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Abstract: To achieve large-scale stitching of the hyperspectral remote sensing images
obtained by unmanned aerial vehicles (UAVs) equipped with an acousto-optic tunable
filter spectrometer, this study proposes a method based on a feature fusion strategy and a
seam-finding strategy using hyperspectral image classification. In the feature extraction
stage, SuperPoint deep features from images in different spectral segments of the data cube
were extracted and fused. The feature depth matcher, LightGlue, was employed for feature
matching. During the data cube fusion stage, unsupervised K-means spectral classification
was performed separately on the two hyperspectral data cubes. Subsequently, grayscale
transformations were applied to the classified images. A dynamic programming method,
based on a grayscale loss function, was then used to identify seams in the transformed
images. Finally, the identified splicing seam was applied across all bands to produce a
unified hyperspectral data cube. The proposed method was applied to hyperspectral data
cubes acquired at specific waypoints by UAVs using an acousto-optic tunable filter spectral
imager. Experimental results demonstrated that the proposed method outperformed both
single-spectral-segment feature extraction methods and stitching methods that rely on
seam identification from a single spectral segment. The improvement was evident in both
the spatial and spectral dimensions.

Keywords: hyperspectral image (HSI) stitching; deep feature extraction; feature matching;
acousto-optic tunable filter; unmanned aerial vehicle (UAV)

1. Introduction
Drone technology is a commonly used industrial technology today, and hyperspectral

imaging is an effective combination of spectral and video camera technologies. Unmanned
aerial vehicle (UAV) hyperspectral remote sensing can achieve target scene acquisitions
while maintaining spectral resolution ability, making it an effective means for Earth ob-
servations. Compared with other hyperspectral remote sensing sensor platforms, UAV
hyperspectral remote sensing technology has the advantages of simple operation, adjustable
flight path and altitude, and convenient data acquisition. It has been extensively used
in geological and mineral research [1,2], forest resource investigation [3], environmental
monitoring [4,5], agricultural assessment [6], and other fields.
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Why do we need to perform the large-scale concatenation of hyperspectral data cubes?
Although drone hyperspectral remote sensing technology has broad application prospects
due to its low cost, high spectral resolution, and great flexibility [7–9], the limitations of
drone flight altitude and short single flight operation time result in a relatively small range
of a single field of view and single flight scenery [10]. To obtain a large panoramic-ranged
hyperspectral image, it is necessary to perform large-scale stitching of the hyperspectral
data cubes [11].

There are various ways to achieve hyperspectral image stitching. Traditional image
stitching typically involves the following steps: feature extraction, matching and alignment,
fusion, and optimization [12]. The common steps for achieving hyperspectral data cube
stitching at present include the following [13]: (a) identifying the reference spectral segment,
(b) feature extraction and matching, (c) image alignment, and (d) its application to all
spectral segments. Feature extraction and matching are used to calculate homography.
By obtaining a sufficient number of correct matching features, a homography estimation
matrix is obtained, and the homography estimation is distorted to obtain the registered
image. The aligned images also need to be stitched together. Due to the inevitable impact
of projection distortion on homography regularization, many methods have been proposed
to eliminate ghosting in stitched images. The image alignment methods can be divided
into non-seam and seam stitching based on whether seam prediction is performed or not.

Feature extraction methods include SIFT and SURF [14]. To ensure the accuracy
of the matching results, it is necessary to detect and remove outliers in feature points.
Random sampling consensus [15] is a classic method to remove false matches, but it cannot
be applied to specific nonrigid and complex situations. VFC [16], LPM [17], and other
methods are suitable for nonrigid motion scenes. In addition, Zhang Yujie et al. [18]
extracted SIFT feature points during the stitching of hyperspectral images carried by
drones, matched the feature points, and removed outliers using the mTopKRP method.
Numerous experiments have demonstrated the effectiveness of the proposed method,
which utilizes robust feature matching and elastic warping for the automatic stitching of
hyperspectral images. Zhang et al. [19] used the deep-learning feature SuperPoint and
implemented feature point matching and error removal through the LAF [20] algorithm
to enhance the reliability of feature correspondence. Zhiying Jiang et al. [21] utilized
the advantages of graph convolutional networks in modeling feature relationships and
proposed a multispectral image stitching method based on spatial graph inference. This
method can effectively extract features from multispectral images from different viewpoints.

Fusion ghosting from non-seam stitching is caused by the fact that the homography
matrix cannot align the two images perfectly, and ghosting is eliminated by aligning the
target with the reference image as much as possible. The APAP method [22] places a grid
in the image and estimates a local homography model for each grid. Owing to its excellent
performance, this technology has been extensively applied in image alignment. To achieve
better alignment, the robust ELA method [23] combines a grid-based model with a direct
deformation strategy. To maintain good performance in low-texture environments, Li Nan
et al. [24] developed a dual-feature distortion model for image alignment, which utilizes
sparse feature matching and line correspondence simultaneously. The aforementioned
methods divide the image into different regions and calculate the homography matrix for
each region. By applying spatial distortions on certain areas, overlapping regions are well
aligned and ghosting is reduced considerably. However, Yang Lichun et al. [25] found that
non-seam stitching methods performed well in small disparity images, but were difficult to
use for handling large disparity images, which could lead to poor stitching results.

Seam stitching hides artifacts by studying the optimal seam for stitching distorted
images and improves ghosting issues by optimizing costs associated with seams. Senmao
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Cheng et al. [26] proposed a deep-learning-based seam prediction method. Qi Jia et al. [27]
proposed a seam-matching strategy that utilizes line-point consistency measurements.
Liao et al. [28] proposed a new iterative seam estimation method that uses a mixed-quality
evaluation method to evaluate pixels along the seam. Li et al. [29] proposed a quater-
nion rank 1 alignment model that simultaneously learns the optimal seam line and local
alignment. Nie et al. [30] proposed a seam stitching method based on deep learning, but
there were various issues, such as unclear boundaries and discontinuous generated masks.
Li et al. [13] proposed using the edge-enhancement energy function for orthorectified image
stitching to detect optimal seams.

