
Academic Editor: Zbigniew Kotulski

Received: 6 December 2024

Revised: 17 January 2025

Accepted: 23 January 2025

Published: 25 January 2025

Citation: Liu, J.; Guo, L.; Kang, T.

GENES: An Efficient Recursive

zk-SNARK and Its Novel Application

in Blockchain. Electronics 2025, 14, 492.

https://doi.org/10.3390/electronics

14030492

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

GENES: An Efficient Recursive zk-SNARK and Its Novel
Application in Blockchain
Jiaxi Liu 1,2,3,4, Li Guo 1,2,3,4,* and Tianyu Kang 1,2,3,4

1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
ljx_228@bupt.edu.cn (J.L.); kangtianyulm@bupt.edu.cn (T.K.)

2 Engineering Research Center of Blockchain and Network Convergence Technology, Ministry of Education,
Beijing University of Posts and Telecommunications, Beijing 100876, China

3 National Engineering Research Center for Mobile Internet Security Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China

4 Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts
and Telecommunications, Beijing 100876, China

* Correspondence: guoli@bupt.edu.cn

Abstract: The rapid development of blockchain has significantly promoted research on zero-
knowledge proofs (ZKPs), especially zero-knowledge succinct noninteractive arguments
of knowledge (zk-SNARK). As is well known, protocol proof and verification time, as
well as proof size, are the main obstacles that restrict the implementation of ZKPs in
practical applications, so they have become the main concerns of researchers in recent
years. This work achieves a new recursive zk-SNARK called GENES, which does not
have a trusted setup and is secure under the standard discrete logarithm assumption.
GENES is designed from the form of the rank-1 constraint system (R1CS) satisfiability
problem. Recursive proof composition is achieved by merging multiple R1CS instances,
which transforms the verification of numerous proofs into the verification of a single proof.
Moreover, multi-helpers amortize proof commitments in this study, significantly reducing
the computational pressure and time cost of proof generation. Compared with previous
work, GENES effectively improves the proof time and verification time, but at the cost of
larger proof sizes. We provide a blockchain Layer-1 scaling solution leveraging GENES to
demonstrate its practicality.

Keywords: zero-knowledge proofs; R1CS; inner product argument; zk-SNARK; blockchain

1. Introduction
Zero-knowledge proofs (ZKPs), first introduced by Goldwasser et al. [1], are cryp-

tographic protocols that enable a prover to demonstrate the validity of a statement to a
verifier without revealing any additional information. With their inherent properties of
completeness, soundness, and zero knowledge, ZKPs have found widespread applications
in privacy-preserving computation, verifiable computation, and efficient cryptographic
protocols [2–7]. Over the past decade, the rapid growth of blockchain technology has
further driven advancements in ZKP techniques, particularly in the development of zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) [8,9].

zk-SNARKs [10] can offer succinct proofs with sizes independent of the complexity
of the statement being proven, making them highly suitable for blockchain applications,
where constraints on storage and computational resources demand compact and efficient
cryptographic solutions. A typical zk-SNARK construction involves translating the state-
ment into a circuit satisfiability (C-SAT) problem, building information-theoretic proofs,

Electronics 2025, 14, 492 https://doi.org/10.3390/electronics14030492

https://doi.org/10.3390/electronics14030492
https://doi.org/10.3390/electronics14030492
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics14030492
https://www.mdpi.com/article/10.3390/electronics14030492?type=check_update&version=1

Electronics 2025, 14, 492 2 of 18

and then using cryptographic compilers to generate succinct non-interactive proofs. These
methods are categorized into several types based on their underlying technologies, in-
cluding quadratic arithmetic programs (QAP) [11–14], doubly efficient interactive proofs
(DEIP) [15–18], inner product arguments (IPA) [19–21], and secure multi-party computation
(MPC)-in-the-head [22–24].

Despite recent advancements, existing zk-SNARK protocols exhibit notable limitations
in efficiency, particularly when applied to large-scale proof statements. A primary con-
straint arises from the widespread reliance on polynomial-based encodings of constraints,
as employed in protocols such as the IPA-based zk-SNARKs by Bünz et al. [20] and sub-
sequent refinements by Bowe et al. [21]. While polynomial encodings provide theoretical
soundness, they introduce significant inefficiencies in two key dimensions. First, the compu-
tational overhead associated with proof generation and verification increases substantially
as the size of the proof statement grows, thereby limiting scalability. Second, polynomial
encodings lack a straightforward mechanism to decompose large proof statements into
smaller sub-proofs, an essential requirement for enabling efficient recursive or aggregated
proof constructions. These limitations hinder the practical applicability of zk-SNARK
protocols in blockchain scenarios requiring high scalability and computational efficiency.

Rank-1 Constraint System (R1CS) provides a structured and efficient alternative to
address these challenges. R1CS is a common target program [25,26] for high-level program-
ming language compilers with a simple form, and any C-SAT problem can be represented
by an R1CS satisfiability problem [16,27]. Its compact representation of constraints not only
reduces the computational complexity of proof generation and verification but also facili-
tates the decomposition of large proof statements. By transitioning from polynomial-based
encodings to R1CS, zk-SNARK protocols can overcome existing inefficiencies and enhance
their applicability to computationally intensive and large-scale applications.

Motivated by these challenges, this study proposes a novel recursive IPA-based zk-
SNARK protocol that addresses the inefficiencies of existing constructions. Unlike tradi-
tional approaches, our protocol directly encodes constraints as R1CS instances, a more
compact and efficient representation compared to polynomial encodings. Our protocol is
built on a new R1CS merging scheme, enabling an efficient recursive composition method.
This advancement significantly enhances the practical utility of zk-SNARKs for compu-
tationally intensive applications, enabling the extension of zk-SNARKs in blockchain
scenarios, such as for layer-1 solutions.

1.1. Contributions

Our starting point is the general construction of an IPA-based ZKP protocol by Bünz
et al. [20], which was constructed from polynomials. We propose an efficient recursive
zk-SNRAK protocol and apply it to blockchain to improve scalability in this study. The
main contributions are as follows:

1. We designed the protocol directly from the form of a rank-1 constraint system (R1CS)
satisfiability problem (rather than reducing it to polynomial constraints) in bullet-
proofs, and for the first time in this variant, we propose a recursive zk-SNARK
scheme called GENES, which is based on the R1CS merging scheme and without a
trusted setup.

2. We analyzed its security under the standard discrete logarithm (DLOG) assumption
and compared it with bulletproofs and halo to demonstrate its efficiency advantages.

3. We propose a novel application of GENES, which can be considered the first Layer-1
scaling solution in blockchain using a zk-SNARK protocol.

Electronics 2025, 14, 492 3 of 18

1.2. Releted Works

zk-SNARKs. To construct IPA-based zk-SNARKs, Bootle et al. [28] first proposed IPA
in 2016 and used it to construct a non-interactive zero-knowledge argument of knowledge
(NIZKAoK) with logarithmic-level communication complexity. The prover uses IPA to
prove through the method of recursion and looping, which has two public vector commit-
ments, and the inner product of these two commitments is equal to a certain public value.
Bünz et al. [20] improved Bootle’s scheme by combining two vector commitments into one
commitment and constructing an efficient range proof protocol called bulletproofs. This
achieved lower total communication traffic but with linear proof generation and verification
time, which is very expensive compared to other protocols. Bowe et al. [21] improved IPA-
based schemes in bulletproofs by constructing a single variable polynomial commitment
and amortization strategy. They defined a new circle of curves and built the first recursive
zk-SNARK without trusted setup and cycles of expensive pairing friendly elliptic curves,
which is called halo. A common alternative to building zk-SNARKs from polynomial con-
straints is building them from R1CS. Recently, Kothapalli et al. [29] constructed a recursive
SNARK protocol based on relaxed R1CS, which is simpler and more efficiently achievable.
The succinctness of a SNARK implemented through the sum-check protocol can ensure a
fast verifier, but to some extent, the verifier may incur high computational costs.

zk-SNARKs for blockchain. Existing ZKP applications for blockchain systems can
be broadly divided into two types. One is used to build cryptocurrency and hide the
transfer and balance involved in the blockchain ledger through the ZKP protocol, such as
Monero [30] based on bulletproofs [20], and Pinocchio coin [31] based on Pinocchio [32].
One is used in layer-2 scaling solutions, such as Polygon [33] based on plonk [34], Zcash [35]
based on halo [21], and a new protocol Pianist [36], which has recently been proposed to
achieve scalable zkRollups through fully distributed zero knowledge proofs. However, the
current ZKP applications do not consider how to achieve layer-1 expansion by improving
the scalability of the blockchain itself.

