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Abstract: Automatic intention recognition in financial service scenarios faces challenges
such as limited corpus size, high colloquialism, and ambiguous intentions. This paper
proposes a hybrid intention recognition framework for financial customer service, which
involves semi-supervised learning data augmentation, label semantic inference, and text
classification. A semi-supervised learning method is designed to augment the limited
corpus data obtained from the Chinese financial service scenario, which combines back-
translation with BERT models. Then, a K-means-based semantic inference method is
introduced to extract label semantic information from categorized corpus data, serving
as constraints for subsequent text classification. Finally, a BERT-based text classification
network is designed to recognize the intentions in financial customer service, involving a
multi-level feature fusion for corpus information and label semantic information. During
the multi-level feature fusion, a shallow-to-deep (StD) mechanism is designed to alleviate
feature collapse. To validate our hybrid framework, 2977 corpus texts about loan service
are provided by a financial company in China. Experimental results demonstrate that
our hybrid framework outperforms existing deep learning methods in financial customer
service intention recognition, achieving an accuracy of 89.06%, precision of 90.27%, recall
of 90.40%, and an F1 score of 90.07%. This study demonstrates the potential of the hybrid
framework to automatic intention recognition in financial customer service, which is
beneficial for the improvement of the financial service quality.

Keywords: intention recognition; financial customer service; semi-supervised learning;
label semantic inference; BERT

1. Introduction
The Internet of Things (IoT) provides a new generation of pervasive technologies and

smart environments around the perimeter [1], and it has been widely applied in financial
service scenarios. In the financial service scenarios, the IoT can be used to collect and
analyze data to generate meaningful information to meet specific customer needs, which
supports the digital bridge between financial institutions and their human customers.
When the dialogue occurs between the financial customer service system and the customer,
the service system can acquire the corpus data through the IoT, which can be intelligently
analyzed to accurately recognize the customer’s intention for subsequent responses [2]. For
example, the phrase “I want to check my balance” in a dialogue can be understood by the
system based on keywords such as “balance” and the context to accurately determine the
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customer’s intention. This accurate and timely customer service is significant for business
and customer loyalty [3].

In recent years, automatic intention recognition based on natural language processing
(NLP) has been applied in financial customer service to alleviate the heavy labor burden and
improve the service experience and quality. Since corpus data in financial customer service
are often scarce, data augmentation is usually used to improve model performance [4–7],
involving back-translation, random deletion, and semantic substitution. Moreover, due to
the high repetition and colloquial nature of corpus data in financial customer service, some
inherent issues have affected intention recognition through customer service robots, such
as short texts, inconsistent expressions with the same meaning (e.g., “check balance” and “I
want to know my balance”), and ambiguous phrasing [8–11]. Therefore, accurate intention
recognition remains a challenge in the field of natural language processing for financial
customer service.

Traditional intention recognition methods commonly utilize the similarity measure of
keywords or semantics, such as cosine similarity, the Jaccard coefficient, Pearson correlation
coefficient, and Levenshtein distance, to automatically recognize customers’ intentions [10].
However, some issues limit traditional intention recognition in many applications. Firstly, it
is weak in contextual understanding, resulting in situations where the same keyword may
have different meanings in different contexts, or different keywords may have the same
meaning in different contexts. Secondly, it hardly captures the punctuations in the text
and the tones in the voice dialogue, indicating its poor ability of handling ambiguity [11].
In contrast, due to its excellent abilities of self-learning and high adaptivity, deep learn-
ing has been successfully introduced in intention recognition [12]. Especially, due to its
self-attention mechanism, Transformer can well capture long-term dependencies between
words to understand the context [13–19], which is beneficial for the handling of ambiguity.
As a Transformer-based model, bidirectional encoder representation from transformers
(BERT) [14] is a promising approach to utilize the transformer model for intention recog-
nition, in which pre-trained models are fine-tuned during training. However, in financial
customer service, the corpus data are commonly not enough to train a reliable network
for intention recognition. Also, extensive short texts carry less information and possibly
make the network learn a number of redundant features. Furthermore, serious colloquial
expressions combined with short texts most probably cause ambiguous semantics for the
corpus data, which is not beneficial for intention recognition.

