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Abstract: In this paper, we propose a novel method to address dynamic blur and low-light
issues in smart cabinets, which is named the MIMO-IMF (Multi-input Multi-output U-Net
Integrated Motion Framework). This method combines a Frequency-Domain Adaptive Fu-
sion Module (FDAFM), built on the blind deblurring framework MIMO-UNet (Multi-input
Multi-output U-Net), to improve the capture of high-frequency information and enhance
the accuracy of blur region recovery. Additionally, a low-light luminance information ex-
traction module (IFEM) is designed to complement the multi-scale features of the FDAFM
by extracting valuable luminance information, significantly improving the efficiency of
merchandise deblurring under low-light conditions. To further optimize the deblurring
effect, we introduce an enhanced residual block structure and a novel loss function. The
refined multi-scale residual block, combined with the FDAFM, better restores image details
by refining frequency bands across different scales. The New Loss Function improves the
model’s performance in low-light and dynamic blur scenarios by effectively balancing
luminance and structural information. Experiments on the GOPRO dataset and the self-
developed MBSI dataset show that our method outperforms the original model, achieving
a PSNR improvement of 0.21 dB on the public dataset and 0.23 dB on the MBSI dataset.

Keywords: localized dynamic blur; low-light scenes; MIMO-UNet; frequency-domain
attention; luminance information

1. Introduction
Motion blur refers to the loss of image details and the blurring of object edges caused

by rapid object motion or camera shake [1]. This phenomenon not only degrades image
quality but also impacts the accuracy and efficiency of subsequent tasks, such as target
detection [2,3] and image recognition [4,5]. In the field of unmanned retailing, the smart
retail dynamic cabinet (referred to as the smart cabinet) is an emerging intelligent device
designed for automatic goods recognition and detection. However, the rapid picking of
goods by consumers and the hardware frame rate limitations of cameras make it challenging
to capture fast actions in real time, resulting in blurred areas that are difficult to recover.
Moreover, the use of smart cabinets in low-light conditions, such as nighttime or poorly lit
environments, further complicates the accurate recognition and categorization of goods.
Existing image deblurring methods [6–9], while effective in multi-scale feature extraction
and global blur removal, are not well suited to address the challenges posed by smart
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cabinets in dynamic and variable scenarios. Specifically, these methods struggle to handle
the localized motion blur caused by rapid hand movements during goods retrieval and
fail to adequately restore luminance and details in low-light environments, limiting their
deblurring capabilities in such contexts.

Therefore, we propose a deblurring method, MIMO-IMF, based on an improved
MIMO-UNet. This method is designed to simultaneously address irregular local dynamic
blurring and deblurring challenges in low-light environments. During the feature extraction
of blurred images, a luminance information extraction channel is incorporated to provide
meaningful luminance features for the model. The subsequently generated light attention
maps are fused with multi-scale features to enhance the deblurring process. Additionally,
the deblurring effect is optimized by introducing an improved residual block structure and
a novel loss function, ensuring high performance and real-time response across low light
and normal light scenes of smart cabinets. Experiments on one standard and one custom
dataset will be conducted to validate the method’s effectiveness and applicability. The
main contributions of this work are as follows:

1. Low-light brightness information extraction module (IFEM): This module enhances
the deblurring efficiency of smart cabinets in low-light environments by extracting
meaningful brightness information.

2. Frequency-Domain Adaptive Fusion Module (FDAFM): By incorporating Fourier
Transform and frequency-domain attention mechanisms, this module strengthens the
ability to capture high-frequency information, significantly improving the recovery
accuracy in blurred regions.

3. Improved Multi Residual Block (MRB) and New Loss Function: By introducing
multi-scale residual connections and an adaptive weight adjustment mechanism,
combined with frequency-domain attention to refine the selected frequency bands,
the restoration capability is enhanced, further optimizing the deblurring performance.

The rest of this study is organized as follows: Section 2 reviews previous studies on
deblurring tasks. Section 3 provides a detailed explanation of the proposed deblurring
method. Section 4 introduces the datasets used and presents the experiments and analyses
conducted with the proposed method. Finally, Section 5 summarizes the findings and
concludes this study.