We begin the rest of the paper with useful preliminaries in Section 2, such as R1CS,
commitments, IPA, and (zk-)SNARK. In Section 3, we describe our recursive zk-SNARK
scheme, including construction methods, complexity, and security analysis. In Section 4,
we compare our scheme with previous schemes and demonstrate the advantages of our
scheme. In Section 5, we propose a novel application of GENES to enhance the throughput
of blockchain systems. Finally, Section 6 concludes this research.

2. Preliminaries
2.1. Rank-1 Constraint System (R1CS)

Definition 1 (R1CS). An R1CS instance is a tuple (F, A, B, C, io, m, n), where io denotes the
public input and output vectors, A, B, C ∈ Fm×m

p , m ≥ |io|+1 , and n denotes the maximum
number of nonzero values in all matrices. The R1CS problem is satisfiable if and only if there is
evidence w ∈ Fm−(|io|+1)

p for an R1CS (instance, witness) pair <(F, A, B, C, io, m, n), w>,
such that A·(io, 1, w)T ◦ B·(io, 1, w)T = C·(io, 1, w)T .

2.2. Commitments

Definition 2 (Commitment [32]). A (non-interactive) commitment scheme includes three PPT
algorithms (Setup, Com, Open) with the following semantics:

• pp← Setup
(
1λ

)
: Takes the security parameter λ as input, and the Setup algorithm is used to

generate the common parameters pp.
• c← Compp(x; r): The Commitment algorithm defines the function mapping M× R → C ,

where M, R, and C denote plaintext space, random number space, and commitment space,

Electronics 2025, 14, 492 4 of 18

respectively. Specifically, for messages x ∈ M and random numbers r ∈ R, commitment c
is generated.

• {0, 1}← Openpp(c, x, r): The Open algorithm defines the function mapping C×M× R →
0/1. Specifically, for commitment c, messages x ∈ M, and random numbers r ∈ R, it
outputs 0/1, representing successfully opened or not, respectively.

Two basic properties exist for a commitment scheme: hiding and binding. Among
them, the hiding commitment refers to the inability of the adversary to obtain the value of
m after obtaining commitment c, while binding refers to the fact that a commitment c can
only be opened to one value during the Open phase.

2.3. Inner Product Argument (IPA)

Definition 3 (IPA [28]). Prover P proves to verifier V that for common inputs G, H ∈ G,
G, H ∈ Gn and public scalar z ∈ Zp, P has vectors a, b that satisfy G = a·G, H = b·H and
a·b = z. We denote the statement (Public Input, Witness) below.

{(G, H, G, H, z; a, b) : G = a·G∧ H = b·H∧ a·b = z}

Moreover, if commitments G and H are combined into one commitment P = a·G + b·H, the
above statement can be rewritten as below.

{(G, H, G, H, z; a, b) : P = a·G + b·H∧ z = a·b}

The core idea of the inner product argument is to reduce the statement for a vector
of length n to an equivalent statement for a vector of length n/2 based on the random
challenge from V. After the vector is continuously reduced to a scalar, P only needs to send
a scalar directly.

2.4. Succinct Noninteractive Argument of Knowledge (SNARK)

Definition 4 (SNARK and zk-SNARK). Take (x, w)∈ R, which is a polynomial time-decidable
binary relation for an NP language L(R) with statement x and witness w. A SNARK is a triple of
the PPT algorithms (Setup, Prove, Verify), defined as follows:

• σ← Setup
(
1λ,R

)
: The Setup algorithm takes the unary representation of the safety parameter

λ and relationshipR as inputs and generates a common reference string σ.
• π← Prove(R, σ, x, w): Given relationshipR, common reference string σ, statement x and

witness w, the Prove algorithm generates proof π.
• {0, 1}← Verify(R, σ, π): Taking relationshipR, common reference string σ and proof π as

input, the Verify algorithm verifies if the proof is correct.

A SNARK should satisfy the following security properties:

• Completeness. For all x ∈ L(R), if an honest prover generates a proof with valid witness w,
the verifier will definitely accept it.

• Knowledge Soundness. If any PPT adversary A can generate valid proof with witness w for
x /∈ L(R), then a polynomial extractor XA can extract w and access any state of A, whose
probability is negligible.

• Succinctness. The proof size sent by the Prover does not exceed poly(λ)(|x|+|w|).
• A zk-SNARK refers to a SNARK with zero knowledge, which needs to additionally satisfy the

following property:
• Zero-knowledge. The Prover can prove the truth of a statement to the Verifier without disclosing

any information other than correctness.

Electronics 2025, 14, 492 5 of 18

2.5. Notations

In this paper, we denote λ as the security parameter and abbreviate probabilistic
polynomial time as PPT. G denotes a cyclic group of prime order p, and Gn is the vector
spaces of dimension n over G. Generators of G are denoted by G, H ∈ G. Zp denotes a
ring of integers modulo p, and Zm×n

p is a set of m × n matrices in which the elements are
in Zp. We use lowercase bold to denote vectors; that is, a ∈ Z1×n

p represents a row vector
(a 1, a2, . . . , an) with a dimension of n on Zp, where Z1×n

p is abbreviated as Zn
p for ease of

expression. Uppercase bold denotes matrices; that is, A ∈ Zn×m
p is a matrix with n rows and

m columns. A·a denotes the matrix multiplication of matrix A and vector a. y← A(x, r)
denotes the process of algorithm A generating y with x as input and r as random input.

∅m denotes a constraint instance on multiplication gates. r $← Fp denotes the uniform

sampling of an element from Fp. a ?
= b indicates verifying whether a is equal to b.

Moreover, let ⟨a, b⟩ =
n
∑

i=1
ai·bi denote the inner product between vector a and vector

b, and a ◦ b = (a 1·b1, . . . , an·bn) ∈ Zn
p denote the Hadamard product of the two vec-

tors. p(X) =
d
∑

i=1
pi·Xi ∈Zn

p[X] denotes vector polynomials where pi is a vector in Zn
p. We

write t(X) = ⟨l(X), r(X)⟩ to represent the inner product between two vector polynomials
l(X), r(X).

3. Our Scheme
3.1. Algorithm Definition of GENES

Definition 5 (GENES). Let R denote a circuit relation that is transformed by the statement to
be proved. This paper often omits σ and r for convenience. A GENES system comprises four
probabilistic polynomial-time (PPT) algorithms as follows.

• σ← setup
(
1λ,R

)
: Takes security parameter λ and relationR as input; the algorithm returns

public parameter σ used to generate and verify the proofs for circuitR.
• c← commit(σ, p; r): The algorithm returns committed value c, where p denotes the parameter

that needs to be committed, and r denotes the blinding factor.
• π← prove(σ, (a L, aR, aO, b) , v): The algorithm returns proof π forR, where (a L, aR, aO, b)

denotes the input IO and v denotes the secret witness.
• {0, 1} ← verify(σ, c,π): Takes as input public parameter σ, proof π and commit-

ment c, it returns 1 if π makes clear that the prover knows the secret v such that
R((a L, aR, aO, b) , v) = 1.

