable contrasts that capture more consistent features across
scales while restrict contamination from inconsistency?

This raises a request for a contrasting paradigm that exploits information maximally
and selectively. One has to note that information loss is inherent in GCL. On one hand,
an encoding process is not guaranteed to be information conservative. The inclination
for oversmoothing is intrinsic to message-passing-based methods. On the other hand,
pairing negatives between intra-class nodes leads to a loss of consistent features. This
has been spotted in the same-scale contrast. Regarding this, some work excludes neigh-
boring nodes to avoid false negatives [16,17] or weighs them as positives based on their
saliency [18]. However, these approaches are not applicable to topological compositions in
cross-scale scenarios.

We introduce MUX-GCL, a novel cross-scale contrastive learning paradigm that for
the first time utilizes multiplex encoded information with the soft negatives of input graphs.
The core of this paradigm lies in the contrasts of “effective patches” constructed from
all layers of representations of the encoder. Higher-layer nodal embeddings, treated as
representations of nodal patches, are contrasted with lower-layer embeddings, where
features are less contaminated. To be commensurate with such patch contrasts, an efficient
soft-negative contrasting strategy is proposed to minimize information loss from false
negative pairs. In this manner, this GCL paradigm can maximally exploit consistent
information from the entire encoder.

Our contributions are summarized as follows:

• We propose a novel cross-scale GCL paradigm, MUX-GCL, utilizing multiplex rep-
resentations of the entire encoder, which maximally extracts consistent information
while mitigates disturbing features.

• We introduce a patch contrasting strategy based on topological affinities to alleviate
false negative pairs in cross-scale contrasts.

• Our theoretical justification guarantees the objective function of MUX-GCL as a stricter
lower bound of mutual information between raw features and learned representations
of augmented views, providing the rationale behind the method.

• Extensive experiments on both classification and clustering tasks demonstrate
salient improvements, outperforming multiple state-of-the-art GCL models on pub-
lic datasets.

2. Related Work
GCL methods have recently witnessed rapid development as an important branch

of GRL. The core of GCL is to learn as much consistent information from the graph as
possible. To achieve this goal, there are currently two main paradigms of GCL, namely,
same-scale contrast (node-to-node/graph-to-graph) and cross-scale contrast (node-to-patch,
patch-to-graph) [19].

2.1. Same-Scale GCL

The most common method for obtaining consistent information in GCL is same-scale
contrast. They work by bringing representations of positive pairs from different views
closer together and pushing negative pairs (if any) farther apart. GRACE [7], GCA [9], and
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ProGCL [16] leverage the InfoNCE loss for nodal representation learning by considering
the same node under different views as positives and other nodes as negatives. BGRL [20],
G-BT [21], CCA-SSG [22], and HomoGCL [18] draw inspiration from BYOL [23], where
only positive samples are considered. There are also works such as GraphCL [8] and
JOAO [24] leveraging same-scale contrast across multiple views to learn graph representa-
tions. Despite making progress in many scenarios, same-scale contrast overlooks consistent
information that exists across different scales and cannot mitigate the loss of consistent
information caused by message passing.

2.2. Cross-Scale GCL

Unlike same-scale GCL, which is limited to obtaining consistent information at a
single scale, another group of works manage to obtain consistent information from different
scales on the graph. DGI [10] contrasts patch representations with the graph representation
generated from a readout function to capture global consistent information. InfoGraph [25]
further improves this idea by replacing graph representations with that of other larger-scale
substructures. More recently, MVGRL [11] extends patch-to-graph contrast to multi-scale
contrast by applying diffuse augmentation to one view. However, while it is possible
for existing methods to obtain consistent information at different scales, according to the
homophily assumption, representations of larger-scale substructures also introduce more
inconsistent information, leading to contamination. This suggests that we should redesign
a cross-scale contrast paradigm that can avoid such contamination.

2.3. Contrasting Strategies with Negative Mining

The proper mining and identification of false negatives is another important strategy
for GCL methods to reduce the loss of consistent information. ProGCL [16] seeks to
measure negative samples by fitting a Beta Mixture Model to estimate the probability
of being true negatives. AUGCL [17] further utilizes an uncertainty-based modeling
of collective affinities to learn a more precise measure. Different from its predecessors,
HomoGCL directly treats neighbor nodes as positives and leverages the clustering-based
method to evaluate the confidence. Beyond the node level, CuCo [26] attempts to select
proper negatives samples on graph learning. Although these methods have achieved some
success, they do not directly utilize the topological characteristics of the graph. However,
they are all limited to same-scale contrast scenarios. A commensurate way of negative
mining is in requests in the context of cross-scale contrastive learning.

3. Methods
3.1. Preliminaries and Notations

Let G = (V , E) denote a graph, where V = {vi}N
i=1, E ⊆ V × V are the node and edge

sets, respectively. We let X ∈ RN×F and A ∈ {0, 1}N×N be the feature matrix and adjacency
matrix. As a form of SSL, the purpose of our model is to learn a reliable representation
f (X, A) ∈ RN×F of the input data with no labels through a GCN encoder. It is essential to
support downstream tasks, such as node classification and clustering. Hence, the learned
representations will be commonly input to a minimal prediction head for tests.