2. Related Study
In this section, we review previous approaches to image-based deblurring tasks.

Existing research on deblurring has primarily focused on image restoration, with vari-
ous algorithms proposed for different scenarios. Section 2.1 discusses conventional im-
age deblurring methods, while Section 2.2 focuses on deep learning-based approaches.
Sections 2.2.1–2.2.3 detail deblurring methods based on neural networks, generative adver-
sarial networks, and Transformers, respectively.

2.1. Traditional Image Deblurring Methods

Traditional methods generally rely on the combination of physical models and prior
knowledge of images. These methods were extensively studied and applied in the early
stages of image deblurring research. Early frequency-domain methods, such as the Wiener
filter, used inverse filtering techniques to remove motion blur but had limited applica-
bility due to their sensitivity to noise. With technological advancements, spatial domain
optimization methods gradually became mainstream, particularly those based on image
priors. Fergus et al. were the first to propose a deblurring approach based on blur kernel
estimation, combining natural image statistics with a Bayesian inference method [10]. This
work sparked widespread adoption of prior models, such as image sparse priors and Total
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Variation (TV). For example, Levin et al. proposed a sparse gradient prior that effectively
preserves the edge information of an image [11].

In the 2010s, image prior-based deblurring methods experienced further advance-
ments [12–14]. For instance, deblurring algorithms based on L0 norm minimization, as
proposed in the literature [15], significantly enhanced image edge sharpness by promoting
image sparsity. However, such traditional methods rely heavily on hand-designed prior
models and often struggle to handle complex and dynamic blurred scenes. Additionally,
the high computational complexity of these methods limits their applicability in real-time
scenarios, making them less effective in practical, complex environments [16]. In contrast,
deep learning methods demonstrate superior performance when addressing real-world
non-uniform blurring.

2.2. Deep Learning-Based Deblurring Method

In recent years, deep learning techniques have achieved significant advancements in
the field of image deblurring. The literature [17] provided a comprehensive summary of
deep learning-based deblurring techniques, covering various methods (e.g., DAE, GAN,
and multi-scale networks), commonly used loss functions, and evaluation datasets. The
study demonstrates that deep learning methods substantially enhance deblurring per-
formance through diverse network architectures and optimization strategies. However,
challenges remain in addressing non-uniform blurring and achieving real-time performance.
To further explore the specific implementations of deep learning deblurring techniques
and their advantages, this section summarizes the innovative approaches and practical
applications of deep learning in image deblurring tasks, focusing on three key categories:
neural networks, generative adversarial networks, and Transformer-based networks.

2.2.1. Neural Network Based Deblurring Methods

In recent years, deep learning-based methods have taken center stage, demonstrating
remarkable results in image deblurring. Compared to traditional methods, deep learning
algorithms excel in capturing complex blurring features through data-driven approaches
and leverage their powerful learning capabilities to restore images. Nah et al. proposed
one of the earliest algorithms for deblurring using convolutional neural networks (CNNs),
known as multi-scale convolutional neural networks (MSCNNs). This model significantly
enhances blurred images by progressively recovering them at different scales, achieving
notable deblurring effects [1]. Sun et al. introduced an end-to-end deblurring model based
on convolutional networks, which demonstrated initial deblurring capabilities and laid the
foundation for subsequent deep learning approaches [18].

Subsequently, Tao et al. proposed a deblurring algorithm utilizing a recursive convo-
lutional neural network, which combines convolutional layers with a recurrent structure
to progressively restore image clarity in a recursive manner [7]. Gao et al. [8] designed
the PSS-NSC network, which employs parameter sharing and nested skip connections
to effectively enhance deblurring efficiency and performance. Cho et al. [9] proposed
MIMO-UNet, which reduces computational complexity while maintaining high-precision
deblurring through a multiple-input-multiple-output structure and an asymmetric feature
fusion module. Although these methods have shown promising results in multi-scale
feature extraction and global blur removal, they fall short in restoring brightness and
fine details in images. Furthermore, they struggle to handle local motion blur caused by
fast-moving objects, making them less effective in addressing specific challenges in smart
cabinet scenarios.
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2.2.2. Generative Adversarial Network-Based Deblurring Methods

Generative adversarial network (GAN)-based deblurring methods have made signifi-
cant progress in the field of image deblurring in recent years. The GAN model employs
adversarial learning between a generator and a discriminator, where the generator aims
to produce realistic deblurred images while the discriminator distinguishes between the
generated and real images. This adversarial process continuously optimizes the deblurring
effect.