3.2. Our Concrete GENES Scheme

R1CS in GENES. Bulletproofs [20] presents a form of the R1CS satisfiability prob-
lem [37] that comprises two sets of constraints: multiplication gates (Hadamard product
relation) and linear constraints. Its inner relation for R1CS can be replaced with the efficient
IPA in bulletproofs [20], which produces short Pedersen commitment proofs for arbitrary
circuits. The following is the form of the multiplication gate constraint:

aL◦aR = aO (1)

where aL, aR, and aO are the left input, right input, and output, respectively, of all multi-
plication gates in the circuit with aL, aR, aO, b ∈ Zn

p. The form of the linear constraint is
as follows:

WL·aL + WR·aR + WO·aO = WV ·v + c (2)

where the linear constraint matrix is WL, WR, WO ∈ ZQ×n
p , WV ∈ ZQ×m

p .

Electronics 2025, 14, 492 6 of 18

We propose a more relaxed gate constraint and GENES protocol by modifying the
R1CS described above. To design a recursive SNARK scheme, we refer to the method of
Tzialla et al. [38] and modify multiplication gate constraint (1) by introducing an expanded
equation, which is a relaxed gate constraint. In particular, we define a “slack” vector b ∈ Zn

p
and scalar u ∈ Fp, and transform the satisfiability check into checking

aL◦aR = uaO + b (3)

For a “base” instance b = 0 and u = 1, we obtain the original multiplication gate
constraint Equation (1). The extra slack variables are added to make aggregation possible;
aggregated instances have other values of u and b that are combined with linear constraint
(2) to produce a more “relaxing” constraint system (CS) instance. Our protocol comprises
four algorithms (setup, commit, prove, verify) based on an R1CS and inner product proof.

First, for a given multiplicative gate constraint of number n and linear constraint of
number Q, the setup algorithm can produce a common reference string (G,Fp, G, H, G, H)
for group G of prime order p, with random elements G, H ∈ Gn and G, H ∈ G. We write
<(Public Input; Witness): Relation> to denote the relationshipR between the prover and
verifier, which is as follows:

R =

(
V ∈ Gm, WL, WR, WO ∈ ZQ×n

p , WV ∈ ZQ×m
p , c ∈ ZQ

p ; aL, aR, aO, b ∈ Zn
p, u ∈ Fp, v, γ ∈ Zm

p

)
:

Vj = commit
(
vj, γj

)
∀j ∈ [1, m]

∧aL◦aR = uaO + b
∧WL·aL + WR·aR + WO·aO = WV ·v + c.

 (4)

Amortized Commitment. The purpose of GENES is to construct a recursive succinct
ZKP system by merging the R1CS methods (see the merging scheme). In our protocol,
different multiplication gate inputs and outputs aL, aR, aO and variable vectors b satisfy
R1CS with the same weight matrix WL, WR, WO and constant vector c. We can amortize
away (by constructing multiple R1CS) the linear-time construction overhead of CS and the
proof overhead of the original commitment vector aL, aR, aO, b using an untrusted third
party “helper”.

Merge R1CS. The merging scheme is based on the constraint equation of the relaxation
above. Consider the following multiplication gate constraint instance: ∅ = (a L, aR, aO, b, u).
Now, consider the following two instances:

∅m1 = (a L1, aR1, aO1, b1, u1) (5)

∅m2 = (aL2, aR2, aO2, b2, u2) (6)

that is,
aL1◦aR1 = u1aO1 + b1, aL2◦aR2 = u2aO2 + b2 (7)

For WL·aL1 + WR·aR1 + WO·aO1 −WV·v1 = c and WL·aL2 + WR·aR2 + WO·aO2 −
WV·v2 = c.

By randomly sampling r $← Fp and using linear combinations, the verifier merges
them into a new instance. For the left side of the multiplication gate, the constraint equation
is as follows:

(aL1 + raL2) ◦ (aR1 + raR2)− (u 1 + ru2)(aO1 + raO2) (8)

This expands into the following formulas (grouping the 1, r and r2 terms together):

aL1◦aR1 − u1aO1 (9)

Electronics 2025, 14, 492 7 of 18

r(aL1◦aR2 + aL2◦aR1 − u1 aO2 − u2 aO1) (10)

r2 (a L2◦aR2 − u2aO2

)
(11)

The first term is only b1 and the third term is r2b2. The prover simply provides the
middle term (without the r factor), and the randomization forces the prover to be honest.

That is, for the linear constraint equation,

WL·(aL1 + raL2) + WR·(aR1 + raR2) + WO·(aO1 + raO2)−WV ·(v1 + rv2) = (1 + r)c

is obviously true.
Further, we can obtain the following new constraint instances:

∅mnew ←
(

aL1 + raL2, aR1 + raR2, aO1 + raO2, b1 + r2b2 + rT, u1 + ru2

)
(12)

where U← aL1◦aR2 + aL2◦aR1 − u1aO2 − u2aO1 for ∅m1 and ∅m2, making the equation
operate with this new value.

For efficiency, the prover sends commit (aL1, aR1), commit (aO1), commit (b1) and
commit (aL2, aR2), commit (aO2), commit (b2) to the verifier which one was provided by
helper1 and helper2, respectively. In addition, the prover includes additively homomorphic
commitments to U in the instance, that is, provides commit (U1) rather than sending it
directly. Then, instead of computing (linearly sized) b, (a L, aR), aO, the verifier homomor-
phically computes commitments to b, (a L, aR), aO as part of the new instance, resulting in
proofs and verification times of constant size. The merging scheme is a public coin, and we
can make it non-interactive via the Fiat–Shamir transform [39]. We can recursively merge
multiple R1CS using this scheme. In particular, to reduce verification circuit depth (reduced
verifying complex arguments), we can split a complex proof problem into several simple
proof problems by setting a recursion threshold and performing recursive proof operations
by converting it into multiple fixed-weight R1CS satisfiability problems. Thus, the verifi-
cation operation in linear time is executed only once after the recursion, eliminating the
requirement for a complete succinct argument and preventing unnecessary duplication
of calculations.

Polynomial commitment and inner product argument. To ensure that the proofs
are smaller, the prover must provide a succinct protocol for this last step. In our protocol,
in the last step of the merging scheme, we adopt the IPA method in bulletproofs [20] to
implement a relatively concise protocol. The entire agreement process of the GENES is
shown in Algorithm 1.

Algorithm 1. The Entire GENES Protocol

Input: σ, WL, WR, WO ∈ ZQ×n
p , WV ∈ ZQ×m

p , c ∈ ZQ
p , ui ∈ Fp,γ ∈ Zm

p ; aL, aR, ao, b ∈ Zn
p

Output: {Verifier accepts, Verifier rejects}
Prover & Helper commit:
Helper i, ∀i ∈ [1, M]

αi,βi,µi
$← Zp, ∀i ∈ [1, M]

AIi = commit (σ, (aLi, aRi);αi)

AOi = commit (σ, aOi;βi)

Bi = commit (σ, bi;µi)
AIi ,AOi ,Bi

−−−−−→

Electronics 2025, 14, 492 8 of 18

Algorithm 1. Cont.