There are two difficulties in achieving hyperspectral data stitching. The first difficulty
is the identification of ways to select reference spectral segments for the feature extraction
of two data cubes, the identification of the types of features that need to be extracted, and
the determination of ways to pair features. The second difficulty is associated with the fact
that hyperspectral data contain a large number of spectral segments. Accordingly, what
are the ways to handle the overlapping parts of two data cubes? The currently popular
method is to find a seam in the overlapping area based on the reference spectral segment.
That is, the determination of ways to identify a seam that has advantages in both spatial
and spectral dimensions of the concatenated data is another difficulty in hyperspectral
data stitching.

Regarding the first difficulty, the selection of reference bands is the first step in hy-
perspectral image stitching, and the quality and effectiveness of the stitching are directly
related to the selection of the reference bands. The current research provides four methods
for selecting benchmark spectral bands:

Zhang et al. [18] extracted images from the 88th band in the middle of 176 bands
as the feature extraction images without considering images from other spectral bands.
This selection method is simple, but selecting feature extraction spectral bands is not
representative. Zhang et al. [19] found the spectral segment with the highest signal-to-noise
ratio. Although this method found the spectral segment with the highest signal-to-noise
ratio, it may not necessarily be the spectral segment with the most features. Mo et al. [31]
divided the entire wavelength range into three segments, simply added the images of
different spectral segments, and then multiplied them by the coefficients to the weight to
synthesize a single image. This image was used to extract features, and the resulting image
weakened the spectral information. Li et al. [32] adopted a baseline band selection method
based on prior knowledge and PCA, using the product of mean and standard deviation as
a threshold to select spectral segments greater than the threshold. This method considers
the integrity of each spectral segment, but whether the selected first principal component
can represent all spectral segments still needs to be verified.

Regarding the second challenge, another important step in stitching images is to
find the seam line within the overlapping area of the image, which is the line connecting
the most similar pixels in the overlapping area. After determining the seam line in the
overlapping area, only the image parts on one side and the other side of the line are selected
instead of simply merging the two images of the overlapping area. The purpose of doing
so is to avoid blurring and introducing artifacts in the image. Previous researchers have
proposed the following methods for obtaining and using splicing seams:

Peng et al. [33,34] used a fast and robust seam estimation method to determine the
seams in the single bands of hyperspectral images. This method applies to red–green–blue
(RGB) images, which can be modified into single-band grayscale images for hyperspectral
imaging. To ensure the integrity of spatial and spectral information of the hundreds of
bands in hyperspectral images, the structural similarity index (SSIM) is applied to select
the optimal one among all band candidate stitching lines, and the selected optimal stitching
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line is applied to the remaining bands for stitching. Mo et al. [31] also used a method to
identify the optimal splicing seam [35], which relied on the input single-spectral segment.
They used the graph-cutting method to obtain a splicing seam and applied it to other
spectral segments. This method has been proven to be an effective method for parallax
image stitching.

In this study, we aim to propose a novel method for large-scale stitching of the
hyperspectral data cube. The main contributions of this study are as follows:

First, we introduce a new strategy for multi-feature fusion, which considers the
features of all spectral segments as the overall features of the data cube. These fused
features comprehensively reflect the characteristics of each spectral segment of the data
cube, overcoming the shortcomings of traditional methods that use single-spectral images
to replace features in data cubes with insufficient feature amounts.

Second, for the data cube fusion stage, we propose a seam-finding strategy based on
hyperspectral image classification. This method addresses the drawback of using only a
single spectral segment to search for splicing seams without fully utilizing the spectral
information, thus reducing inaccuracies in splicing seams.

The remainder of this paper is organized as follows: Section 2 outlines the related work.
Section 3 explains the proposed method for hyperspectral data cube stitching. Section 4
presents the experimental results and Section 5 discusses them. Finally, Section 6 concludes
this study.

2. Related Work
This section provides an overview of the proposed method. First, the airborne acousto-

optic tunable filter (AOTF) spectrometer, which utilizes a zoom lens, is introduced. Sub-
sequently, the waypoint collection process is described. Finally, the route and waypoint
collection mode is explained.

2.1. Unmanned Aerial Hyperspectral Imaging System Based on AOTF Spectrometer

With the rapid advancements in materials science and the increasing sophistication
of optical device manufacturing, spectrometers have evolved from traditional prism- or
grating-based designs to modern devices featuring higher spectral resolution, compactness,
integration, and intelligence [36]. The AOTF, an all-solid-state filtering and polarization
modulation device, offers several advantages, including fast electronic tuning, the absence
of mechanical moving parts, a compact structure, high-diffraction efficiency, and a broad
tuning range. These characteristics have facilitated its application in the development of
spectral imaging systems [37,38].

The UAV-mounted hyperspectral imaging system, based on an AOTF spectrom-
eter (China Electronics Technology Group 26th Research Institute, Chongqing, China)
(Figure 1a), comprised a lightweight UAV, an AOTF imaging spectrometer with an elec-
trically controlled zoom lens (Figure 1b), an AOTF driver, a mini personal computer
(MINI-PC), and a battery.

The AOTF spectrometer was based on an electric zoom lens with a spectral range
of 400–1000 nm; a spectral resolution of 8.2 nm (at the 450 nm band), 8.5 nm (at the
650 nm band), 10 nm (at the 850 nm band); and is variable at each center wavelength. The
acquisition software was set to 121 bands, ranging from 400 to 1000 nm, with a 5 nm step
size increase. The horizontal resolution was 2048, vertical resolution was 680, and the
quantization bit count was 16 bits.
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Figure 1. Composition of the unmanned aerial vehicle (UAV)-mounted hyperspectral imaging system
based on the airborne acousto-optic tunable filter (AOTF) spectrometer. (a) Components of the
imaging system included the AOTF spectrometer, AOTF driver, MINI-PC, and battery. (b) AOTF
spectrometer airborne imaging system featuring a zoom lens.