To address these issues, a hybrid intention recognition framework is designed to
identify customer intentions in financial customer service, involving data augmentation,
semantic inference, and text classification. To address the problem of insufficient corpus
data in the dataset, a semi-supervised learning method is proposed to augment the corpus
data. Specifically, the back-translation method is applied to achieve a large amount of
low-quality augmented data from the original corpus data. Then, a BERT model is well
trained on the original corpus data to predict labels for the back-translated augmented
data. The corpus data with correctly predicted labels are finally mixed with the original
corpus data to achieve high-quality augmented corpus data. To reduce the impact of severe
colloquialism and short texts, a K-means-based semantic inference module is proposed
to automatically extract the semantic information from corpus samples. Finally, a text
classification network with two information branches is designed, which integrates corpus
information and label semantic information via a specifically designed multi-level feature
fusion to recognize customer intentions. An StD mechanism is incorporated to alleviate
feature collapse.

In general, the contributions of our work are summarized as follows:
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(1) To further improve intention recognition performance in financial service scenarios,
a hybrid machine learning framework is designed for automatic customer intent
recognition. The framework includes semi-supervised learning data augmentation,
K-means-based label semantic inference, and a dual-branch text classification network.
By combining traditional clustering methods with deep learning, K-means is used
to find the approximately central text that represents the label semantics, which is
then input into the text classification network, using the multi-level feature fusion
approach that enhances the accuracy of intent recognition.

(2) A K-means-based label semantic inference scheme is utilized to integrate the knowl-
edge related to label semantics into the feature information of the corpus texts by
identifying the approximately central text of each semantic category, thereby alle-
viating the ambiguous semantics caused by the combination of colloquialism and
short texts.

(3) A dual-stream text classification network is designed for intention recognition, incor-
porating corpus information and label semantic information with a specific-designed
multi-level feature fusion scheme. During the multi-level feature fusion, an StD
mechanism is designed to alleviate the feature collapse caused by network depth.

The structure of the rest of this paper is described as follows: Section 2 introduces
the related work from four aspects. Section 3 introduces our proposed hybrid intention
recognition framework for intention recognition in the financial domain. Section 4 presents
the experiments and discussions, involving comparison experiments, ablation experiments,
and error analysis. Finally, Section 5 summarizes this paper, involving future work.

2. Related Work
2.1. Data Augmentation for NLP

In real applications, acquired text data are usually insufficient for deep learning. Data
argumentation is an alternative approach to generate sufficient data to train a reliable
deep model [20].

Wei et al. [4] provided four easy data augmentation (EDA) techniques for text clas-
sification tasks, involving synonym replacement, random insertion, random swap, and
random deletion. Experimental results on five public datasets indicated that their EDA
method could boost the text classification performance, especially for small datasets. How-
ever, the EDA possibly disrupts the semantic consistency in specialized domains (e.g.,
financial customer service), leading to inappropriate synonym replacements and even
grammar errors to in turn degrade the model performance. Sennrich et al. [5] utilized the
back-translation method to argument monolingual corpus data for machine translation
models. Experimental results on two public datasets indicated that the small amounts
of in-domain monolingual data through back-translation could be effectively used for
domain-adaptive machine translation. However, they referred that their augmentation
method still depended on the amount (and similarity to the test set) of available monolin-
gual data. Moreover, in the financial customer service, only using back-translation easily
cause colloquial expressions to lose their original meanings, and back-translating short
texts easily results in ambiguity and even erroneous semantics. Schick et al. [6] proposed a
Pattern-Exploiting Training (PET) to convert training data into a cloze (fill-in-the-blank)
format. Their method fine-tunes a pre-trained language model for each class of samples
by using cloze-style phrases and then integrates multiple fine-tuned models to assign soft
labels to unlabeled data. Since it leverages the knowledge contained in pre-trained models
to generate more accurate labels, their method can be applied to few-shot text classification
and natural language inference tasks. Experimental results on five public datasets indicated
that the PET could help leverage the knowledge contained within pre-trained language
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models for downstream tasks, when the initial amount of training data was limited. How-
ever, cloze-style prompts are not well suitable for complex and specialized expressions in
financial customer service. Huiming et al. [7] proposed an order-agnostic data augmenta-
tion (OADA) method for few-shot named entity recognition (NER). Experimental results on
three public NER datasets showed that their method alleviated the one-to-many problem
in NER tasks. As they claimed, they augmented the entity data under the assumption
that different entity arrangements were equivalent. This assumption is not suitable for
intention recognition.