Prover:
aL ← aL1, aR ← aR1, aO ← aO1, u← u1

For i = 2, i <= M, i ++:
//Merge recursively until the last CS instance (aLM, aRM, aOM, bM) is collapsed

ri∈F*
p

←−−
ρj

$← Zp, ∀j ∈ [1, logM]

Uj ← aL◦aRi + aLi◦aR − uaOi − uiaO

Uj = commit
(
σ, Uj; ρj

)
Uj→

aL ← aL + raLi ,aR ← a R + raRi, aO ← a O + raOi, u← u + ru2

χ
$← Zp

sL, sR
$← Zn

p

S = commit (σ, (sL, sR);χ)
S→

y,z $←Z*
p

←−−−−
⟨aL◦aR − uaO − b, yn⟩+

〈
zzQ, WL·aL + WR·aR + WO·aO −WV·v− c

〉
= 0

δ(y, z) =
〈
y−n ◦

(
zzQ·WR

)
, zzQ·WL

〉
aL ← aL + sL·X2, aR ← aR + sR·X2

l(X) =
(

aL + sL·X2
)
·X + uaO·X2 + y−n ◦

(
zzQ·WR

)
·X + sL·X3 ∈ Zn

p[X]

r(X) = uyn ◦
(

aR + sR·X2
)
·X− yn + zzQ·(W L·X + WO

)
+ yn ◦ sR·X3 ∈ Zn

p[X]

t(X) = ⟨l(X), r(X)⟩ =
6
∑

i=1
ti·Xi ∈Zp[X]

t2 = 2nd degree of⟨l(X), r(X)⟩ = ⟨b, yn⟩+
〈
zzQ·WV, v

〉
+

〈
zzQ, c

〉
+ δ(y, z)∈ Zp

τi
$← Zp ∀i ∈ [1, 3, 4, 5, 6]

Ti = commit(σ, ti; τi)
T1,T3,T4,T5,T6
−−−−−−−→

x $←Z*
p

←−−
Prover prove:
l = l(x) ∈ Zn

p, r = r(x) ∈ Zn
p, t̂ = ⟨l, r⟩∈ Zp

τx =
6
∑

i=1
τi·xi + x2〈zzQ,γ·WV

〉
∈Zp, ς = α·x + β·x2 + µ·x3 + χ·x4∈ Zp

l,r,t̂,τx,ς
−−−−→

Verifier Verify:

AI = AI1 + ∑M
i=2 ri·AIi, AO = AO1 + ∑M

i=2 ri·AOi, B = r·UlogM + ∑M
i=2 (r

2·Bi + Bi−1

)
H
′
= ⟨H, y−n⟩

WL =
〈

zzQ·WL, H
′
〉

, WR =
〈
y−n ◦

(
zzQ·WR

)
, G

〉
, WO =

〈
zzQ·WO, H

′
〉

t̂ ?
= ⟨l, r⟩

t̂·G + τx·H
?
=

x2·
(
⟨b, yn⟩+

〈
zzQ, c

〉
+ δ(y, z)

)
·G + x2·

〈(
zzQ·WV, v

)
, V

〉
+

6
∏

i=1,3,4,5,6
xi·Ti,

Electronics 2025, 14, 492 9 of 18

Algorithm 1. Cont.

P = x·AI + x2·AO −
〈

yn, H
′
〉
+ x·WL + x·WR + WO + x3·S

P ?
= ⟨ς, H⟩+ ⟨l, G⟩+

〈
r, H

′
〉

If all checks succeed: Verifier accepts
Else: Verifier rejects

3.3. Complexity Analysis

In this section, we analyze the complexity of the proof generation and verification
processes for several zkSNARK protocols, focusing on our work in comparison with other
prominent zk-SNARK schemes, including bulletproofs [20], plonk [34], and halo [21],
which demonstrates the computational advantages of GENES, particularly in terms of
verification complexity.

3.3.1. Proof Generation Complexity

Table 1 provides a comparison of the proof generation complexities for different zk-
SNARK protocols, denoted as the optimal, average, and worst-case complexities, where n
represents the number of constraints (i.e., the number of gates or variables in the circuit).

Table 1. Comparison of proof generation complexity for several zk-SNARK protocols.

Scheme Best-Case
Complexity

Average
Complexity

Worst-Case
Complexity

Bulletproofs [20] O(n) O(n) O(n)
Plonk [34] O(nlogn) O(nlogn) O(nlogn)
Halo [21] O(nlogn) O(nlogn) O(nlogn)

GENES (our work) O(n) O(n) O(n)

GENES has a proof generation complexity of O(n), which is linear in the number of
constraints n. The linear complexity allows GENES to scale efficiently with increasing
problem size, and its complexity remains stable regardless of the recursive depth or the
number of constraints. In contrast, bulletproofs [20] exhibits similar an optimal complex-
ity of O(n), which stems from its efficient inner-product argument structure, making it
well-suited for applications requiring compact proofs without relying on trusted setups.
However, its reliance on polynomial encoding contributes to a higher computation cost
in practical implementations. The proof generation complexity of plonk [34] is O(nlogn),
which is slightly higher than bulletproofs [20] and GENES due to its reliance on Fast Fourier
Transform (FFT) and polynomial interpolation for constructing polynomial commitments.
These operations are computationally intensive and their cost grows logarithmically with
the circuit size, which limits scalability for applications requiring frequent proof generation.
Halo [21] has the same proof generation complexity of O(nlogn), as it also involves FFT and
polynomial-related operations in its recursive proof construction. Although its recursive
design enhances scalability, the additional computational overhead makes it less efficient
than GENES.

3.3.2. Verification Complexity

Table 2 provides a comparison of the verification complexities of the same protocols.
GENES achieves a constant verification complexity, O(1), regardless of the number of con-
straints. This is due to the recursive composition mechanism, which allows the verification
process to scale independently of the proof size or the recursive depth. Each verification
step only involves a constant amount of work, making it highly efficient for large proofs

Electronics 2025, 14, 492 10 of 18

and recursive proofs. Bulletproofs [20] and plonk [34] exhibit verification complexities of
O(logn), meaning their verification time grows logarithmically with respect to the number
of constraints. While this is still quite efficient, especially compared to non-zk-SNARK
schemes, it is less optimal than GENES’s constant-time verification. Halo [21], while ben-
efiting from its recursive construction, still exhibits a verification complexity of O(logn).
This is due to the combination of its recursive nature with polynomial-based encoding,
requiring each verification step to check a logarithmic number of intermediate proofs and
polynomial evaluations.

Table 2. Comparison of verification complexity for several zk-SNARK protocols.

Scheme Best-Case
Complexity

Average
Complexity

Worst-Case
Complexity

Bulletproofs [20] O(logn) O(logn) O(logn)
Plonk [34] O(logn) O(logn) O(logn)
Halo [21] O(logn) O(logn) O(logn)
This work O(1) O(1) O(1)

Thus, the constant-time verification in GENES presents a clear advantage over other
zk-SNARK protocols, particularly in high-throughput blockchain applications where the
verification phase can become a bottleneck. As the verification time does not scale with
the size of the input, GENES ensures a highly efficient validation process regardless of the
proof size.

3.4. Security Analysis

Theorem 1. The GENES protocol presented in Section 3.2 has perfect completeness, perfect special
honest verifier zero-knowledge, and computational witness-extended emulation under the DLOG
assumption.

Proof of Theorem 1. GENES also possesses the three security properties mentioned
above under the DLOG assumption. For perfect completeness, the perfect completeness
of IPA for an arithmetic circuit is proved in bulletproofs [20]. For perfect completeness,
the perfect completeness of the inner product proof for an arithmetic circuit is proved in
bulletproofs [20] under the DLOG assumption, which also applies to this study. Thus, if all
the gate constraints of the arithmetic circuit are satisfiable, then

< aL◦aR − uaO − b,yn > + < zzQ, WL·aL + WR·aR + WO·aO −WV·v− c >= 0

Then, we can obtain the coefficient t2 of the quadratic term of the polynomial t(X) is 0,
so the verifier finally accepts the proof. For the merged scheme, if both instances 1 and 2
are circuit satisfiable, then the merged new instance must be circuit satisfiable, and if the
circuit of the new instance is satisfiable, there is a high probability that instances 1 and 2 are
also circuit satisfiable [38]. For perfect special honest verifier zero-knowledge, this property
is guaranteed by the hiddenness of the commitment and the blinding vectors sL, sR. For
computational witness-extended emulation, this property is guaranteed by the binding of
the commitment and evidence-extended emulation of the inner product argument. The
latter two properties agree with those of bulletproofs. □

4. GENES Performance Verification
In this section, we verified the performance of the GENES algorithm by comparing it

with other related algorithms in terms of prover time, proof size, and verifier time.