The drones were equipped with spectrometers, AOTF drivers, batteries, and other
components. The drone platform adopted the DJI WIND4 customized flight platform,
comprising a motor wheelbase of 1050 mm, a total weight (excluding batteries) of 7.3 kg, a
maximum takeoff weight of 24.5 kg, a maximum flight speed of 14 m/s, and a hover time
(single battery) of 28 min. However, considering the duration of the ascent and descent
phases and the safety buffer, the planned flight duration typically did not exceed 20 min.

The acquisition and control computer comprised the following: implemented AOTF
spectrometer data acquisition, AOTF driver control, and zoom lens control. The con-
trol computer adopted Intel’s NUC mini-host and i5-7260U processor, and had a main
frequency in the range of 2.2–3.2 GHz, a 4 MB high-speed cache, 15 W thermal design
power consumption, 32 GB memory, a size of 117 × 112 × 52 mm, and a 200 G solid-state
drive storage hard drive that was capable of meeting the storage needs of 500 waypoint
data cubes.

The core optical path structure of the AOTF spectrometer with an electrically con-
trolled zoom lens is illustrated in Figure 2. It included the following components:
(1) an electrically controlled zoom lens, (2) a front objective lens, (3) an aperture stop,
(4) a collimating lens, (5) a linear polarizer, (6) an AOTF module comprising a TeO2 crystal
and a piezoelectric transducer, (7) a second linear polarizer, (8) a secondary imaging lens,
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(9) a complementary metal-oxide semiconductor (CMOS) detector, (10) a MINI-PC for
control and data acquisition, and (11) a radiofrequency (RF) driver.

Electronics 2025, 14, x FOR PEER REVIEW 6 of 25 
 

 

complementary metal-oxide semiconductor (CMOS) detector, (10) a MINI-PC for control 
and data acquisition, and (11) a radiofrequency (RF) driver. 

 

Figure 2. Core optical path structure of the AOTF spectrometer detailing the arrangement of the key 
components. 

The system functioned as follows: the incident light beam passed through the elec-
trically controlled zoom lens (1), front objective lens (2), aperture stop (3), and collimating 
lens (4) before reaching the surface of the linear polarizer (5). The polarized light was then 
reflected at a vertically incident on the AOTF module (6), where it interacted with ultra-
sonic waves to produce a diffracted beam. After passing through the second linear polar-
izer (7), the beam was focused by the secondary imaging lens (8) onto the CMOS detector 
(9), where it was collected and processed by the MINI-PC (10). Notably, the polarization 
direction of the first linear polarizer (5) was parallel to the acousto-optic interaction plane 
of the AOTF and perpendicular to the polarization direction of the second linear polarizer 
(7). This configuration ensured that the zero-order transmitted light was filtered out. 

2.2. Remote Sensing Waypoint Flight Acquisition Control 

The flight route and waypoints were planned based on the remote sensing data col-
lection area using DJI’s ground flight control assistance software. The selection of flight 
routes and waypoints must account for the UAV’s endurance time. Waypoints were set 
by considering the ground field of view, calculated using the focal length and aperture 
stop of the spectrometer’s imaging objective. Overlapping ground field-of-view ranges 
between the consecutive waypoints were necessary to ensure seamless stitching of large-
scale spectral data. After defining the route and waypoints, specific actions needed to 
complete the spectrometer data cube acquisition were assigned to each waypoint, includ-
ing the triggering of the RGB camera exposure, starting the imaging spectrometer scan, 
and the specification of the drone’s hover time. The flight plan, including the route and 
waypoint information, was exported as a keyhole markup language file using the ground 
flight control assistance software and imported into the drone flight control software for 
execution. Figure 3 summarizes the process followed to complete the UAV hyperspectral 
remote sensing data acquisition. 
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key components.

The system functioned as follows: the incident light beam passed through the electri-
cally controlled zoom lens (1), front objective lens (2), aperture stop (3), and collimating
lens (4) before reaching the surface of the linear polarizer (5). The polarized light was then
reflected at a vertically incident on the AOTF module (6), where it interacted with ultrasonic
waves to produce a diffracted beam. After passing through the second linear polarizer (7),
the beam was focused by the secondary imaging lens (8) onto the CMOS detector (9), where
it was collected and processed by the MINI-PC (10). Notably, the polarization direction
of the first linear polarizer (5) was parallel to the acousto-optic interaction plane of the
AOTF and perpendicular to the polarization direction of the second linear polarizer (7).
This configuration ensured that the zero-order transmitted light was filtered out.

2.2. Remote Sensing Waypoint Flight Acquisition Control

The flight route and waypoints were planned based on the remote sensing data
collection area using DJI’s ground flight control assistance software. The selection of flight
routes and waypoints must account for the UAV’s endurance time. Waypoints were set
by considering the ground field of view, calculated using the focal length and aperture
stop of the spectrometer’s imaging objective. Overlapping ground field-of-view ranges
between the consecutive waypoints were necessary to ensure seamless stitching of large-
scale spectral data. After defining the route and waypoints, specific actions needed to
complete the spectrometer data cube acquisition were assigned to each waypoint, including
the triggering of the RGB camera exposure, starting the imaging spectrometer scan, and
the specification of the drone’s hover time. The flight plan, including the route and
waypoint information, was exported as a keyhole markup language file using the ground
flight control assistance software and imported into the drone flight control software for
execution. Figure 3 summarizes the process followed to complete the UAV hyperspectral
remote sensing data acquisition.

The detailed process was as follows:

(1) Before the remote sensing flight test, system connections were checked. The system
was powered on, and the control computer (MINI-PC) was started. Remote sensing
data acquisition control software was launched, linking the AOTF-based hyperspectral
imager and RF controller, followed by a ground photography self-test.