One of the classic works applying GANs to image deblurring was proposed by Kupyn
et al., known as DeblurGAN [6]. DeblurGAN introduces a conditional GAN structure that
employs perceptual loss to maintain the perceptual quality of an image while generating
a clear version. This approach achieved excellent results in terms of visual quality and
particularly excelled in recovering fine details. Subsequently, DeblurGAN-v2 further
enhanced the generative network structure by introducing a multi-scale network design,
improving the ability to handle large-scale blurred scenes. Additionally, it increased model
efficiency through a lightweight network architecture, making it suitable for real-time
applications [19].

However, such methods have limitations. For instance, the training of GANs is often
unstable and prone to mode collapse, which can lead to texture distortion or blurred details
in the generated images. Yang et al. [20] proposed a method that utilizes latent spatial
mapping noise and features of a neural network’s shallow-to-deep feature-generating
GAN, enabling the recovery of both global structures and local details of blurred images.
Nevertheless, the limitations of GAN-based approaches, such as instability and general-
ization issues, have yet to be fully addressed. In summary, while GAN-based deblurring
methods have significantly improved visual quality, there remains substantial room for
improvement in terms of stability and general applicability.

2.2.3. Transformer-Based Deblurring Methods

With the development of the self-attention mechanism and Transformer architecture,
the Restormer model proposed by Zamir et al. [21], based on the Transformer framework,
employs a global self-attention mechanism to effectively capture long-range dependen-
cies, demonstrating excellent results in deblurring and denoising tasks for high-resolution
images. Further advancements in this area include an efficient frequency-domain-based
Transformer model proposed in the literature [22], which recovers high- and low-frequency
details in images through a frequency-domain feedforward network. This approach en-
hances the effectiveness of the feedforward network in deblurring tasks.

Another study published in the same year [23] combines local feature preservation
with global representation learning. SharpFormer achieves more accurate motion blur
removal by utilizing a local feature enhancement module to better capture details while
leveraging the Transformer architecture to process global information.

Although these methods achieve remarkable results across various deblurring scenar-
ios, the computational complexity inherent in Transformer architectures reduces real-time
performance in smart cabinet applications. This limitation impacts the consumer shopping
experience, as high computational costs can delay operations.

3. Method
In addressing the challenges of localized dynamic blurring and low-light conditions

in smart cabinets, it is important to recognize that these issues primarily stem from the
limitations imposed by the frame rate of the camera hardware and the rapid removal of
goods by consumers. To mitigate these challenges, this paper introduces a novel method
termed MIMO-IMF, the structure of which is depicted in Figure 1. Building upon the MIMO-
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UNet architecture, we propose a frequency-domain attention-enhanced adaptive feature
fusion module aimed at recovering dynamic blur in merchandise images. Additionally, we
have designed a low-light brightness feature extraction module to enhance the performance
of smart cabinets in low-light environments.

Figure 1. Algorithmic process.

3.1. Introduction to MIMO-UNet

MIMO-UNet, a multi-scale image blind deblurring model, the network architecture
is divided into four main parts: shallow feature extraction module (SCM), encoder (EB),
asymmetric feature fusion module (AFF), and decoder (DB). The structure is shown in
Figure 2. Through the design of multi-scale feature inputs and outputs, the model is able to
efficiently capture the feature information of the blurred region and recover it.

Figure 2. The Structure of MIMO-UNet.

3.2. Low-Light Brightness Information Extraction Module (IFEM)

In practical application scenarios of smart cabinets, lighting conditions often have
a large variation, with most physical container placements being in low-light or dim
environments. This makes it challenging to capture sufficient luminance information
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using traditional image blind deblurring methods, thereby affecting the performance of
deblurring and object recognition. The module architecture is shown in Figure 3; the
input full resolution RGB image I1 is separated into three channels, red (R), green (G),
and blue (B), each channel contains luminance information at different wavelengths, and
the purpose of the separation is to extract the specific luminance features in each channel,
which may have a different impact on the luminance recovery in the image. After channel
separation, the luminance information of the R, G, and B channels are weighted and fused
to generate the intermediate luminance feature L0, which is represented as the overall
lighting characteristics of the image and can be expressed as