For a standard GCL paradigm, an augmentation method is applied to transform the
original input graph G into two different views GU(XU , AU) and GV(XV , AV). By training
the GCN encoders, the final nodal representations U = f (GU) and V = f (GV) are to
maximize an objective function that contrasts them corresponding to the two views. A
quintessential objective function as an instantiation of InfoNCE proposed in GRACE [7] is
widely adopted as a reference, which is defined as the sum of pairwise functions as
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Lg(ui, vi) = log
eθ(ui ,vi)/τ

eθ(ui ,vi)/τ + ∑
j ̸=i

eθ(ui ,vj)/τ + ∑
j ̸=i

eθ(ui ,uj)/τ
(1)

which encompasses the representations of the same anchor node as a positive pair and
those of all possible combinations of different nodes as negative pairs, where the metric
θ(u, v) is a predefined similarity function (we use the dot product here). Note that negative
pairs can be constructed from the same or different views.

3.2. Motivation

We seek to establish a cross-scale contrastive learning method that gains richer consistent
information. Two aspects are of our concern: the construction of multi-scale patches and the
contrasting strategy, which address cross-scale constrasts and negative mining, respectively.

The key issue with conventional ways of constructing patch representations through a
readout function (such as an extra pooling layer) is the information loss caused by involving
inconsistent features. Instead, we consider using the entire ensemble of latent and final
representations of an encoder for building patches. From the perspective of message
passing, we form an “effective patch” by regarding a k-th layer embedding of an anchor
node as a representation of a k-hop ego-net centering on it. While a conventional patch
refers to a set of original nodes, an effective patch is a representation of such a nodal
set. This way, it treats the encoder as a multiplex network, which introduces no extra
information contamination.

Cross-scale contrasts may thus be established between pairs of such patch represen-
tations. The roles of effective patches in contrasting can be justified by observing the
similarity between cross-layer embeddings as demonstrated for GRACE. Here, a pair of
positive effective patches are around the same central node in different views, whereas a
pair of negative patches are around different central nodes in either different views or the
same view. As shown in Figure 1, all positive patch pairs, regardless of layers, are far more
similar than negative pairs, as suggested by the well-separated distribution of similarities.
This strongly indicates that all representations across layers deserve to be involved in graph
contrastive learning. This insight led to the proposal of Multiplex Patch Contrast.

Yet, to systematically pairing cross-scale patches, we need a contrasting strategy that
maximally preserves consistent features. This aims essentially to avoid the brutal erasure
of exploitable information by pairing false negatives, which are more likely to occur due to
patch overlaps. In the absence of class labels, we evaluate the likelihood of false negatives
on the topological affinities of patches as priors. The use of affinities thus builds up “soft
negatives” in contrast to the commonly used hard ones in GCL, through the proposed
patch affinity estimation module. While hard negative pairs are expected to be dissociated
with each other, soft negative pairs still have some similarities and their representations
should not be fully distanced.
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Figure 1. Similarity distributions of cross-layer embeddings between two augmented views (for
GRACE). u and v denote two augmented views derived from the original graph. The vertical
axis represents the node similarity calculated using the dot product. The vertical axis represents
the probability density function values estimated using a Gaussian kernel. All positive pairs are
substantially more similar than negative pairs, labeled as umvn pos/neg with m and n numbering
the layers.

3.3. Framework

From the rationale above, we establish “effective patches” using all representations of
the encoder for contrastive learning. Each nodal embedding U(k) (V(k) in the other view)
on the k-th layer of the GCN now serves as an effective representation of a k-hop ego-net
centered at the anchor node. Specifically, the definition of the patch representation takes
the standard form U(k) = σ(ÃU(k−1)W(k)) ∈ RN×F with the initial input U(0) = X, where
Ã is the normalized adjacency matrix, and W(k) a set of trainable parameters.

With this premise, we now introduce the cross-scale contrastive learning paradigm
MUX-GCL (Figure 2). We deploy two modules, i.e., Multiplex Patch Contrast and patch
affinity estimation.
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Figure 2. Overall architecture of MUX-GCL. Contrasts are executed between “effective patches”
constructed from all representations of the multiplex encoder as illustrated by the links. The pairwise
affinities of topological embedding estimate the likelihood of being false negatives. Augmentations
are implemented as in GRACE. Positive and negative pairs are labeled in the figure.
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Multiplex Patch Contrast (MPC). To contrast effective patches across scales, we extend
the commonly used InfoNCE loss from same-scale contrast to a multiplex setting. Since
final representations of the encoder are ultimately desired, we conduct cross-scale contrasts
between final and all intermediate layers representations. The multiplex objective function
is given as follows:

Lc(u
(L)
i , v(k)i ) = log eθ(u(L)

i ,v(k)i )/τ

eθ(u(L)
i ,v(k)i )/τ

+ ∑
j ̸=i

ωLk
ij e

θ(u(L)
i ,v(k)j )/τ

+ ∑
j ̸=i

ωLk
ij e

θ(u(L)
i ,u(k)j )/τ (2)

where θ(·, ·) is the similarity function. The metric ωLk
ij represents a measure of the likelihood

of being false negatives. The embeddings from intermediate layers are transformed using
feed-forward layers to ensure dimensional compatibility. To treat the contrasts in a balanced
way, we average the objective function across different scales as expressed by the pairwise
objective function