(2) Parameters such as the integration time and gain settings for the spectral camera were
configured based on weather conditions. The spectral range and number of spectral
segments for the AOTF spectrometer were also set.
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(3) Preset route and waypoint data, including latitude, longitude, altitude, yaw angle,
and hover time, were imported into the drone flight control software. The drone
autonomously executed the flight plan.

(4) Upon reaching a waypoint, the UAV triggered the RGB panchromatic camera to
capture a wide-field image. Simultaneously, the spectrometer acquisition control
program received the trigger command.

(5) The spectrometer acquisition control program directed the AOTF driver to disable the
RF drive signal to acquire a dark background image.

(6) The spectrometer program performed the high-speed acquisition of wavelength-
specific data based on the configured parameters. A pre-established distortion model
was applied during acquisition for real-time correction, and the hyperspectral data
cube was stored in a designated format.

(7) The system checked if the final waypoint had been reached. If not, it proceeded to the
next waypoint and repeated steps 4–7. If the route was complete, the flight ended,
and the UAV returned to the ground station.

Unlike push-broom scanning spectrometers, the AOTF-based imaging spectrometer
captures spectral data by hovering at each waypoint, completing the spectral scan for a
single data cube. To accommodate this mode of operation, the DJI drone flight controller
was configured to synchronize its operation with external trigger signals, and a camera way-
point trigger acquisition program was developed. This program enabled rapid switching
and scanning of spectral segments. In route planning, adherence to aviation photography
standards and ensuring smooth transitions between the routes were critical for successful
image stitching.

2.3. Large Field-of-View Stitching Based on Waypoint Remote Sensing Images

Using the spectral scanning capabilities of the AOTF spectrometer, remote sensing
spectral data over a large spatial range were acquired by collecting individual data cubes
at multiple waypoints. At each waypoint, a data cube was captured directly over the field
of view. The drone sequentially moved to adjacent fields of view to acquire additional data
cubes, which were subsequently concatenated to form a larger field of view. Traditional
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large-field stitching involved several steps: first, feature point extraction was performed
on each image; next, feature point matching and image registration were performed;
subsequently, the images were copied to specific positions in a target image; and finally, the
overlapping boundaries were processed to achieve seamless integration. For hyperspectral
data cubes, stitching was conducted on a per-spectral-segment basis, concatenating the
data cubes sequentially. As illustrated in Figure 4, the UAV collected a hyperspectral data
cube at each waypoint along its flight path, with each cube representing a distinct field
of view.
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When the drone operated at a flight altitude of 100 m and the field-of-view aperture
was 10 mm × 3.2 mm, the focal length of the front objective lens was set to 12 mm to
ensure high-spatial resolution. Under these conditions, the ground field of view measured
approximately 83 m × 26 m. To meet the requirements for the field-of-view stitching and
following relevant aerial photography technical specifications [39–41], two adjacent fields of
view must have a considerable overlap. Typically, the heading overlap rate ranges from 53%
to 65%, whereas the lateral overlap rate falls between 15% and 40%. In practical applications,
especially for large fields of view with fewer surface features, both heading and lateral
overlap rates should be increased to ensure high-quality image stitching. Consequently, to
maintain adequate overlap, the distance set during route planning between two consecutive
waypoints did not exceed 15 m.

3. Proposed Method
Current methods for data cube concatenation rely solely on features from a single

spectral segment, neglecting the information from other spectral segments. Consequently,
this study proposes a concatenation strategy based on multi-feature fusion and a stitching
seam-search strategy based on spectral image classification. This section outlines the Super-
Point feature extraction and multi-feature fusion, LightGlue feature matching, K-means
spectral image classification, and the dynamic programming method for finding seams.

Figure 5 shows a schematic of the proposed hyperspectral data cube concatenation
method. Initially, SuperPoint depth features were extracted for each spectral segment in
Data Cube 1 and Data Cube 2. Subsequently, features from different spectral segments
in the two data cubes were fused separately, employing feature addition rather than
pixel addition. Subsequently, by using the LightGlue deep-learning feature-matching
method, features in the two cubes were paired, incorrect pairings were eliminated, and
the transformation matrix was computed. This matrix was then utilized to transform each
spectral segment in the two data cubes. Simultaneously, the K-means spectral classification
algorithm was employed to classify hyperspectral images in both data cubes, yielding
classified images. The grayscale of the classified image was transformed, the transformation
matrix was applied to the transformed classified image, and the dynamic programming
method—based on a grayscale loss function—was utilized to compute the stitching seam
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of the classified image. Finally, the stitching seam of the classified image was applied to all
spectral segments of the data cube, achieving the concatenation of the two data cubes.
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3.1. SuperPoint Feature Extraction and Multi-Feature Fusion

SuperPoint is a fully convolutional neural network (CNN) architecture [42] designed
to predict feature points and descriptors in a single forward pass through CNNs and is
capable of handling inputs of full-size images. The encoder within this model synchronized,
parallelized, and shared information. The output image was convolved by the encoder to
obtain a feature map with reduced dimensions. The architecture comprised two decoders:
one for extracting the key detectors of feature points and another for predicting descriptors.
The SuperPoint network could perform two tasks simultaneously and share information,
thus addressing the lack of sharing and representation between the points of interest and
descriptors. The SuperPoint network architecture is illustrated in Figure 6.
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SuperPoint, based on deep-neural networks, trains a feature point detector and descrip-
tor capable of self-monitoring learning. It effectively extracts key points in various complex
environments and generates feature descriptors with strong robustness for accurate image
matching, crucial for alignment in image stitching.

The higher the number of features identified, the greater the number of paired features
in the two data cubes, resulting in more matched feature pairs and better concatenation.
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SuperPoint features were computed to fully utilize the spectral feature information of
different spectral bands. The features of different spectral segments were stored in vector
form, which were then aggregated to obtain the features of the cube. The formula describing
the multi-feature fusion for the cube is given by

Vector < KeyPoint >Cube =
n

∑
i

Vector < KeyPoint >Image(i) (1)

where Vector < KeyPoint >Cube represents the set of all spectral features in the data cube,
Vector < KeyPoint >Image(i) represents all features contained in the ith spectral image,
and n represents the number of spectral segments contained in the data cube.