L0 = αR + βG + γB (1)

where α, β, and γ are the weighting coefficients of the channels, respectively, which are
used to measure the degree of the channel’s contribution to the luminance. The fused
luminance features L0 are subjected to two convolution operations and processed with the
ReLu activation function to obtain a light attention map L1 for highlighting key luminance
regions in the image. Enabled by low-light information extraction, we are able to obtain
more feature information in scene-constrained as well as hardware-constrained smart
cabinets to help subsequent feature fusion.

Figure 3. The component structure of MIMO-IMF.

3.3. Frequency-Domain Adaptive Fusion Module (FDAFM)

In Section 3.1, we introduced the core asymmetric feature fusion module (AFF). How-
ever, it struggles to handle the dynamic ambiguity caused by consumers’ rapid picking
up of goods in smart cabinet scenarios. To address this, we propose a frequency-domain
attention-enhanced adaptive feature fusion module called FDAFM to replace the AFF
module in the original model. The core idea of the FDAFM is to retain the spatial domain
details preserved by the AFF during feature fusion while introducing a Fourier Transform
and frequency-domain attention mechanism. This dual-path approach transfers spatial
domain features to the frequency domain to extract high-frequency and low-frequency
information. The two paths are then fused to enrich the overall feature representation,
effectively addressing the loss of high-frequency information caused by dynamic blurring
and further improving the deblurring performance.

Specifically, the multi-scale features extracted by the encoder (EB) are denoted as
Eout

1 , Eout
2 , Eout

3 , where Eout
1 represents the original resolution output feature Eout

2 for the 1/2
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resolution output feature and Eout
3 for the 1/4 resolution output feature. We resize them

to unify the sizes of features with different resolutions. In the original model, the resized
features are directly concatenated along the channel dimension to produce a fused feature
containing rich multi-scale information, denoted as

Fconcat = C(EBout
1 , EBout

2 , EBout
3 ). (2)

Afterward, we apply a 1 × 1 convolution and a 3 × 3 convolution to Fconcat in the
spatial domain branch to obtain the processed features Fconv .

Simultaneously, Fconcat is fed into the frequency domain branch, where the fused
features are transformed from the spatial domain to the frequency domain. A frequency-
domain attention enhancement mechanism is introduced to strengthen the capture of
high-frequency information, which is subsequently converted back to the spatial domain
for fusion output. Specifically, the input features Fconcat are transformed into the frequency
domain using Fast Fourier Transform (FFT) to obtain their frequency domain representation
FF .

FF = FFT(Fconcat) (3)

The frequency domain representation contains the spectral information of the image,
where the high-frequency components correspond to the feature details. Subsequently, the
frequency domain features FF are processed by a small convolutional network A, consisting
of convolutional layers and nonlinear activation functions, to generate frequency-domain
attention weight maps ϕ fa :

ϕ fa = A(FF ) (4)

Then, the frequency-domain attention map ϕ fa is combined with the frequency domain
feature FF by performing an element-wise multiplication to generate the frequency-domain
attention-enhanced feature Fenh, which can be expressed as

Fenh = FF ⊙ ϕ fa (5)

Where ⊙ denotes the element-wise product, and Fenh is the enhanced feature. Finally,
the outputs from both branches—the enhanced frequency-domain features Fenh and the
convolved spatial domain features Fconv—are combined by element-wise addition to obtain
the final fused feature output:

FAFout
k = Fconv + Fenh (6)

This output contains not only spatial information at different scales but also compensates
for missing high-frequency information, thereby providing a richer feature representation
for the subsequent decoder.

After the FDAFM, the fused features I1 and I2 can be represented asI1 = FΣ1

(
FAFout

1 , L1
)

I2 = FΣ2

(
FAFout

2 , DB3(x)
) (7)

Where FΣ1 , FΣ2 represent two concatenation operations, L1 is the light information obtained
through the IFEM, and DB3(x) denotes the features acquired by the decoder DB3(x).