Lc(ui, vi) =
L

∑
k=0

λkLc(u
(L)
i , v(k)i ) (3)

where λk is the weight for contrasting the final L-th layer and the intermediate k-th layer,
with ∑L

k=0 λk = 1.
Finally, to ensure symmetry between the two views, the overall objective function is

defined as

LMUX =
1

2N

N

∑
i=1

[Lc(ui, vi) + Lc(vi, ui)]. (4)

Patch Affinity Estimation (PAE). The affinity estimation function assigns weights to nega-
tive pairs to alleviate the problem of false negatives. Notably, in the cross-scale contrast,
patches are more likely to share information due to their positional affinity, where overlaps
are significantly more incident. A higher affinity score thus indicates a higher likelihood
of being false negatives. This weighting scheme is thus to reduce the loss of consistent
information in negative pairs.

For this scenario, we propose an affinity estimation strategy using topological positions
as a decent prior. Concretely, we employ a graph embedding algorithm to obtain nodal
representations that contain solely topological information. The topological representation
of a patch is then simply obtained by pooling the encompassed nodes

H(0) = T(A, X) h(k)i = Pool
j∈G(k)

i
(h(0)j ) (5)

where T(·) represents a learning algorithm that maps nodes to a topological embedding
space. G(k)

i represents the k-hop ego-network centered on node i. Pool denotes the pooling
function aggregating nodal embeddings within the patch.

Here, we consider two learning algorithms to obtain the topological embeddings:
Node2Vec [27] and VGAE (Variational Graph Auto-Encoder) [28]. We remark that the
decoder of VGAE is to recover the adjacency matrix of the input graph and hence learns
topological features only.

To obtain the inter-patch affinities, we compute the similarities of these topological
representations. Based on the affinity score for a negative instance pair, we compute the
weight ω as the estimated likelihood of being false negatives

ωLk
ij = 1 − η(h(L)

i , h(k)j ) (6)
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where k ∈ {0, 1, . . . , L}; η(·, ·) is the affinity function that measures the positional similarity.
Here, we take the form of normalized inner product η(h(L)

i , h(k)j ) = ⟨h(L)
i , h(k)j ⟩.

3.4. Theoretical Justification

The InfoMax principle claims that a mapping function for contrastive learning should
be learned to maximize the mutual information between the input node features and
learned node representations. Based on this, we provide a theoretical justification for our
multiplex contrastive objective, demonstrating its rationale through the lens of maximizing
mutual information.

Proposition 1. The multiplex contrastive objective in Equation (2) is a lower bound of mutual
information (MI) between raw input features X and output node embeddings U and V in two
augmented views. Moreover, with a high statistical significance, the objective is also a stricter lower
bound compared with the contrastive objective LGR in Equation (1) proposed by GRACE. Formally,

LGR < LMUX < I(X; U, V) (7)

Proof. See Appendix A.2.

We can hence conclude that maximizing LMUX is equivalent to maximizing a lower
bound of the mutual information between raw features and learned node representations,
which is yet stricter than the commonly used contrastive objective. This guarantees model
convergence and provides a theoretical base for the performance boost [18].

3.5. Time Complexity Analysis

The time cost of the multiplex contrast mechanism is limited compared to the prevail-
ing GCL methods. Concretely, we choose GRACE for comparison. Given a graph with N
nodes and E edges, and assuming a GCN encoder with L layers and d hidden dimensions,
the time complexity of encoding and loss function of GRACE are O(L(Nd2 + Ed)) and
O(N2d), respectively. For the encoding stage, MUX-GCL takes extra O(LNd2) to acquire
intermediate embeddings through linear layers, which does not increase the time complex-
ity significantly, as L is typically very small (L = 2 for most cases). For the loss function, the
time complexity of MUX-GCL is O((L + 1)N2d), which is on the same order of magnitude
as that of GRACE, noting that the InfoNCE loss in GRACE is a special case of Equation (3)
when λL = 1. Furthermore, the time complexities of Node2Vec and VGAE used in the PAE
module are O(N) and O(Nd2 + Ed). This does not add to the overall complexity since PAE
can be implemented as pre-processing and computed only once in the training phase.

4. Experiments
We conduct experiments on various tasks and datasets to demonstrate the effectiveness

of MUX-GCL. First, we outline the experimental setup. Then, we compare the performance
of MUX-GCL with state-of-the-art GCL methods on widely used benchmarks. We also ex-
plore the effects of the proposed blocks and hyper-parameters through ablation experiments
and sensitivity analysis. Finally, we provide a runtime analysis of training MUX-GCL.