3.2. LightGlue Feature Matching

LightGlue is a deep-learning-based local feature-matching method [43], derived from
SuperGlue [44], designed to predict partially matching relationships between local feature
sets extracted from images A and B. It consisted of L identical feature processing layers
stacked together to process the feature sets of images A and B. Each layer comprised self-
attention and self-cross-attention units, with a classifier module introduced at the end of
each layer to determine whether to halt the inference and prevent unnecessary calculations.
The network structure of LightGlue is depicted in Figure 7.
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LightGlue served as a versatile image registration library primarily focused on op-
timizing image geometric transformations and stitching. Leveraging the feature point
information provided by SuperPoint, it could compute the optimal image fusion strategy,
facilitating smooth transitions and eliminating discontinuities in overlapping areas.

3.3. K-Means Spectral Image Classification

The K-means clustering algorithm is extensively employed in spectral image classi-
fication. Its fundamental principle involves clustering samples into K categories based
on similarity, utilizing an initial K value and K initial cluster centers. The algorithm aims
to minimize the Euclidean distance between each sample and its cluster center until it is
less than that of other cluster centers. Subsequently, the cluster centers are updated based
on distance calculations. This allocation and updating process iterates until the distance
between all samples in each cluster and the center point minimally changes, ensuring
cluster stability.

Assuming that the hyperspectral image data comprise N spectral segments, with each
spectral segment image consisting of M pixels, the spectral curve of the ith pixel can be
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represented by a vector Xi = {xi,1, xi,2, . . . , xi,N}, where M ≥ i ≥ 1. The Euclidean distance
between the ith and jth samples can be expressed as

d(i, j) =

√√√√ N

∑
n=1

(
xi,n − xj,n)2 (2)

The spectral differences for each spectral segment were calculated using equal weights
and then summed to determine the overall differences between the spectral segments of the
two vectors. This difference, known as similarity, served as a criterion to determine whether
sample points belonged to the same class. Smaller distances indicated greater similarity.

The criterion function used to determine the number of iterations in clustering is
typically represented by an error function. When using Euclidean distance as the similarity
measure and assuming that the clustering results were grouped into K classes, the criterion
function can be expressed as

J(X, V) =
K

∑
k=1

∑
Xi∈Vk

d2(Xi, Vk) (3)

where Vk represents the center of the kth class.
Assuming Ck is the set of all sample data for the kth class, then

Ck =
{

Xi ∈ S
∣∣∣k = argmind2(Xi, Vk)

}
(4)

Therefore, the cluster center is

Vk =
∑xi∈Ck

Xi

|Ck|
(5)

3.4. Dynamic Programming Method for Finding Joint Seams

When there was an overlap between images I1 and I2, it was essential to determine
the optimal seam between them. Initially, we defined the energy function of the overlap as

e = ∥I1, I2∥2 (6)

where I1 and I2 represent the overlapping parts of the two images, and ∥ ∥2 represents the
two paradigms.

Typically, there are three constraints to the seam line. Firstly, if the overlapping area
is wider than it is tall, the seam will run horizontally; conversely, if the overlap area has a
higher height than width, the seam will run vertically, ensuring a definite length for the
seam line. Secondly, if the seam is horizontal, it cannot have an absolute vertical seam line,
and vice versa. Thirdly, if the overlapping area forms a rectangle, the seam line starts from
one side of the rectangle and ends on the side parallel to the starting side.

Assuming that the width of the overlapping area was less than the height, the seam
line was vertical. The specific implementation steps were as follows:

1. Each pixel in the first row and column of the energy function corresponded to a
stitching line, with its energy value initialized to its current energy value.

2. Starting from the second row, one of the best path nodes for each point was selected
in the same row. The selection method involved comparing the energy values of the
three adjacent points in the row opposite the current point, recording the column
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corresponding to the minimum value, and adding this minimum value to the energy
value corresponding to the current point to update the suture’s energy value

Ei,j = ei,j + min(Ei−1,j−1, Ei−1,j, Ei−1,j+1
)

(7)

where ei,j represents the current energy value of the suture, and the three terms in the
min function represent the energy values of the current pixel’s upper left, upper, and
upper right neighbors, respectively.

3. If the current point of the suture line was the last in the figure, the method proceeded
to step 4. Otherwise, the method returned to step 2 and continued the expansion.

4. The minimum value in the last row indicated that the end of the minimum vertical
path had been reached, allowing us to trace back and obtain the optimal path, which
formed the seam line.

Similarly, if the width of the overlapping area was greater than the height, a similar
calculation process was performed. The dynamic programming algorithm was well-suited
for solving Equation (6).

4. Experimental Results
Two hyperspectral data cubes were captured using a drone equipped with an AOTF

spectrometer [37,45]. Owing to the system design, the spectral response efficiency was low
at 400–450 nm and 800–1000 nm. To validate the proposed method, we focused on the
spectral range of 450–800 nm, with spectra increasing in steps of 5 nm. In total, 71 spectral
segments were chosen for the experimental data. Consequently, the size of both data
cubes was 530 pixels × 2000 pixels × 71 bands. Three datasets were utilized: the Lakeside,
Farmland, and Park datasets.

4.1. Comparison Between Features of All Spectral Segments and Single Spectral Segments

The feature extraction method employed in this study was compared with methods
outlined in the literature. SuperPoint features were extracted from the selected or con-
structed feature spectral segments, and these features were paired with LightGlue features.
The comparison of the number of features and pairs corresponding to different feature
extraction strategies for the “Lakeside Dataset” is presented in Table 1 below.

Table 1. Comparison between the number of features and feature pairs corresponding to different
feature extraction strategies for the lakeside dataset.