3.4. Multi-scale Residual Block (MRB)

Inspired by the cascaded residual blocks used in the defogging domain in the CasDyF-
Net paper [24], which implements image defogging by cascading inflated convolutional
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networks, we similarly design the Multi-scale Residual Block (MRB) for image deblurring.
After the fusion of asymmetric feature frequency-domain features in Section 3.3, the MRB is
applied in the decoder to refine the frequency band information selected by the frequency-
domain attention mechanism. The MRB is defined as

Mi = MRB(ID=1
k , ID=3

k , ID=5
k ). (8)

It consists of three 3 × 3 convolutional layers with different dilation rates, D = 1, 3, 5,
and introduces a 1 × 1 convolutional block to merge information across different scales.

As shown in Figure 1, we continue to use the ResBlock in the encoder to maintain
a lightweight model structure. However, our focus in this paper is on the decoder. We
keep the ResBlock in DB3 at the low-resolution stage because, at this stage, the feature map
resolution is low, and the frequency-domain advantage of the MRB is not as pronounced.
In this case, we mainly rely on time-domain convolutions to enhance global information.
In contrast, we use the MRB module in DB1 and DB2 at the high-resolution stage, where
its multi-scale convolutional capabilities are leveraged to filter the bands selected by the
previous frequency-domain attention mechanism, thereby enhancing detail restoration and
optimizing the deblurring effect.

3.5. Loss Function

In the loss function design, we add the loss terms of the LFEM and FDAFM to the
original model’s multi-scale content loss function. This aims to evaluate the model’s
performance using more precise loss metrics, thereby further improving the deblurring
effect. The content loss function Lc is defined as follows:

Lc =
K

∑
k=1

1
tk
∥Ŝk − Sk∥1, (9)

where k is the number of layers, and tk represents the total number of elements. For
the frequency domain loss, we use a multi-scale frequency domain reconstruction loss to
preserve the high-frequency details in the image:

L f req =
K

∑
k=1

1
tk
∥F (Ŝk)−F (Sk)∥1, (10)

where F denotes the Fast Fourier Transform (FFT), which converts the image from the
spatial domain to the frequency domain. In the low-light feature extraction module (LFEM),
we introduce the low-light feature loss to ensure the network effectively extracts luminance
information in low-light environments. This can be expressed as

LLFEM =
K

∑
k=1

1
tk
∥L(Ŝk)− L(Sk)∥1, (11)

where L represents the luminance feature extraction operation, which measures the dif-
ference between the luminance information extracted by the network and the ground
truth luminance information. Based on the above loss terms, the final loss function for the
proposed network is defined as

Ltotal = Lc + λ1L f req + λ2LLFEM, (12)

where λ1 and λ2 are the weighting factors for each loss term.
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4. Experiments
In this section, we evaluate the proposed methodology and compare it with state-of-

the-art methods using both publicly available and custom datasets.

4.1. Experimental Dataset and Parameter Settings
4.1.1. Commodity Fuzzy Image Dataset

Currently, there is a lack of publicly available datasets dedicated to the motion blurring
of goods in smart cabinets. Additionally, training deep learning networks typically requires
a large amount of paired data to capture more detailed features. Moreover, external factors
make it difficult to consistently pick up goods at the same speed and angle under identical
conditions, such as position and illumination. To address these challenges, we synthesize a
commodity motion blur dataset using the method proposed in [6], which simulates random
motion trajectories. The synthesized images effectively mimic motion blur caused by object
movement, providing a practical solution when real motion blur images are difficult to
obtain. The process can be modeled as follows:

B(x, y) = I(x, y) ∗ K, (13)

K = S(x). (14)

Here, x is a random trajectory vector generated by a Markov randomization process;
B(x, y) denotes the image after motion blurring; I(x, y) represents the clear image; K is the
blurring kernel; S(x) is the result of the computation of x using a sub-pixel interpolation
algorithm. To adapt the dataset specifically for smart cabinet scenarios, we created a custom
dataset consisting of 12 merchandise categories, each with 100 clear images acquired using
an RGB camera mounted on the smart cabinet. We then applied the aforementioned
algorithm to generate motion blur images, resulting in 1200 clear-blurred image pairs.
These pairs were divided into 80% (960) for the training set and 20% (240) for the test
set, ensuring no overlap between the two subsets. This dataset, named MBSI (Motion
Blur Shop Images), is tailored for smart cabinet scenarios and is used to evaluate the
applicability of our method in real-world environments. Examples of the dataset are shown
in Figure 4.