Electronics 2025, 14, 492 11 of 18

We conducted experiments on a computer system equipped with eight physical CPUs
and 32G of RAM. To summarize our results, the prover and verifier times of the GENES
protocol were significantly reduced compared to those of the popular bulletproofs [20] and
halo [21] schemes. This is because GENES is a scheme that can efficiently verify multiple
proofs and prove a single complex proof by setting the recursion threshold to split it into
several simple proofs (effectively reducing the proof circuit depth) and then performing
GENES on several simple proofs to achieve the goal.

4.1. Comparison with Other ZKPs

We implemented GENES through the cryptography library Dalek [40] and built it
using ristretto255. As depicted in Figures 1–3, our scheme was compared with bullet-
proofs [20], based on ed25519, and halo [21], based on the custom Tweedledum255 and
Tweedledee255 curves.

Electronics 2025, 14, x FOR PEER REVIEW 11 of 17

4.1. Comparison with Other ZKPs

We implemented GENES through the cryptography library Dalek [40] and built it
using ristretto255. As depicted in Figures 1–3, our scheme was compared with bullet-
proofs [20], based on ed25519, and halo [21], based on the custom Tweedledum255 and
Tweedledee255 curves.

Figures 1–3 compare the prover time cost, proof size, and verifier time cost of the
three IPA-based zk-SNARK schemes in practice, respectively. This group of experiments
demonstrated that for a 64-bit proof, the prover time of our scheme is 11.3 ms, which was
reduced by 79.30% compared to bulletproofs [20] and by 97.10% compared to halo [21];
the verifier time of our scheme was 1.49 ms, which was reduced by 69.02% compared to
bulletproofs [20] and by 83.44% compared to halo [21]. Moreover, our scheme has even
greater advantages when the proof statement increases, although halo [21] showed better
performance than bulletproofs [20]. For the proof size, that is, bandwidth consumption,
the halo [21] scheme was approximately 2.3 bytes and has the best performance. Our
scheme and that of bulletproofs [20] were approximately 5.73 bytes and 6.23 bytes, re-
spectively. Compared with bulletproofs [20], our scheme had a slightly lower bandwidth
cost because we introduced a “helper”. The vector commitment to the circuit constraints 𝐚𝐋, 𝐚𝐑, 𝐚𝐎 and 𝐛 in the algorithm are calculated and generated by the helper, which
amortizes the prover’s calculation pressure, thereby enabling the network to achieve the
effect of load balancing.

Figure 1. Prover times for our scheme compared to two other schemes [20,21].

Figure 2. Proof sizes for our scheme compared to two other schemes [20,21].

Figure 1. Prover times for our scheme compared to two other schemes [20,21].

Electronics 2025, 14, x FOR PEER REVIEW 11 of 17

4.1. Comparison with Other ZKPs

We implemented GENES through the cryptography library Dalek [40] and built it
using ristretto255. As depicted in Figures 1–3, our scheme was compared with bullet-
proofs [20], based on ed25519, and halo [21], based on the custom Tweedledum255 and
Tweedledee255 curves.

Figures 1–3 compare the prover time cost, proof size, and verifier time cost of the
three IPA-based zk-SNARK schemes in practice, respectively. This group of experiments
demonstrated that for a 64-bit proof, the prover time of our scheme is 11.3 ms, which was
reduced by 79.30% compared to bulletproofs [20] and by 97.10% compared to halo [21];
the verifier time of our scheme was 1.49 ms, which was reduced by 69.02% compared to
bulletproofs [20] and by 83.44% compared to halo [21]. Moreover, our scheme has even
greater advantages when the proof statement increases, although halo [21] showed better
performance than bulletproofs [20]. For the proof size, that is, bandwidth consumption,
the halo [21] scheme was approximately 2.3 bytes and has the best performance. Our
scheme and that of bulletproofs [20] were approximately 5.73 bytes and 6.23 bytes, re-
spectively. Compared with bulletproofs [20], our scheme had a slightly lower bandwidth
cost because we introduced a “helper”. The vector commitment to the circuit constraints 𝐚𝐋, 𝐚𝐑, 𝐚𝐎 and 𝐛 in the algorithm are calculated and generated by the helper, which
amortizes the prover’s calculation pressure, thereby enabling the network to achieve the
effect of load balancing.

Figure 1. Prover times for our scheme compared to two other schemes [20,21].

Figure 2. Proof sizes for our scheme compared to two other schemes [20,21]. Figure 2. Proof sizes for our scheme compared to two other schemes [20,21].

Electronics 2025, 14, 492 12 of 18

Electronics 2025, 14, x FOR PEER REVIEW 12 of 17

Figure 3. Verifier times for our scheme compared to two other schemes [20,21].

It is noteworthy that all three schemes have linear prover time, proof size, and ver-
ifier time (not completely succinct), but GENES performed best as the number of circuit
constraints varied to varying degrees. This is because although halo [21] performed only
the linear time proof in the last iteration, it still needed to perform the log time calculation
“internally”. However, our scheme requires only the prover and verifier to calculate the
new running instance formed by merging two old instances in the R1CS merging process.
This process requires only a few group operations through the Pederson commitment.

4.2. Cost and Benefits of the GENES Merging Scheme

To evaluate the benefits of GENES’s merging scheme, we considered bulletproofs as
a variant of GENES, which satisfies instances of R1CS where 𝐛 = 𝟎 and u = 1. Bul-
letproofs does not employ GENES’s merging scheme. BÜNZ et al. [20] proposed a bul-
letproof aggregation optimization scheme for 𝑚 range proofs called bulletproof-agg,
which effectively reduces the proof size but does not change the prover time and verifier
time (bulletproof-agg does not appear in Figures 4 and 5 because it has the same curve as
bulletproofs). To reduce the effect of other factors on the experimental results, we im-
plemented bulletproofs based on the ristretto255 group. The experiment is assumed to
prove several proofs of 64-bit size (i.e., the circuit size is 2). Figures 4–6 show how the
proof time, proof size, and verification time of GENES (using the merged scheme) and
bulletproofs/bulletproof-agg (without the merged scheme) change as the number of
proofs increases. When the number of proofs reaches 2ଵଶ (approximately 4000 proofs),
the prover times of our scheme and bulletproofs are 46.285 s and 0.0165 s, respectively,
with our scheme reduced by 99.96% compared to bulletproofs; the verifier times are 6.1 s
and 0.00675 s, respectively, which is reduced by 99.89%. In both cases, our scheme im-
proved significantly. However, for the proof size that proves 2ଵଶ proofs, our scheme is
approximately 32 bytes larger than the bulletproof-agg scheme.

Figure 3. Verifier times for our scheme compared to two other schemes [20,21].

Figures 1–3 compare the prover time cost, proof size, and verifier time cost of the
three IPA-based zk-SNARK schemes in practice, respectively. This group of experiments
demonstrated that for a 64-bit proof, the prover time of our scheme is 11.3 ms, which was
reduced by 79.30% compared to bulletproofs [20] and by 97.10% compared to halo [21];
the verifier time of our scheme was 1.49 ms, which was reduced by 69.02% compared to
bulletproofs [20] and by 83.44% compared to halo [21]. Moreover, our scheme has even
greater advantages when the proof statement increases, although halo [21] showed better
performance than bulletproofs [20]. For the proof size, that is, bandwidth consumption, the
halo [21] scheme was approximately 2.3 bytes and has the best performance. Our scheme
and that of bulletproofs [20] were approximately 5.73 bytes and 6.23 bytes, respectively.
Compared with bulletproofs [20], our scheme had a slightly lower bandwidth cost because
we introduced a “helper”. The vector commitment to the circuit constraints aL, aR, aO and
b in the algorithm are calculated and generated by the helper, which amortizes the prover’s
calculation pressure, thereby enabling the network to achieve the effect of load balancing.