4.1. Experimental Setup

Datasets. We evaluate our method on five real-world benchmark datasets that have been
widely used for previous GCL methods: three citation networks, Cora, Citeseer, and
PubMed [29], and two co-purchase networks, Amazon-Photo and Amazon-Computers [30].
All datasets are randomly divided into 10%, 10%, and 80% proportions for training, validation,
and testing. We do not use the public split of Cora, Citeseer, and PubMed, as they contain only
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a partial portion of the whole dataset. However, for completeness, we also provide results
on the public split in the appendix. Table 1 presents informative statistics for these datasets.
Further detailed descriptions are provided below:

• Cora, Citeseer, and Pubmed [29] are three citation network datasets. Their node
labels are related research area of publications. Each publication in Cora or Citeseer
is described by a 0/1-valued word vector, indicating the absence/presence of the
corresponding word from the dictionary. In Pubmed, each publication is described by
a TF/IDF weighted word vector from the dictionary.

• Amazon-Photo, Amazon-Computers [30] are based on Amazon’s co-purchase data.
Nodes represent products, while edges show how frequently they are purchased
together. Each product is described using a Bag-of-Words representation based on the
reviews (node features).

Table 1. Statistics of datasets used in our experiments.

Dataset #Nodes #Edges #Features #Classes

Photo 7650 238,163 745 8
Computers 13,752 491,722 767 10
Cora 2708 10,556 1433 7
Citeseer 3327 9228 3703 6
Pubmed 19,717 44,338 500 3

Baselines. We compare MUX-GCL with multiple baselines, including traditional graph self-
supervised learning methods such as Node2Vec [27] and DeepWalk [31], autoencoder-based
models like GAE and VGAE [28], DMoN [32], a graph clustering method build upon GNN,
and contrastive-based graph self-supervised learning methods like DGI [10], GRACE [7],
MVGRL [11], GCA [9], SUGRL [33], BGRL [20], ProGCL [16], G-BT [21], COSTA [34],
SFA [35], HomoGCL [18], and MA-GCL [36]. For all baselines, we reproduce the experi-
ments using the code provided by the original papers, and all results are obtained from the
hyper-parameters specified in the original papers. For models that are reproducible, we
use the results reported in the existing literature.
Evaluation protocol . To adhere to the evaluation framework utilized by prior work [7,9,10],
we initially train each model in an unsupervised manner using the entire graph along
with node features. Subsequently, we feed the raw features into a standard trained two-
layer GCN encoder, yielding embeddings for utilization in downstream tasks. For the
node classification task, we employ an ℓ2-regularized logistic regression classifier from the
Scikit-Learn library [37], utilizing the embeddings acquired in the preceding step. For the
node clustering task, we employ KMeans as clustering method and measure the clustering
performance in terms of two prevalent metrics: Normalized Mutual Information (NMI)
score and Adjusted Rand Index (ARI). NMI = 2I(Y; C)/[H(Y) + H(C)], with Y and C
being the class labels and predicted cluster indexes, respectively, I(·) being the mutual
information, and H(·) being the entropy. ARI = (RI − E[RI])/(max(RI)− E(RI)), with
RI being the Rand Index [18,38].

4.2. Node Classification

We first validate the effectiveness of MUX-GCL via node classification tasks on five
public datasets. As summarized in Table 2, MUX-GCL significantly outperforms all the
baseline models across five public datasets. The superiority of MUX-GCL can be attributed
to its special efforts in mitigating the loss of consistency information. By contrasting output
embeddings with patch representations obtained from intermediate layers, the multiplex
contrast paradigm helps mitigate the accumulation of inconsistent information from the
expanding computation subgraph. This allows MUX-GCL to surpass advanced same-scale
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GCL methods (e.g., ProGCL and HomoGCL), where the contrasting process occurs only
between output embeddings. Meanwhile, MUX-GCL assigns lower weights to potential
intra-class nodes in the contrastive loss to avoid mistakenly treating them as negatives,
thereby reducing the potential loss of consistency information. This further ensures that
MUX-GCL can surpass other same-scale GCL methods (e.g., GRACE, GCA, BGRL, COSTA)
that lack the capability to discern false negatives. Further more, different from those
previous cross-scale GCL methods (e.g., DGI, MVGRL) where output embeddings are
contrasted with embeddings pooled from a larger scale, MUX-GCL choose to contrast with
intermediate embeddings summarizing information of a smaller subgraph that contains
less inconsistency information. Such avoidance of potential inconsistency information
contamination helps MUX-GCL perform better than those cross-scale GCL methods.

Table 2. Node classification results (Acc (%) ± std for 5 seeds) of running on five commonly used
datasets. X and A denote the feature matrix and adjacency matrix, respectively. The highest perfor-
mance is highlighted in boldface.