Figure 4. MBSI dataset examples.
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4.1.2. Parameter Setting

To ensure the validity and generalizability of our method, we first use the GoPro
dataset for experiments. The GoPro dataset is a widely used benchmark in the deblurring
domain, containing 3214 pairs of high-quality sharp-blurred images, with 2103 pairs used
for training and 1111 pairs for testing. Its extensive coverage of various motion blur
scenarios makes it suitable for validating the performance and robustness of deblurring
methods.

In each training iteration, we randomly sample four images from the GoPro dataset
and crop them to 256 × 256. Data augmentation is performed with a 50% chance of
horizontal flipping for each patch. To ensure sufficient convergence, the network is trained
for 3000 epochs with an initial learning rate of 1 × 10−4, which decays by a factor of 0.5
every 200 epochs.

The choice of the GoPro dataset allows us to evaluate our method’s performance in
a standardized and comparable setting, as it is commonly used in the field. Despite its
differences from the smart cabinet application scenario, the physical properties of motion
blur (e.g., caused by object movement and camera frame rate limitations) are similar.
Therefore, the GoPro dataset provides a valuable benchmark for demonstrating the general
effectiveness of our approach.

To further validate the applicability of our method in specific real-world settings, we
use the MBSI dataset as a complementary evaluation. The MBSI dataset simulates smart
cabinet scenarios, providing a tailored assessment of our method’s ability to handle practical
challenges such as diverse lighting conditions, object categories, and motion patterns. The
experiments on the MBSI dataset follow the same training settings as the GoPro dataset,
with 3000 epochs, the same initial learning rate, and a similar decay schedule.

In terms of evaluation, we use standard metrics such as the PSNR and SSIM. PSNR
(Peak Signal-to-Noise Ratio) is a common metric for measuring image restoration qual-
ity, where higher PSNR values indicate better recovery. The SSIM (Structural Similarity
Index) measures the structural similarity between the restored image and the ground
truth, with higher SSIM values indicating better preservation of image structures and
textures. Additionally, we perform ablation studies (Section 4.2) and module validation
experiments (Sections 4.3 and 4.4) to assess the contribution of each module and validate
the effectiveness of the IFEM and FDAFM in different conditions.

The combination of experiments on the GoPro and MBSI datasets enables a compre-
hensive performance evaluation, demonstrating both the generalizability and specificity of
our proposed method.

4.2. Ablation Study

We conducted a series of ablation experiments to assess the impact of the IFEM,
FDAFM, and MRB on model performance under low-light and normal lighting conditions.
The results, shown in Table 1, highlight the performance improvements achieved by adding
different modules.

The baseline model, without any additional modules, yields a PSNR of 31.68 on the
GoPro dataset and 23.37 on the MBSI dataset. When the FDAFM is added, the PSNR
increases to 31.93 on GoPro and 23.46 on MBSI, demonstrating its ability to enhance high-
frequency detail recovery. The FDAFM is particularly effective in capturing sharp edges,
leading to significant improvements in the PSNR.

When combined with the MRB module, the FDAFM further improves the PSNR to
31.94 (GoPro) and 23.48 (MBSI). This combination results in an even better recovery of
image details, especially in sharp edges.
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Adding the IFEM module, which focuses on extracting luminance features, improves
the model’s performance under low-light conditions. In this case, the PSNR reaches 32.02
on GoPro and 23.83 on MBSI, showing that the IFEM module contributes effectively to
enhancing deblurring in low-light scenarios. When the IFEM and FDAFM are combined,
the model achieves a PSNR of 31.96 on GoPro and 23.51 on MBSI, further improving
performance.

Finally, the full model, incorporating all three modules (IFEM + FDAFM + MRB),
achieves the best performance, with a PSNR of 32.03 on GoPro and 23.99 on MBSI. This
combination effectively captures high-frequency information and extracts luminance fea-
tures, improving deblurring performance in both low-light and normal lighting conditions.