It is noteworthy that all three schemes have linear prover time, proof size, and ver-
ifier time (not completely succinct), but GENES performed best as the number of circuit
constraints varied to varying degrees. This is because although halo [21] performed only
the linear time proof in the last iteration, it still needed to perform the log time calculation
“internally”. However, our scheme requires only the prover and verifier to calculate the
new running instance formed by merging two old instances in the R1CS merging process.
This process requires only a few group operations through the Pederson commitment.

4.2. Cost and Benefits of the GENES Merging Scheme

To evaluate the benefits of GENES’s merging scheme, we considered bulletproofs as a
variant of GENES, which satisfies instances of R1CS where b = 0 and u = 1. Bulletproofs
does not employ GENES’s merging scheme. BÜNZ et al. [20] proposed a bulletproof aggre-
gation optimization scheme for m range proofs called bulletproof-agg, which effectively
reduces the proof size but does not change the prover time and verifier time (bulletproof-
agg does not appear in Figures 4 and 5 because it has the same curve as bulletproofs). To
reduce the effect of other factors on the experimental results, we implemented bulletproofs
based on the ristretto255 group. The experiment is assumed to prove several proofs of
64-bit size (i.e., the circuit size is 26). Figures 4–6 show how the proof time, proof size, and

Electronics 2025, 14, 492 13 of 18

verification time of GENES (using the merged scheme) and bulletproofs/bulletproof-agg
(without the merged scheme) change as the number of proofs increases. When the number
of proofs reaches 212 (approximately 4000 proofs), the prover times of our scheme and
bulletproofs are 46.285 s and 0.0165 s, respectively, with our scheme reduced by 99.96%
compared to bulletproofs; the verifier times are 6.1 s and 0.00675 s, respectively, which is
reduced by 99.89%. In both cases, our scheme improved significantly. However, for the
proof size that proves 212 proofs, our scheme is approximately 32 bytes larger than the
bulletproof-agg scheme.

Electronics 2025, 14, x FOR PEER REVIEW 13 of 17

Figure 4. Prover times for GENES’s merge scheme and bulletproofs.

Figure 5. Proof sizes for GENES’s merge scheme and bulletproofs.

Figure 6. Verifier times for GENES’s merge scheme and bulletproofs.

5. Applications
In this section, we take Ethereum [41] as an example to introduce a novel mechanism

leveraging GENES for efficient batch transaction verification, where Ethereum nodes can
verify a single proof that aggregates the validity of multiple transactions instead of veri-
fying each transaction individually. This approach reduces the verification burden on
Ethereum nodes while ensuring the integrity and correctness of transactions.

Figure 4. Prover times for GENES’s merge scheme and bulletproofs.

Electronics 2025, 14, x FOR PEER REVIEW 13 of 17

Figure 4. Prover times for GENES’s merge scheme and bulletproofs.

Figure 5. Proof sizes for GENES’s merge scheme and bulletproofs.

Figure 6. Verifier times for GENES’s merge scheme and bulletproofs.

5. Applications
In this section, we take Ethereum [41] as an example to introduce a novel mechanism

leveraging GENES for efficient batch transaction verification, where Ethereum nodes can
verify a single proof that aggregates the validity of multiple transactions instead of veri-
fying each transaction individually. This approach reduces the verification burden on
Ethereum nodes while ensuring the integrity and correctness of transactions.

Figure 5. Proof sizes for GENES’s merge scheme and bulletproofs.

Electronics 2025, 14, 492 14 of 18

Electronics 2025, 14, x FOR PEER REVIEW 13 of 17

Figure 4. Prover times for GENES’s merge scheme and bulletproofs.

Figure 5. Proof sizes for GENES’s merge scheme and bulletproofs.

Figure 6. Verifier times for GENES’s merge scheme and bulletproofs.

5. Applications
In this section, we take Ethereum [41] as an example to introduce a novel mechanism

leveraging GENES for efficient batch transaction verification, where Ethereum nodes can
verify a single proof that aggregates the validity of multiple transactions instead of veri-
fying each transaction individually. This approach reduces the verification burden on
Ethereum nodes while ensuring the integrity and correctness of transactions.

Figure 6. Verifier times for GENES’s merge scheme and bulletproofs.

5. Applications
In this section, we take Ethereum [41] as an example to introduce a novel mechanism

leveraging GENES for efficient batch transaction verification, where Ethereum nodes can
verify a single proof that aggregates the validity of multiple transactions instead of verifying
each transaction individually. This approach reduces the verification burden on Ethereum
nodes while ensuring the integrity and correctness of transactions.

5.1. GENES-Based Batch Transaction Verification Mechanism

The core of the batch transaction verification mechanism based on GENES is a new
Ethereum block structure, shown in Figure 7. Specifically, we added fields to the block
body and header to accommodate individual transaction commitments and an aggregated
proof (i.e., the red box in Figure 7). In the proposed mechanism, each transaction that
enters the transaction pool includes an associated commitment and proof, which are
generated by the transaction generation node or a designated trusted party, ensuring
that the transaction satisfies all required conditions (such as correct signatures, nonce
checks, and state transitions). When miners package transactions, they store the transaction
commitments instead of the transactions themselves in the block body, thereby ensuring
transaction privacy. An aggregated proof is then stored in the block header, which combines
the proofs of all individual transactions in the block, ensuring that all transactions included
in the block are valid. Once the block is completed, the miner broadcasts the block to
the Ethereum network. Upon receiving the block, Ethereum nodes only need to verify
the aggregated proof in the block header via commitments in block body to ensure the
validity of all transactions, without the need to verify each transaction individually. If the
aggregated proof is valid, the block is added to the distributed ledger, completing the block
finalization process.

Electronics 2025, 14, 492 15 of 18

Electronics 2025, 14, x FOR PEER REVIEW 14 of 17

5.1. GENES-Based Batch Transaction Verification Mechanism

The core of the batch transaction verification mechanism based on GENES is a new
Ethereum block structure, shown in Figure 7. Specifically, we added fields to the block
body and header to accommodate individual transaction commitments and an aggre-
gated proof (i.e., the red box in Figure 7). In the proposed mechanism, each transaction
that enters the transaction pool includes an associated commitment and proof, which are
generated by the transaction generation node or a designated trusted party, ensuring that
the transaction satisfies all required conditions (such as correct signatures, nonce checks,
and state transitions). When miners package transactions, they store the transaction
commitments instead of the transactions themselves in the block body, thereby ensuring
transaction privacy. An aggregated proof is then stored in the block header, which com-
bines the proofs of all individual transactions in the block, ensuring that all transactions
included in the block are valid. Once the block is completed, the miner broadcasts the
block to the Ethereum network. Upon receiving the block, Ethereum nodes only need to
verify the aggregated proof in the block header via commitments in block body to ensure
the validity of all transactions, without the need to verify each transaction individually. If
the aggregated proof is valid, the block is added to the distributed ledger, completing the
block finalization process.

Figure 7. An example of a new Ethereum block structure based on GENES.

5.2. Analysis

The proposed batch transaction verification mechanism aims to enhance Ethereum’s
transaction validation process by leveraging GENES, demonstrating significant ad-
vantages in security, privacy and efficiency.

In terms of security and privacy, the security of this mechanism relies on the security
of GENES. By using GENES to aggregate transaction validity proofs, we ensure that even
if a node does not have access to the full transaction pool, it can still verify the correctness
of the block with a single proof, which reduces the attack surface for potential malicious
actors attempting to introduce invalid transactions into the blockchain. Additionally, by
including only transaction commitments in the block body instead of the full trans-action
data, the proposed mechanism enhances transaction privacy.