Model Training
Data Cora Citeseer Pubmed Photo Computers

raw feat. X 64.8 ± 0.1 64.6 ± 0.1 84.8 ± 0.0 78.5 ± 0.0 73.8 ± 0.0
node2vec A 74.8 ± 0.0 52.3 ± 0.1 80.3 ± 0.1 89.7 ± 0.1 84.4 ± 0.1
DeepWalk A 75.7 ± 0.1 50.5 ± 0.1 80.5 ± 0.2 89.4 ± 0.1 85.7 ± 0.1
GAE X, A 76.9 ± 0.0 60.6 ± 0.2 82.9 ± 0.1 91.6 ± 0.1 85.3 ± 0.2
VGAE X, A 78.9 ± 0.1 61.2 ± 0.0 83.0 ± 0.1 92.2 ± 0.1 86.4 ± 0.2
DGI X, A 82.6 ± 0.4 68.8 ± 0.7 86.0 ± 0.1 91.6 ± 0.2 84.0 ± 0.5
GRACE X, A 83.3 ± 0.4 72.1 ± 0.5 86.3 ± 0.1 92.5 ± 0.2 87.8 ± 0.2
MVGRL X, A 83.8 ± 0.3 73.1 ± 0.5 86.3 ± 0.2 91.7 ± 0.1 87.5 ± 0.1
GCA X, A 82.8 ± 0.3 71.5 ± 0.3 86.0 ± 0.2 92.2 ± 0.2 87.5 ± 0.5
SUGRL X, A 83.4 ± 0.5 73.0 ± 0.4 84.9 ± 0.3 93.2 ± 0.4 88.8 ± 0.2
BGRL X, A 83.7 ± 0.5 73.0 ± 0.1 84.6 ± 0.3 91.5 ± 0.4 87.3 ± 0.4
G-BT X, A 83.6 ± 0.4 72.9 ± 0.1 84.5 ± 0.1 92.6 ± 0.5 86.8 ± 0.3
ProGCL X, A 84.2 ± 0.5 72.2 ± 0.2 86.4 ± 0.2 93.2 ± 0.1 88.7 ± 0.1
COSTA X, A 84.3 ± 0.2 72.9 ± 0.3 86.0 ± 0.2 92.6 ± 0.5 88.3 ± 0.1
SFA X, A 84.1 ± 0.1 73.7 ± 0.2 85.6 ± 0.1 92.8 ± 0.1 88.1 ± 0.1
HomoGCL X, A 84.9 ± 0.2 71.7 ± 0.3 85.8 ± 0.1 93.0 ± 0.2 89.0 ± 0.1
MA-GCL X, A 83.9 ± 0.1 72.1 ± 0.4 85.6 ± 0.4 93.4 ± 0.1 89.0 ± 0.1

MUX-GCL X, A 85.5 ± 0.3 73.8 ± 0.2 86.9 ± 0.2 93.9 ± 0.1 90.7 ± 0.1

4.3. Node Clustering

Performance on node classification tasks indicates that our MUX-GCL can obtain node
embeddings better than those previous GCL methods. However, further experiments are
needed to demonstrate that the embeddings learned by MUX-GCL contain more consistent
information, thereby achieving higher quality. Here, we choose to perform node clustering
on the Photo and Computers datasets. Specifically, we opt for NMI and ARI as metrics
to assess the concordance between our clustering results and the true data distribution.
Higher concordance between the clustering results and true labels means that there is more
consistency information among the intra-class nodes, making them easier to be recognized
as belonging to the same class.

As shown in Table 3, MUX-GCL mostly outperforms other methods by a large margin
on both metrics for the two datasets. We credit the performance enhancement to two aspects.
For one thing, the PAE module assigns higher affinity scores to intra-class nodes, thus
pushing inter-class nodes away from intra-class ones. For another, the MPC module helps
make the clusters more compact by filtering out the inconsistent information among intra-
class nodes. As a result, the boundaries between different clusters within the embedding
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space become more defined and clear, indicating that more consistent information is
preserved within the clusters.

Table 3. Node clustering results in terms of NMI and ARI on Photo and Computer datasets. △x = 0.01x
is used to denote the standard deviation on 5 seeds. “-” means missing values from the literature. The
highest performance is highlighted in boldface.

Model Photo Computers

Metric NMI ARI NMI ARI

GAE 0.616 ± △1 0.494 ± △1 0.441 ± △0 0.258 ± △0
VGAE 0.530 ± △4 0.373 ± △4 0.423 ± △0 0.238 ± △0
DGI 0.376 ± △3 0.264 ± △3 0.318 ± △2 0.165 ± △2
MVGRL 0.344 ± △4 0.239 ± △4 0.244 ± △0 0.141 ± △0
BGRL 0.668 ± △3 0.547 ± △4 0.484 ± △0 0.295 ± △0
GCA 0.614 ± △0 0.494 ± △0 0.426 ± △0 0.246 ± △0
DMoN 0.633 ± △0 - 0.493 ± △0 -
HomoGCL 0.671 ± △2 0.587 ± △2 0.534 ± △0 0.396 ± △0

MUX-GCL 0.712 ± △1 0.609 ± △1 0.552 ± △0 0.388 ± △1

4.4. Ablation Study

In this section, we verify the effectiveness of the proposed multiplex contrast mecha-
nism and patch affinity estimation. We conducted ablation experiments to test the perfor-
mance of the following model variants on three datasets:

(1) PAE: only conducting same-scale contrast between the output embeddings, without
engaging in cross-scale contrast.

(2) MPC: performing a complete cross-scale contrast but refraining from utilizing patch
affinity estimation to identify false negatives.

(3) MUX-GCL (PAE + MPC): the full version of our model.

As illustrated in Table 4, compared with the the latest baselines, both PAE and MPC
contribute to performance enhancement, with the optimal outcome attained when the
two are integrated. This demonstrates that contrasting patch representations at different
scales and effectively identifying false negatives both play crucial roles in preserving
consistency information.