In summary, the FDAFM provides the most substantial improvement in the PSNR
by enhancing high-frequency detail recovery, while the MRB module further refines edge
sharpness. The IFEM contributes by extracting critical luminance information, especially
under low-light conditions. The combination of all three modules results in the most
significant performance gains, demonstrating the complementary nature of each module.

Table 1. Performance comparison on GoPro and MBSI datasets.

IFEM FDAFM MRB GoPro Dataset MBSI Dataset
PSNR SSIM PSNR SSIM

Baseline 31.68 0.903 23.37 0.824
w/only IFEM ✓ 31.80 0.913 23.44 0.849
w/only FDAFM ✓ 31.93 0.916 23.46 0.851
IFEM + MRB ✓ ✓ 31.94 0.914 23.48 0.850
FDAFM + MRB ✓ ✓ 32.02 0.921 23.83 0.859
IFEM + FDAFM ✓ ✓ 31.96 0.915 23.51 0.852
Ours ✓ ✓ ✓ 32.03 0.923 23.99 0.861

4.3. Supplementary Validation of IFEM Effectiveness

To rigorously assess the effectiveness of the proposed IFEM in handling low-light
deblurring scenarios, we conducted extensive experiments using the MBSI dataset’s ex-
tended subset (low-light simulation). This extended subset was generated by simulating
real-world low-light environments through targeted manipulations, including brightness
reduction and noise injection, to emulate challenging lighting conditions encountered in
smart cabinet applications.The experiments conducted in this study focus on addressing the
challenges of image deblurring in low-light and normal lighting conditions encountered in
smart cabinet applications. Comparative evaluations were carried out across three represen-
tative images using five different methods in Figure 5: MIMO-IMF (our proposed method),
MIMO-Plus [9], Restormer [21], MPRNet [25], and DeblurGANv2 [19]. The experimental
results reveal that the MIMO-IMF consistently outperforms competing methods, delivering
superior image clarity under low-light conditions. The enhanced performance of our model
is attributed to the unique design of the IFEM, which effectively extracts channel-specific
luminance features and fuses them to generate an adaptive luminance attention map. This
mechanism emphasizes critical luminance regions in the image, enabling better feature
enhancement and integration in downstream processes. Consequently, the IFEM equips
the MIMO-IMF with a distinctive advantage in recovering structural and visual details,
ensuring higher accuracy in identifying merchandise under adverse lighting conditions, a
challenge inadequately addressed by existing deblurring models.
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Figure 5. Comparison of deblurring results in MBSI (low-light).

4.4. Supplementary Validation of FDAFM Effectiveness

In this section of the experiments, we validate the effectiveness of the FDAFM through
image comparisons. Figures 6 and 7 illustrate the visualization results of heatmaps on the
GoPro and MBSI datasets, with and without the FDAFM, respectively.

Figure 6. Visualization on GoPro dataset.

From the visualization results on the GoPro dataset (Figure 6), the addition of the
FDAFM leads to a more concentrated focus area for the network. This allows the network
to effectively capture key details of the image and gradually focus its attention on the
high-frequency regions, thereby improving the deblurring effect. This improvement is
particularly evident in the edge regions of the image. In contrast, the network without the
FDAFM demonstrates more dispersed attention regions and struggles to efficiently capture
the critical features required for deblurring in complex scenes.

Similarly, the experimental results on the MBSI dataset (Figure 7) further corroborate
the effectiveness and rationality of the FDAFM. Without the FDAFM, the network exhibits
scattered attention and fails to accurately capture object details and edges. After integrating
the FDAFM, the network clearly focuses on the edges and details of the image subjects,
facilitating a better deblurring process.
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Figure 7. Visualization on MBSI dataset.

Two images from each dataset were selected for heatmap visualization. From the
results, it is evident that the FDAFM enhances the network’s attention to high-frequency
features by implementing a frequency-domain attention mechanism. This enables the
network to more precisely identify and process the locally blurred regions within the image.
This experiment clearly demonstrates the superiority of the FDAFM in addressing image
blurring, providing robust support for its application in deblurring tasks across various
scenarios.

4.5. Comparison Experiment

To validate the performance of the algorithmic models proposed in this paper for blind
deblurring tasks, a series of comparative experiments are designed, covering the current
mainstream deblurring algorithms. We have replicated several deblurring models to
ensure the fairness and accuracy of the performance tests. Table 2 presents the quantitative
comparison of different models on the GoPro and homemade MBSI datasets, using the
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) as the primary
evaluation metrics.