Methods Number of Features in the
Left Data Cube

Number of Features in
the Right Data Cube

Number of
Successful Feature Pairs

Between the Two Data Cubes

Select intermediate band [18] 1537 1663 353
Select peak signal-to-noise ratio [19] 2927 2806 622

Image fusion into one image [31] 3981 3509 897
Image fusion into one image [32] 3016 2866 742

Our method 131,117 133,511 37,876

As depicted in Table 1, selecting an intermediate band [18] for feature extraction
represented a simple approach. However, the chosen intermediate spectral band lacked
representativeness. Selecting the spectral segment with the highest PSNR [19] for feature
extraction was representative; however, it failed to represent the features of all spectral
segments in the cube. Methods involving the fusion of images into one image and subse-
quent feature extraction [31,32], or fusion into one image and subsequent feature extraction
essentially add grayscale pixel values, resulting in a limited number of features and paired
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features. The principal advantage of our method lay in preserving all features in the original
spectral segments, thereby enhancing the feature pairing process. The number of features
employed in the proposed method exceeded those utilized in other methods by an order
of magnitude. Features from each spectral segment image were extracted, and the feature
pairing results are illustrated in Figure 8.
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The number and distribution of features varied across different spectral segments of
the data cube. For instance, as demonstrated in the 600 and 700 nm images in Figure 8,
a few features were present on the road in the overlapping area (the area with saturated
brightness). Conversely, distinct paired features were detected on the overlapping roads
in the 500 and 800 nm images. The image representing the 450–800 nm range illustrated
the outcomes obtained by the proposed method, showcasing the pairing of all spectral
segments in the data cube after feature fusion, indicative of a considerable increase in the
number of features.

The results depicted in Table 2, along with the counts of left and right data cube
features, and the successful matching of these features (as shown in Table 1), yielded
consistent comparative outcomes. Specifically, our method demonstrated a tenfold increase
in both the number of extracted features and successful matches. This verified the extraction
of features from each spectral segment image, as evidenced by the feature pairing outcomes
illustrated in Figure 9.

Table 2. Comparison of the number of features and feature pairs corresponding to different feature
extraction strategies for the Farmland dataset.

Methods Number of Features in
the Left Data Cube

Number of Features in the
Right Data Cube

Number of
Successful Feature Pairs

Between the Two Data Cubes

Select intermediate band [18] 1694 2290 109
Select peak signal-to-noise ratio [19] 2413 3143 121

Image fusion into one image [31] 2348 2746 96
Image fusion into one image [32] 2077 2672 88

Our method 107,049 127,143 4936

The distribution and quantity of features exhibited variations across different spectral
segments of the data cube. For instance, in the Farmland dataset depicted in Figure 9,
where the overlap was relatively small, the overall number of features was correspondingly
diminished. Consequently, there were fewer successfully paired features within the single
spectral ranges of 500 nm, 600 nm, 700 nm, and 800 nm. Our proposed method, focusing
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on the 450–800 nm range, illustrated the fusion of paired feature sets across all spectral
ranges, indicating a substantial increase in the number of feature pairs.
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Similarly, the findings presented in Table 3, along with the counts of left and right
data cube features, and successful matching (as detailed in Table 1), confirmed a ten-
fold increase in both the number of extracted features and successful matches using our
method. This reaffirmed the extraction of features from each spectral segment image, as
demonstrated in Figure 10.

Table 3. Comparison between the number of features and feature pairs corresponding to different
feature extraction strategies for the park dataset.

Methods Number of Features in
the Left Data Cube

Number of Features in the
Right Data Cube

Number of
Successful Feature Pairs

Between the Two Data Cubes

Select intermediate band [18] 3099 3169 497
Select peak signal-to-noise ratio [19] 3215 3008 559

Image fusion into one image [31] 2913 3187 605
Image fusion into one image [32] 3409 3260 618

Our method 160,956 152,741 29,631
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where N is the total number of spectral segments in the hyperspectral data cube. 
To assess the differences in informational content between the splicing strategy em-
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titative evaluations. 

Table 4 illustrates that both the original fusion method and the method utilizing the 
optimal stitching technique [31,33,34] produced similar entropies for the data cubes post-
stitching. However, the entropies of both methods were smaller than those of the stitching 
seam-finding strategy based on the hyperspectral image classification method proposed 
in this study. 

Table 4. Entropy of data cubes after splicing using different splicing strategies. 

Datasets Original Fusion 
Method 

Optimal Stitching 
Technique [11,12] 

Optimal Stitching 
Technique [31] 

Our 
Method 

Lakeside dataset 471.4471 472.0932 472.1074 472.8813 

Figure 10. Pairing of single and full spectral features for the Park dataset.

The distribution and quantity of features also varied across different spectral segments
of the data cube. For example, in Figure 10, images at 600 nm, 700 nm, and 800 nm
exhibited saturated middle regions with no features in the overlapping areas. Conversely,
multiple pairs of features were detected in the overlapping region of the 500 nm image.
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Ultimately, the pairing of the spectral bands ranging from 450 nm to 800 nm in the data
cube underscored a tenfold increase in the number of features.

4.2. Evaluation of Spatial Information

In information theory, entropy serves as a metric for describing information richness.
Hence, entropy becomes a useful tool for evaluating the informational content within a
data cube. In line with this, we formulated an entropy-based evaluation function

F = −
G

∑
g=0

Pk(g)logbPk(g) (8)

where b is typically equal to two, g represents the grayscale value of the image, G represents
the maximum grayscale value of the image, k represents the defocus image sequence, and
Pk(g) represents the probability of the grayscale value g appearing in the kth image.

The entropy of the data cube is defined as

E =
N

∑
n=1

Fn (9)

where N is the total number of spectral segments in the hyperspectral data cube.
To assess the differences in informational content between the splicing strategy em-

ployed in this study and other methods, we utilized the entropy of the data cube for
quantitative evaluations.