Table 4. Ablation study (Accuracy (%) ± std for 5 seeds) on two multiplex blocks. The highest
performance is highlighted in boldface.

Model\Dataset Cora Citeseer Photo

PAE 85.08 ± 0.26 73.29 ± 0.20 93.34 ± 0.09
MPC 84.78 ± 0.36 73.44 ± 0.20 93.78 ± 0.07
PAE+MPC 85.43 ± 0.21 73.77 ± 0.17 93.89 ± 0.10

4.5. Variants of PAE-Based Models

We additionally assess the influence of selecting base models for patch affinity es-
timation. We choose from Node2Vec and VGAE, as they all prioritize preserving graph
topology in the learned embeddings. As is shown in Table 5, regardless of which model is
used as the base model for patch affinity estimation, the results obtained surpass those of
existing state-of-the-art models. When comparing the two variants, mixed results emerge
across different datasets. While VGAE excels on Cora and Photo, it falls short compared to
Node2Vec on Pubmed. This indicates that choosing different base models for patch affinity
estimation will be more targeted for different datasets. It also reveals that a better patch
affinity estimation base model can improve the performance of MUX-GCL.
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Table 5. Variants of PAE-based models. Node classification results (Acc (%) ± std for 5 seeds) of
running on Cora, Pubmed and Photo. The highest performance is highlighted in boldface.

PAE Method Cora Pubmed Photo

Node2Vec 85.33 ± 0.37 86.94 ± 0.24 93.73 ± 0.04
VGAE 85.43 ± 0.21 86.63 ± 0.15 93.89 ± 0.10

4.6. Hyper-Parameter Sensitivity Analysis

Here we study the effect of hyper-parameter λ in Equation (3). The optimal value of λ

reflects the impact of different intermediate layer representations on the gain of consistency
information. For the typical two-layer GCN encoder we use in most datasets, based on
Equation (3), there are three hyper-parameters λ0, λ1, λ2 that determine the importance
of each component. We perform grid search over two hyper-parameters λ0, λ2 and set
λ1 = 1 − λ2 − λ0. The result is shown in Figure 3. When we set the hyper-parameters to
λ0 = λ1 = 0 and λ2 = 1 (same-level contrast), the results on both datasets are at a low
level. As λ0 and λ1 increase, cross-scale contrast information is introduced, leading to a
significant improvement in the results. In general, using cross-scale contrast outperforms
using contrast between output embeddings. Moreover, it is interesting that although
the optimal parameter combinations may vary across different datasets, contrasting with
the 0-th layer embedding, i.e., the projection of original feature to embedding space, is
beneficial across all datasets. Given that the 0-th layer embedding contains the purest
consistency information, this result indicates that our cross-scale contrast can preserve
more of this information.
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Figure 3. Hyper-parameter λ analysis (Acc (%) for 3 seeds) on Cora and Photo. The combinations of
λ that cannot be taken among them are set to the average.

4.7. Runtime Analysis

In this section, we empirically validate that MUC-GCL introduces minimal additional
computational cost compared to typical GCL methods. Here, we compare the training time
of several advanced GCL methods with that of MUX-GCL. Table 6 presents the running
time of different GCL methods for each epoch on the four datasets. For methods such as
GRACE that do not rely on extra computation modules (e.g., false negative detections),
MUX-GCL only slightly increases the training time but achieves a huge improvement.
As for other sophisticated methods, MUX-GCL is comparable to ProGCL, which also
employs a one-time false negative detection strategy, and is far cheaper than HomoGCL,
which updates the saliency once per epoch. The above experimental results confirm that
MUX-GCL can achieve significant performance improvements without explicitly increasing
computational costs.



Electronics 2025, 14, 396 12 of 16

Table 6. Time per epoch for GCL mehtods (on 24GB RTX 3090Ti GPU).

Model Cora Citeseer Photo Computer

GRACE 0.20 s 0.02 s 0.05 s 0.12 s
ProGCL 0.04 s 0.05 s 0.17 s 0.49 s
HomoGCL 1.09 s 0.48 s 0.50 s 1.32 s
MA-GCL 0.19 s 0.02 s 0.04 s 0.08 s

MUX-GCL 0.04 s 0.05 s 0.16 s 0.42 s

5. Conclusions
In this paper, we introduced MUX-GCL, a novel cross-scale contrastive learning

paradigm that leverages multiplex representations to extract richer and more consistent
information from graphs while mitigating disturbing features. By introducing a patch
contrasting strategy based on topological affinities, MUX-GCL effectively alleviates the
issue of false negative pairs in cross-scale contrasts, a common challenge in InfoNCE-based
GCL methods. Our theoretical analysis proves that the objective function of MUX-GCL
serves as a stricter lower bound of mutual information between raw features and learned
representations, providing a solid foundation for its superior performance. Extensive
experiments demonstrate that MUX-GCL outperforms state-of-the-art GCL models on both
classification and clustering tasks. Despite its strengths, MUX-GCL faces the limitations
with message passing, which forbids the use of a large number of hidden layers and thus
the maximal scale of effective patches. Such multiplex cross-scale constrastive learning
paradigms will be benefited by future work that explores multiple ways of constructing
effective patches while maintaining the encoder’s expressive power.
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Appendix A

Table A1. Performance of node classification (Acc (%) ± std for 5 seeds). Here we use public splits on
Cora, Citeseer, and Pubmed. The highest performance is highlighted in boldface.