Table 2. Quantitative comparison on GoPro and MBSI datasets.

Method
GoPro MBSI

PSNR SSIM PSNR SSIM

DeblurGAN [6] 28.70 0.858 21.50 0.604

DeblurGAN-v2 [19] 29.55 0.934 22.36 0.618

Zhang et al. [26] 29.19 0.931 22.10 0.610

SRN [7] 30.26 0.934 23.50 0.705

DBGAN [27] 31.10 0.942 23.90 0.720

DMPHN [28] 31.20 0.940 24.00 0.728

SPAIR [29] 32.06 0.953 24.20 0.740

MIMOUNetPlus [9] 32.45 0.957 24.34 0.734

MPRNet [25] 32.66 0.959 24.42 0.743

Restormer [21] 32.92 0.961 24.55 0.757

Ours 32.98 0.962 24.87 0.770
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4.5.1. Quantitative Assessment

As shown in Table 2, our method outperforms other compared methods on both
datasets in terms of the PSNR and SSIM. On the GoPro dataset, our model achieves a PSNR
of 32.98 and an SSIM of 0.9623, outperforming other classical models such as MPRNet
and Restormer. On the MBSI dataset, the algorithm also performs well, achieving a PSNR
of 24.87 and an SSIM of 0.7697, significantly improving both detail recovery and global
information retention.

In contrast, the DeblurGAN family of models, while showing some deblurring effects,
performs poorly on the MBSI dataset, especially in recovering merchandise details. Newer
algorithms such as Restormer and MPRNet, although improved in deblurring ability, still
fall short in handling some complex scenes, such as distant buildings and merchandise text
detail recovery.

4.5.2. Comparison of Subjective Visual Effects

Figure 8 shows the visual comparison of the algorithm proposed in this paper with
other methods in a real-world scene. Five models are compared and analyzed using two
images selected from the GoPro and MBSI datasets, respectively.

For the GoPro dataset, the selected images are from a traffic scene. In the comparison,
the MPRNet and Restormer algorithms successfully remove background blur but at the
cost of some detail loss, especially in the clarity of distant buildings and road signs. In
contrast, the algorithm proposed in this paper not only effectively removes motion blur but
also preserves finer details, particularly around vehicle edges and billboard text, resulting
in a clearer restoration.

For the MBSI dataset, which contains various trading goods scenarios, the MPRNet
and Restormer methods show slight underperformance in areas with higher brightness,
where text on bottled goods and bags remains partially blurred. In contrast, the algorithms
in this paper excel at recovering fine textual details, especially under low and normal light
conditions, demonstrating a stronger ability to process fine details.

Figure 8. Deblurred results on the GoPro dataset and MBSI dataset.

4.5.3. Synthesize and Analyze

From the above quantitative and qualitative comparisons, it is clear that the MIMO-
IMF method proposed in this paper offers significant advantages in the blind deblurring
task. Especially in scenes with complex backgrounds or small objects, the proposed method
not only improves deblurring accuracy but also effectively preserves image detail. Further-
more, the low-light brightness information extraction module (IFEM) performs particularly
well in deblurring tasks under low-light conditions, effectively enhancing the clarity of
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product images in smart cabinet scenarios. The results demonstrate the applicability and
robustness of the algorithms in real-world applications such as smart cabinets, showcasing
their potential for high performance and real-time response.

5. Conclusions
In this study, we proposed the MIMO-IMF method. First, we designed a low-light

brightness information extraction module (IFEM) to effectively capture luminance informa-
tion in low and normal light conditions. Second, addressing hardware constraints and the
local motion blur of goods caused by consumers’ rapid picking behavior, we introduced a
Frequency-Domain Adaptive Fusion Module (FDAFM), which enhances the model’s ability
to capture high-frequency information, improving the deblurring performance. Finally, we
redesigned a multi-scale residual block tailored for deblurring tasks and introduced a novel
loss function that incorporates both luminance and high-frequency information, further
optimizing the deblurring effect. Overall, compared to other state-of-the-art models, the
method proposed in this paper is better suited for real-world applications, such as smart
cabinet systems.
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