In terms of efficiency, each node in traditional Ethereum [41] needs to repeatedly
validate every transaction of the network, which can be computationally expensive, par-
ticularly when blocks contain numerous transactions. With GENES, Ethereum nodes
only need to verify a single proof, which can be completed in a constant time regardless
of the number of transactions in the block. This drastically reduces the verification
workload and accelerates block validation, effectively increasing the throughput and
scalability of the network.

6. Conclusions

Figure 7. An example of a new Ethereum block structure based on GENES.

5.2. Analysis

The proposed batch transaction verification mechanism aims to enhance Ethereum’s
transaction validation process by leveraging GENES, demonstrating significant advantages
in security, privacy and efficiency.

In terms of security and privacy, the security of this mechanism relies on the security
of GENES. By using GENES to aggregate transaction validity proofs, we ensure that even if
a node does not have access to the full transaction pool, it can still verify the correctness
of the block with a single proof, which reduces the attack surface for potential malicious
actors attempting to introduce invalid transactions into the blockchain. Additionally, by
including only transaction commitments in the block body instead of the full trans-action
data, the proposed mechanism enhances transaction privacy.

In terms of efficiency, each node in traditional Ethereum [41] needs to repeatedly
validate every transaction of the network, which can be computationally expensive, partic-
ularly when blocks contain numerous transactions. With GENES, Ethereum nodes only
need to verify a single proof, which can be completed in a constant time regardless of the
number of transactions in the block. This drastically reduces the verification workload
and accelerates block validation, effectively increasing the throughput and scalability of
the network.

6. Conclusions
In this study, using the previous protocols by Bünz et al. [20], we utilize the relaxed

R1CS method introduced by Kothapalli et al. [29] to propose a recursive zk-SNARK scheme
called GENES and analyze its security under the standard DLOG assumption. Our scheme
is more efficient than other existing IPA-based ZKP schemes in terms of both proof gen-
eration and verification costs. In particular, the prover times of our scheme are 79.30%
and 97.10% shorter than those of Bünz et al. [20] and Bowe et al. [21] respectively, and the
efficiency advantage becomes more apparent as the proof statement increases. However,
despite these advancements, our protocol has a limitation in terms of proof size, which
is an important direction for future work. Another future work would be to design some
ZKP schemes with extra properties to cope with more complex blockchain scenarios. For
example, an interesting issue is how to trace transactions in the blockchain when they are
stored in the form of commitments in the block.

Electronics 2025, 14, 492 16 of 18

Author Contributions: Conceptualization, J.L. and L.G.; methodology, J.L.; software, L.G.; vali-
dation, J.L., L.G. and T.K.; formal analysis, T.K.; investigation, L.G.; resources, T.K.; data curation,
T.K.; writing—original draft preparation, J.L.; writing—review and editing, L.G.; visualization, J.L.;
supervision, L.G.; project administration, T.K.; funding acquisition, J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Key Research and Development Program of Hainan Province
(No. SQ2024LAJYLH0018), Beijing Natural Science Foundation (No. L232039). We thank LetPub
(https://www.letpub.com (accessed on 22 January 2025)) for linguistic assistance and pre-submission
expert review.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declared no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

References
1. Goldwasser, S.; Micali, S.; Rackoff, C. The knowledge complexity of interactive proof-systems (extended abstract). In Proceedings

of the Seventeenth Annual ACM Symposium on Theory of Computing (STOC1985), Providence, RI, USA, 6–8 May 1985;
pp. 291–304. [CrossRef]

2. Liu, W.; Weng, J.; Zhang, B.; He, K.; Huang, J. Improvements on Non-Interactive Zero-Knowledge Proof Systems Related to
Quadratic Residuosity Languages. Inf. Sci. 2022, 613, 324–343. [CrossRef]

3. Chen, B.; Bünz, B.; Boneh, D.; Zhang, Z. Hyperplonk: Plonk with linear-time prover and high-degree custom gates. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Cham, Switzerland, 2023; pp. 499–530.

4. Zheng, H.; You, L.; Hu, G. A novel insurance claim blockchain scheme based on zero-knowledge proof technology. Comput.
Commun. 2022, 195, 207–216. [CrossRef]

5. Fan, Y.; Xu, B.; Zhang, L.; Song, J.; Zomaya, A.; Li, K.-C. Validating the integrity of Convolutional Neural Network predictions
based on zero-knowledge proof. Inf. Sci. 2023, 625, 125–140. [CrossRef]

6. Abbaszadeh, K.; Pappas, C.; Katz, J.; Papadopoulos, D. Zero-knowledge proofs of training for deep neural networks. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, UT, USA, 14–18
October 2024; pp. 4316–4330.

7. Dziembowski, S.; Ebrahimi, S.; Hassanizadeh, P. VIMz: Verifiable image manipulation using folding-based zkSNARKs[J].
Cryptology ePrint Archive, 2024. Available online: https://eprint.iacr.org/2024/1063 (accessed on 22 January 2025).

8. Zhou, L.; Diro, A.; Saini, A.; Hiep, P.C. Leveraging zero knowledge proofs for blockchain-based identity sharing: A survey of
advancements, challenges and opportunities. J. Inf. Secur. Appl. 2024, 80, 103678. [CrossRef]

9. Wen, B.; Wang, Y.; Ding, Y.; Zheng, H.; Qin, B.; Yang, C. Security and privacy protection technologies in securing blockchain
applications. Inf. Sci. 2023, 645, 119322. [CrossRef]

10. Blum, M.; Feldman, P.; Micali, S. Non-interactive zero-knowledge and its applications. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing (STOC’88), Chicago, IL, USA, 2–4 May 1988; Association for Computing Machinery:
New York, NY, USA, 1988; pp. 103–112. [CrossRef]

11. Parno, B.; Howell, J.; Gentry, C.; Raykova, M. Pinocchio: Nearly practical verifiable computation. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; pp. 238–252. [CrossRef]

12. Groth, J.; Kohlweiss, M.; Maller, M.; Meiklejohn, S. I. MiersUpdatable and Universal Common Reference Strings with Applications
to zk-SNARKs. In Advances in Cryptology—CRYPTO 2018; Lecture Notes in Computer Science; Shacham, H., Boldyreva, A., Eds.;
Springer: Cham, Switzerland, 2018; Volume 10993. [CrossRef]

13. Gennaro, R.; Gentry, C.; Parno, B.; Raykova, M. Quadratic Span Programs and Succinct NIZKs without PCPs. In Ad-
vances in Cryptology—EUROCRYPT 2013; Lecture Notes in Computer Science; Johansson, T., Nguyen, P.Q., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7881. [CrossRef]

14. Groth, J. On the size of pairing-based non-interactive arguments. In Advances in Cryptology—EUROCRYPT 2016, Part II; Springer:
Berlin, Germany, 2016; pp. 305–326. [CrossRef]

15. Xie, T.C.; Zhang, J.H.; Zhang, Y.P.; Papamanthou, C.; Song, D. Libra: Succinct zero-knowledge proofs with optimal prover
computation. In Advances in Cryptology—CRYPTO 2019, Part III; Springer: Cham, Switzerland, 2019; pp. 733–764. [CrossRef]

16. Setty, S. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Advances in Cryptology—CRYPTO 2020, Part
III; Springer: Cham, Switzerland, 2020; pp. 704–737. [CrossRef]

https://www.letpub.com
https://doi.org/10.1145/22145.22178
https://doi.org/10.1016/j.ins.2022.09.026
https://doi.org/10.1016/j.comcom.2022.08.007
https://doi.org/10.1016/j.ins.2023.01.036
https://eprint.iacr.org/2024/1063
https://doi.org/10.1016/j.jisa.2023.103678
https://doi.org/10.1016/j.ins.2023.119322
https://doi.org/10.1145/62212.62222
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-56877-1_25