Model Cora Citeseer Pubmed

DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
MVGRL 83.5 ± 0.4 73.3 ± 0.5 80.1 ± 0.7
GRACE 81.5 ± 0.3 70.6 ± 0.5 80.2 ± 0.3
GCA 81.4 ± 0.3 70.4 ± 0.4 80.7 ± .5
ProGCL 81.2 ± 0.4 69.8 ± 0.5 79.2 ± 0.2
BGRL 82.7 ± 0.6 71.1 ± 0.8 79.6 ± 0.5
COSTA 82.2 ± 0.2 70.7 ± 0.5 80.4 ± 0.3
CCA-SSG 84.0 ± 0.4 73.1 ± 0.3 81.0 ± 0.4
HomoGCL 84.5 ± 0.5 72.3 ± 0.7 81.1 ± 0.3

MUX-GCL 84.7 ± 0.2 72.5 ± 0.1 82.2 ± 0.2

 https://github.com/MUX-GCL/MUX-GCL/
 https://github.com/MUX-GCL/MUX-GCL/
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Appendix A.1. Tests on Public Splits

In alignment with some previous GCL methods that use public splits on Cora, Citeseer,
and PubMed, we also investigate another benchmark setting with public splits on these
three datasets and compare it with the most competitive baselines. As shown in Table 2,
MUX-GCL consistently outperforms the baseline methods, demonstrating its effectiveness.
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Figure A1. TLk
D,ij and TLk

S,ij values distribution during training process of Cora. We take out the embed-

dings of our encoder trained at epoch 10 and 300, respectively, to calculate TLk
D,ij and TLk

S,ij, respectively.

Gaussian curves are fitted to the values of TLk
D,ij and TLk

S,ij at epochs 10 and 300, respectively.

Appendix A.2. Proof of Proposition 1

We provide a semi-empirical proof for Proposition 1: The cross-patch contrastive objective
in Equation (2) is a lower bound of the mutual information between the raw input features X
and output node embeddings U and V in two augmented views. Formally, LMUX < I(X; U, V).
Moreover, with a statistical significance, the objective is also a stricter lower bound comparing with
the contrastive objective LGR in Equation (1) proposed by GRACE: LMUX > LGR.

Proof. We first prove LMUX < I(X; U, V). Let U(k), V(k) (for k = 0, 1, . . . , L) be the embed-
dings generated by the k-th layer of the encoder, where the final output U = U(L) and
V = V(L). Our proposed objective includes 2(L + 1) cross-scale contrasting pairs

LMUX =
1
2

L

∑
k=0

λk
N

N

∑
i=1

[
Lc(u

(L)
i , v(k)i ) + Lc(v

(L)
i , u(k)

i )
]
. (A1)

where the terms in the brackets are symmetric regarding the two views. We now focus on
the former term, which is comprised of positive and negative contrasting terms

Lc(u
(L)
i , v(k)i ) = log

Pos
Pos + Neg

, (A2)

with Pos = eθ(u(L)
i ,v(k)i ) and Neg = ∑

j ̸=i
ωLk

ij

[
eθ(u(L)

i ,u(k)
j )

+ eθ(u(L)
i ,v(k)j )

]
.
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For a sufficiently large N, we have ωLk
ij > 1/N and hence

Neg >
1
N ∑

j ̸=i

[
eθ(u(L)

i ,u(k)
j )

+ eθ(u(L)
i ,v(k)j )

]
>

1
N ∑

j ̸=i
eθ(u(L)

i ,v(k)j ). (A3)

Substituting this inequality into Equation (A2) gives

Lc(u
(L)
i , v(k)i ) < log

eθ(u(L)
i ,v(k)i )

1
N

eθ(u(L)
i ,v(k)i ) +

1
N

N
∑
j ̸=i

eθ(u(L)
i ,v(k)j )

. (A4)

By averaging all nodes, we obtain

ELk[Lc] =
1
N

N

∑
i=1

Lc(u
(L)
i , v(k)i )

< E

log
eθ(u(L)

i ,v(k)i )

1
N

eθ(u(L)
i ,v(k)i ) +

1
N

N
∑
j ̸=i

eθ(u(L)
i ,v(k)j )


= INCE(U(L), V(k)). (A5)

As InfoNCE is a lower bound of MI, we conclude that

ELk[Lc] < INCE(U(L), V(k)) ≤ I(U(L), V(k)). (A6)

Consequently, with both symmetric contrasting terms, we have

LMUX <
1
2

L

∑
k=0

λk

[
I(U(L); V(k)) + I(V(L); U(k))

]
. (A7)

Resorting to the relations derived for GRACE [7],

I(U(L); V(k)) ≤ I(X; U(L)) = I(X; U) ≤ I(X; U, V), (A8)