Table 4 illustrates that both the original fusion method and the method utilizing the
optimal stitching technique [31,33,34] produced similar entropies for the data cubes post-
stitching. However, the entropies of both methods were smaller than those of the stitching
seam-finding strategy based on the hyperspectral image classification method proposed in
this study.

Table 4. Entropy of data cubes after splicing using different splicing strategies.

Datasets Original Fusion Method Optimal Stitching
Technique [11,12]

Optimal Stitching
Technique [31] Our Method

Lakeside dataset 471.4471 472.0932 472.1074 472.8813
Farmland dataset 464.5104 464.6879 464.8157 465.0429

Park dataset 462.8703 463.7294 463.1543 464.8864

To visually discern the disparities in spatial information obtained by the splicing
strategy developed in this study compared with other methods, data cubes spliced using
the four methods were constructed. These methods included the original non-seam method,
optimal suture technique from [33,34], optimal suture technique from [31], and our method.

From the observation in Figure 11, it was evident that the original fusion method
(Figure 11a) yielded a considerable number of stitching seams in the concatenated data
cube, Figure 11b was similar to the splicing seam in Figure 11c, and our method (Figure 11d)
facilitated smooth transitions of the seams. The sub-images in the red boxes in Figure 11
demonstrated the stitching effect on the water surface, exhibiting increased stability even
under excessive display conditions.
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Figure 11. The stitching effect for the Lakeside dataset: (a) original non-seam method, (b) optimal
suture technique from [33,34], (c) optimal suture technique from [31], and (d) our method.

From the observations in Figure 12, the following points were noted: the original fusion
method (Figure 12a) resulted in noticeable stitching seams in the concatenated data cubes;
slight blue ghosting was observed in the stitching of the overlapping area in Figure 12b;
comparatively in Figure 12c, the blue ghosting on the stitching of the overlapping area was
slightly reduced compared with (Figure 12b); and our method (Figure 12d) demonstrated
minimal ghosting on the stitching of overlapping areas. The sub-images in the red boxes of
Figure 12 illustrated the presence of ghosting on the stitching seam of the overlapping area.
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The following conclusions could be drawn based on Figure 13: the original fusion
method (Figure 13a) led to considerable stitching seams in the spliced data cube with no-
ticeable misalignment in the stitching of the curved building at the bottom; Figure 13b was
similar to Figure 13c in the splicing joint. Additionally, there was a misalignment of splicing
of the curved building at the bottom part. Our method (Figure 13d) ensured smooth and
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seamless joints, with the curved buildings well-connected without any misalignment. The
sub-images in the red boxes in Figure 13 indicated the presence or absence of misalignment.
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4.3. Evaluations Based on Spectral Information

To assess the proposed method from the perspective of spectral information, four typi-
cal features were chosen in the overlapping area, and their spectral curves were extracted
using the same control points as those in the left data cube. Spectral angle mapping (SAM)
was employed to determine the similarity between the two arrays [31]. SAM computes
similarity values based on the overall resemblance of spectral curves, treating each pixel’s
spectrum in an image as a high-dimensional vector. The similarity between spectra was
gauged by calculating the angle between the two vectors. A smaller angle indicated a
greater similarity between the two spectra. Denoting the target and reference spectra as x
and y, respectively, each with a length of n, we could define

SAM(x, y) = arccos
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

(10)

where SAM(x, y) is the spectral angle between the two spectra. The modes were two
spectral vectors.

As depicted in Figure 14, six points were selected in the overlapping area of the left
and right data cubes across three datasets, corresponding to (a) the road surface, (b) stone,
(c) grassland, (d) water body, (e) crops, and (f) trees.

Figure 15 displays the spectral curves of four points extracted for data cubes concatena-
tion using different methods, with the reference spectrum being the spectral curve extracted
from the corresponding ground object in the left data cube. SAM was then calculated for
spectral curves extracted by different methods and reference spectral curves. From the
graph, it was evident that the method proposed in this article exhibited a higher degree of
overlap between the extracted spectral curve and the reference curve. Notably, for point
(c), the spectral curve of the grassland demonstrated the highest similarity from 700 nm to
800 nm. Additionally, from an overall perspective, the differences in spectral curves for
(a), (b), (d), (e), and (f), were not pronounced. However, based on numerical analyses of
the spectral curves, our proposed method yielded the SAM values of 0.0125, 0.0168, 0.0210,
0.0279, 0.0286, and 0.0283, respectively, which were smaller than those calculated by other
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methods. Therefore, our proposed stitching seam-finding method based on hyperspectral
image classification also offered certain advantages in spectral performance following data
cube stitching.
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4.4. Computational Complexity Analysis

In terms of algorithmic complexity, compared with the method proposed in this paper,
the calculation process of the method [18] was to select the image of the 88th band in the
middle of 176 bands from the two data cubes as the feature extraction image, including
feature matching based on the SIFT and mTopKRP algorithms, as well as robust elastic warp
and multiband fusion to obtain a hyperspectral panorama. The implementation process of
the method [19] was as follows: One band was selected as the reference using the PSNR
estimation, Exact SuperPoint feature points, and Match feature points, and false matches
were removed using LAF, image alignment using robust elastic warp, and adaptive bundle
adjustment. All the bands were fused to obtain the final panoramic hyperspectral image.

The implementation process of method [31] was as follows. First, band fusion was
performed; the SuperPoint network was used to extract feature points, and the SuperGlue
network was used to obtain matching point pairs. The transformation matrix was estimated
by robust elastic image warping. The input HSIs were warped into the coordinate system of
the stitching result. The process implemented in methods [33] and [34] involved inputting
two data cubes composed of 176 spectral segments, implementing image registration and
alignment using the mTopKRP+REW method, optical coastline detection using the Graph
cut method, and the stitching HSI. The implementation process of the method proposed in
this article is shown in Figure 4. To fully utilize the spectral information of the data cube,
the implementation process was more complex than the comparative methods.