Electronics 2025, 14, 492 17 of 18

17. Zhang, J.H.; Xie, T.C.; Zhang, Y.P.; Song, D. Transparent polynomial delegation and its applications to zero knowledge proof.
In Proceedings of the 2020 IEEE Symposium on Security and Privacy (S&P 2020), San Francisco, CA, USA, 18–21 May 2020;
pp. 859–876. [CrossRef]

18. Zhang, J.H.; Liu, T.Y.; Wang, W.; Zhang, Y.; Song, D.; Xie, X.; Zhang, Y. Doubly efficient interactive proofs for general arithmetic
circuits with linear prover time. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2021), Virtual Event, 15–19 November 2021; pp. 159–177. [CrossRef]

19. Hoffmann, M.; Klooss, M.; Rupp, A. Efficient zero-knowledge arguments in the discrete log setting, revisited. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS 2019), London, UK, 11–15 November 2019;
pp. 2093–2110. [CrossRef]

20. Bünz, B.; Bootle, J.; Boneh, D.; Poelstra, A.; Wuille, P.; Maxwell, G. Bulletproofs: Short proofs for confidential transactions and
more. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (S&P 2018), San Francisco, CA, USA, 20–24 May 2018;
pp. 315–334. [CrossRef]

21. Bowe, S.; Grigg, J.; Hopwood, D. Recursive proof composition without a trusted setup. Cryptol. Eprint Arch. Tech. Rep. 2019,
1021, 2019.

22. Katz, J.; Kolesnikov, V.; Wang, X. Improved non-interactive zero knowledge with applications to post-quantum signatures. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS 2018), Toronto, ON, Canada,
15–19 October 2018; pp. 525–537. [CrossRef]

23. Micali, S. CS proofs (extended abstracts). In Proceedings of the 35th Annual Symposium on Foundations of Computer Science
(FOCS 1994), Santa Fe, NM, USA, 20–22 November 1994; pp. 436–453. [CrossRef]

24. De Saint Guilhem, C.D.; Orsini, E.; Tanguy, T. Limbo: Efficient zero-knowledge MPCitH-based arguments. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (CCS 2021), Virtual Event, 15–19 November 2021;
pp. 3022–3036. [CrossRef]

25. Setty, S.T.V.; Braun, B.; Vu, V.; Blumberg, A.J.; Parno, B.; Walfish, M. Resolving the conflict between generality and plausibility in
verified computation. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys 2013), Prague, Czech
Republic, 15–17 April 2013; pp. 71–84. [CrossRef]

26. Wahby, R.S.; Setty, S.T.V.; Ren, Z.C.; Blumberg, A.J.; Walfish, M. Efficient RAM and control flow in verifiable outsourced
computation. In Proceedings of the 2015 Network and Distributed System Security Symposium (NDSS 2015), San Diego, CA,
USA, 8–11 February 2015. [CrossRef]

27. Ben-Sasson, E.; Chiesa, A.; Riabzev, M.; Spooner, N.; Virza, M.; Ward, N.P. Aurora: Transparent succinct arguments for R1CS. In
Advances in Cryptology—EUROCRYPT 2019, Part I; Springer: Cham, Switzerland, 2019; pp. 103–128. [CrossRef]

28. Bootle, J.; Cerulli, A.; Chaidos, P.; Groth, J.; Petit, C. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Advances in Cryptology—EUROCRYPT 2016, Part II; Springer: Berlin/Heidelberg, Germany, 2016; pp. 327–357.
[CrossRef]

29. Kothapalli, A.; Setty, S.; Tzialla, I. Nova: Recursive Zero-Knowledge Arguments from Folding Schemes. In Advances in Cryptology—
CRYPTO 2022. CRYPTO 2022; Lecture Notes in Computer Science; Dodis, Y., Shrimpton, T., Eds.; Springer: Cham, Switzerland,
2022; Volume 13510. [CrossRef]

30. Saberhagen, N.V. Cryptonote v 2.0. 2013. Available online: https://academy.bit2me.com/wp-content/uploads/2021/05/
MONERO-WHITEPAPER.pdf (accessed on 22 January 2025).

31. Danezis, G.; Fournet, C.; Kohlweiss, M.; Parno, B. Pinocchio coin: Building zerocoin from a succinct pairing-based proof system.
In Proceedings of the First ACM Workshop on Language Support for Privacy-enhancing Technologies (PETShop 2013), Berlin,
Germany, 4 November 2013; pp. 27–30. [CrossRef]

32. Li, W.H.; Zhang, Z.Y.; Zhou, Z.B.; Deng, Y. An overview on succinct non-interactive zeroknowledge proofs. J. Cryptologic Res.
2022, 9, 379–447. [CrossRef]

33. Bjelic, M.; Nailwal, S.; Chaudhary, A.; Deng, W. POL: One Token for All Polygon Chains. Available online: https://polygon.
technology/papers/pol-whitepaper (accessed on 22 January 2025).

34. Gabizon, A.; Williamson, Z.J.; Ciobotaru, O. PLONK: Permutations over Lagrange-Bases for Oecumenical Noninteractive
Arguments of Knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. Available online: https://eprint.iacr.org/2019/953
(accessed on 22 January 2025).

35. Ben-Sasson, E.; Chiesa, A.; Garman, C.; Green, M.; Miers, I.; Tromer, E. Zerocash: Decentralized anonymous payments from
bitcoin. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 459–474.

36. Liu, T.; Xie, T.; Zhang, J.; Song, D.; Zhang, Y. Pianist: Scalable zkrollups via fully distributed zero-knowledge proofs. In
Proceedings of the 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2024; pp. 1777–1793.

37. Bitansky, N.; Canetti, R.; Chiesa, A.; Tromer, E. From extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Cambridge, MA,
USA, 8–10 January 2012.

https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1145/3319535.3354251
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/2465351.2465359
https://doi.org/10.14722/ndss.2015.23097
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-031-15985-5_13
https://academy.bit2me.com/wp-content/uploads/2021/05/MONERO-WHITEPAPER.pdf
https://academy.bit2me.com/wp-content/uploads/2021/05/MONERO-WHITEPAPER.pdf
https://doi.org/10.1145/2517872.2517878
https://doi.org/10.13868/j.cnki.jcr.000525
https://polygon.technology/papers/pol-whitepaper
https://polygon.technology/papers/pol-whitepaper
https://eprint.iacr.org/2019/953

Electronics 2025, 14, 492 18 of 18

38. Ioanna, T.; Abhiram, K.; Parno, B.; Setty, S. Transparency Dictionaries with Succinct Proofs of Correct Operation. Cryptology
ePrint Archive, Paper 2021/1263, 2021. Available online: https://eprint.iacr.org/2021/1263 (accessed on 22 January 2025).

39. Fiat, A.; Shamir, A. How to prove yourself: Practical solutions to identification and signature problems. In Theory and Application
of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1986; pp. 186–194.

40. Dalek Cryptography. Available online: https://github.com/dalek-cryptography (accessed on 22 January 2025).
41. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2021/1263
https://github.com/dalek-cryptography

	Introduction
	Contributions
	Releted Works

	Preliminaries
	Rank-1 Constraint System (R1CS)
	Commitments
	Inner Product Argument (IPA)
	Succinct Noninteractive Argument of Knowledge (SNARK)
	Notations

	Our Scheme
	Algorithm Definition of GENES
	Our Concrete GENES Scheme
	Complexity Analysis
	Proof Generation Complexity
	Verification Complexity

	Security Analysis

	GENES Performance Verification
	Comparison with Other ZKPs
	Cost and Benefits of the GENES Merging Scheme

	Applications
	GENES-Based Batch Transaction Verification Mechanism
	Analysis

	Conclusions
	References