I(V(L); U(k)) ≤ I(X; V(L)) = I(X; V) ≤ I(X; V, U), (A9)

and noticing the layer-wise coefficients are normalized
L
∑

k=0
λk = 1, we finally have

LMUX <
1
2

L

∑
k=0

λk[I(X; U, V) + I(X; V, U)] = I(X; U, V). (A10)

We then show that with a statistical significance LMUX > LGR. We first rewrite the
loss function as

Lc(u
(L)
i , v(k)i ) =

1

1 + ∑
j ̸=i

ωLk
ij (e

ψLk
S,ij + eψLk

D,ij)
, (A11)

where

ψLk
S,ij = θ(u(L)

i , u(k)
j )− θ(u(L)

i , v(k)i ), (A12a)

ψLk
D,ij = θ(u(L)

i , v(k)j )− θ(u(L)
i , v(k)i ). (A12b)
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The loss function of GRACE can then be written as

LGR =
1
2

N

∑
i=1

[
Lg(u

(L)
i , v(k)i ) + Lg(v

(L)
i , u(k)

i )
]
, (A13)

with

Lg(u
(L)
i , v(L)

i ) =
1

1 + ∑
j ̸=i

(eψLk
S,ij + eψLk

D,ij)
. (A14)

Next, we define

TLk
S,ij = ψLk

S,ij − ψLL
S,ij + log ωLk

ij , (A15)

TLk
D,ij = ψLk

D,ij − ψLL
D,ij + log ωLk

ij . (A16)

From the statistics, we show that throughout the training, both quantities TLk
S,ij and

TLk
D,ij are positive with a great statistical significance. Concretely, as shown in Figure A1,

the histograms of these quantities can be well fitted by Gaussian curves at all epochs
ranging from 10 to 300 and TLk

S,ij > 0 and TLk
D,ij > 0 (for k < L) within the 95% confidence

interval. By comparing the denominators in Equations (A11) and (A14), we can conclude
that with a large probability, Lc(u

(L)
i , v(k)i ) > Lg(u

(L)
i , v(L)

i ). Symmetrically, we also have

Lc(v
(L)
i , u(k)

i ) > Lg(v
(L)
i , u(L)

i ). These relations also hold for k = L since ωLL
ij ∈ (0, 1) for

j ̸= i. Hence, by comparing the total objectives defined in Equations (A1) and (A13), we
can finally reach

LMUX > LGR, (A17)

which concludes the proof.
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on graphs via bootstrapping. arXiv 2021, arXiv:2102.06514.

21. Bielak, P.; Kajdanowicz, T.; Chawla, N.V. Graph barlow twins: A self-supervised representation learning framework for graphs.
Knowl.-Based Syst. 2022, 256, 109631. [CrossRef]

22. Zhang, H.; Wu, Q.; Yan, J.; Wipf, D.; Yu, P.S. From canonical correlation analysis to self-supervised graph neural networks. Adv.
Neural Inf. Process. Syst. 2021, 34, 76–89.

23. Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar, M.;
et al. Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284.

24. You, Y.; Chen, T.; Shen, Y.; Wang, Z. Graph contrastive learning automated. In Proceedings of the International Conference on
Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 12121–12132.

25. Sun, F.Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised graph-level representation learning via
mutual information maximization. arXiv 2019, arXiv:1908.01000.

26. Chu, G.; Wang, X.; Shi, C.; Jiang, X. CuCo: Graph Representation with Curriculum Contrastive Learning. In Proceedings of the
IJCAI, Montreal, QC, Canada, 19–27 August 2021; pp. 2300–2306.

27. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

28. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
29. Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the

International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp. 40–48.
30. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
31. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
32. Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Müller, E. Graph clustering with graph neural networks. J. Mach. Learn. Res. 2023,

24, 5809–5829
33. Mo, Y.; Peng, L.; Xu, J.; Shi, X.; Zhu, X. Simple unsupervised graph representation learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, Philadelphia, PA, USA, 27 February–2 March 2022; Volume 36, pp. 7797–7805.
34. Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; King, I. COSTA: Covariance-preserving feature augmentation for graph contrastive

learning. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
14–18 August 2022; pp. 2524–2534.

35. Zhang, Y.; Zhu, H.; Song, Z.X.; Koniusz, P.; King, I. Spectral feature augmentation for graph contrastive learning and beyond.
In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37,
pp. 11289–11297.

36. Gong, X.; Yang, C.; Shi, C. MA-GCL: Model augmentation tricks for graph contrastive learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 4284–4292.

37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

38. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TNNLS.2023.3339770
http://www.ncbi.nlm.nih.gov/pubmed/38190684
http://dx.doi.org/10.1109/TKDE.2022.3172903
http://dx.doi.org/10.1016/j.knosys.2022.109631
http://dx.doi.org/10.1080/01621459.1971.10482356

	Introduction
	Related Work
	Same-Scale GCL
	Cross-Scale GCL
	Contrasting Strategies with Negative Mining

	Methods
	Preliminaries and Notations
	Motivation
	Framework
	Theoretical Justification
	Time Complexity Analysis

	Experiments
	Experimental Setup
	Node Classification
	Node Clustering
	Ablation Study
	Variants of PAE-Based Models
	Hyper-Parameter Sensitivity Analysis
	Runtime Analysis

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