Specifically, to assess the computational complexity of the methods proposed in this
article, we conducted a statistical analysis of the runtime of all methods using the Lakeside
dataset. Table 5 presents a comparison of the time taken to complete the stitching of the
Lakeside dataset using different stitching strategies.

Table 5. Comparison of the time taken to complete the stitching of the Lakeside dataset using different
stitching strategies (in s).

/ Select Intermediate
Band [18]

Select Peak
Signal-to-Noise

Ratio [19]

Image Fusion Into
One Image [31]

Image Fusion Into
One Image [33] Our Method

Stitching time 127.58 228.25 162.20 289.35 952.57 (118.23)

According to the results in Table 5, it was evident that our proposed method required
the longest time to complete the stitching process overall. However, in the experimental pro-
cess, the time required for each stage of our method was 846.26 + 19.07 + 87.24 = 952.57 s.
Among them, the time required for data cube feature extraction, all feature fusion,
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and all feature matching was 846.26 s. The K-means classification of hyperspectral
data cubes consumed 19.07 s, while 87.24 s were spent on finding and applying the
stitching seam to all spectral segments. If only one spectral image was selected for
using our proposed method, the entire stitching process would take approximately
(846.26/71 bonds) + 19.07 + 87.24 ≈ 118.23 s. Despite the extended duration required by
our proposed strategy to complete the dataset stitching, it was noteworthy that even in the
scenarios of low-imaging quality, our method could achieve efficient and accurate cube
stitching of the hyperspectral data across various scenes.

4.5. Large-Field Stitching Results

To validate the method proposed in this article, an outdoor drone flight test
(110◦44′58.6′′ E, 30◦57′21.4′′ N) was added. Hyperspectral data from five waypoints cap-
tured using the Park dataset were used and the principle diagram of the hyperspectral data
cube stitching proposed in this article was used to complete the stitching of the hyperspec-
tral remote sensing data from the five data cubes. Additionally, extraction was performed
(red: 650 nm, green: 530 nm, blue: 480 nm) to synthesize a pseudo-color image, as shown
in Figure 16.
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hyperspectral remote sensing data from five waypoints.

To validate the method proposed in this article, a second outdoor drone flight test
(116◦0′46.3′′ E, 29◦11′12.5′′ N) was added. Hyperspectral data from 19 waypoints, captured
using the Lakeside dataset, were used and the principle diagram of the hyperspectral
data cube stitching proposed in this article was used to complete the stitching of the
19 hyperspectral remote sensing data cubes. Additionally, extraction was performed (red:
650 nm, green: 530 nm, blue: 480 nm) to synthesize a pseudo-color image, as shown in
Figure 17 below.
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5. Discussion
Based on the experimental results presented above, several facts were observed.
Based on the Lakeside, Farmland, and Park datasets, combined with Tables 1–3 and the

results shown in Figures 7–9, in the feature extraction stage of hyperspectral image stitching
in references [18,19,31,32], the selected feature extraction objects were ultimately one image;
one image cannot represent the entire data cube. The number of extracted features from
one image was small, making it difficult to represent all the feature information of a data
cube. The superiority of the proposed method can also be deduced from the number of
features. That is, this study proposed a new multi-feature fusion strategy that used the
features of all the spectral segments as the overall features of the data cube. These fused
features could comprehensively reflect the characteristics of each spectral segment of the
data cube.

The listings in Table 2 showed that the mean entropies of the concatenated data
cubes for the three datasets using the original fusion method and the optimal stitching
techniques [31,33,34] were similar, but were all smaller than the values yielded by the
stitching seam-finding strategy based on the hyperspectral image classification proposed
herein. This is because—in addition to the original fusion method, and among the two
types of seam-finding methods mentioned above—only the first method [33,34] selected the
seam line with the maximum SSIM for a specific spectral segment, and could not achieve
the maximum SSIM for the spliced images of the other spectral segments. In the second
method [31], the essence of seam selection was to also find the optimal seam, which was
based on the constructed image and did not fully consider the situation of all the spectral
segments. Furthermore, this study proposed a stitching seam-search strategy based on
hyperspectral image classification. This method also overcame the drawback of using
only a single spectral segment to search for seam joints without fully utilizing the spectral
information, resulting in inaccurate seam joints.

This study was associated with limitations. By analyzing the complexity of the
proposed method based on the feature fusion strategy and additional hyperspectral im-
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age classification, the stitching time was increased considerably compared with those of
other methods.

Future research will continue to optimize the algorithm and reduce its time complexity.
In addition, from a hardware perspective, hardware implementation algorithms can be
used to implement the proposed splicing method on FPGA [46,47].

In addition, the future research plan is to achieve large field-of-view stitching of
the hyperspectral remote sensing images obtained by a UAV-mounted spectral scanning
spectrometer. As part of this plan, we aspire to identify ways to improve seam transition
after stitching multiple data cubes.

6. Conclusions
To achieve large-field stitching of the hyperspectral remote sensing images collected

using a UAV-mounted spectral scanning spectrometer, this study introduced a stitching
method based on a multi-feature fusion strategy and a seam-finding approach that utilized
hyperspectral image classification. The proposed method addressed the underutilization
of spectral dimension information prevalent in current data cube stitching techniques. At
the feature extraction stage, a multi-feature fusion strategy was devised to overcome the
limitation of using single spectral images to compensate for the insufficient number of
features in the data cube. This strategy involved the utilization of all the spectral features
as comprehensive features of the data cubes. For the seam selection stage, a seam-finding
strategy based on spectral image classification was employed to uphold the stability of
the spectral information while preserving identical features in the overlapping area. The
introduction of boundary lines between different features into the stitching line facilitated
the experimental analysis of both spatial and spectral information contained in the concate-
nated data cube. The performance evaluation of the proposed strategy demonstrated its
superiority over existing methods for stitching hyperspectral data cube images.
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