Related data augmentation methods for NLP are summarized in Table 1. Although
these data augmentation methods have been validated on some public datasets, the corpus
data in financial customer service are quite different from these public datasets. This
possibly makes these methods not generate high-quality corpus data, which will degrade
the model ability of intention recognition. Especially, augmenting corpus data without
corresponding labels possibly limits the generalization ability of the model. Thus, in our
study, we will utilize a semi-supervised learning data augmentation method to generate
label-flipped corpus data for the improvement of the model’s generalization ability [21].

Table 1. A summary of some studies on data augmentation for NLP.

Years Authors Methods Advantages Limitations

2015 Sennrich et al. [5] Back-translation. Increases data
diversity.

Easily loses the original
meanings of corpus data, and
results in ambiguity and even

erroneous semantics.

2019 Wei et al. [4]

Synonym replacement,
random insertion,

random swapping, and
random deletion.

Simple and easy
implementation.

Possibly disrupts the semantic
consistency in

specialized domains.

2020 Schick et al. [6] Pattern-Exploiting
Training.

Leverages pre-trained
language models.

Cloze-style prompts are not
well suitable for complex and

specialized expressions.

2024 Huiming et al. [7] Order-agnostic data
augmentation.

Solves the
one-to-many problem

in NER tasks.

Their assumption is not
suitable for

intention recognition.

2.2. Convolutional Neural Network Based Methods for NLP

Intention recognition for financial customer service is essentially a NLP task, in which
customers’ dialogue texts are identified as the pre-defined intention categories [22]. Ma-
chine learning for NLP conventionally utilizes the word vectors of the texts constructed by
the co-occurrence matrix and global vectors for word representation (GloVe) to train a ma-
chine learning model, in which AdaBoost, support vector machine (SVM), and multi-layer
perceptron (MLP) are commonly utilized as classifiers [23].

Due to its strong ability of feature mapping via convolutional learning, convolutional
neural networks (CNNs) have been widely employed for NLP [24]. Liu et al. [25] integrated
three RNNs into a multi-learning framework to conduct joint learning across multiple
related text classification tasks about movie reviews, mapping arbitrary text into semantic
vector representations with task-specific layers and shared layers. However, when the
corpus data are not sufficient enough, the differences between different tasks bring a
negative effect for joint learning. Lai et al. [26] used recurrent CNNs to classify text at
the document level, including a recurrent structure to capture context information and
a max pooling layer to automatically capture key components of text. Although their
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method can, to some extent, capture context information, it is weak in capturing the
long-term dependencies in the context due to the inherent characteristics of convolutions.
Johnson et al. [27] proposed a depth pyramid convolution neural network (DPCNN) for
sentiment classification and some other topic classification tasks, in which all the shortcuts
were simple identity mapping. However, their proposed text region embedding can
only cover one or several words, which cannot well capture the context information in
complex expressions.

For these CNNs-based methods, a large amount of corpus data with relatively bal-
anced distributions have been provided to adequately train a promising model for text
classification. However, due to confidentiality, it is difficult to acquire massive corpus
data in financial customer services scenarios. Also, the quantity of corpus data for some
intentions has a high probability of being small.

2.3. Transformer Based Methods for NLP

In recent years, the Transformer architecture [28] has demonstrated strong capabil-
ities in NLP due to its strength of capturing long-term dependencies. Gong et al. [29]
proposed a hierarchical graph transformer-based deep learning framework for large-scale
multi-label text classification, which cascaded a graph-based model with a transformer
encoder architecture. Experiments on three benchmark datasets show that their method can
effectively capture the hierarchical structure and logic of the text, as well as the hierarchical
relationships of the labels. They claimed that their approach had certain limitations in cap-
turing complex semantics. Lee-Thorp et al. [30] employed basic linear transformations to
intermix input tokens and replaced the self-attention mechanism with a Fourier transform
to optimize the transformer encoder, which could achieve a par accuracy with BERT at
a faster training speed. Due to its Fourier transform, it possibly costs a large amount of
time for inferencing and cannot better capture the long-term dependencies compared to
the self-attention mechanism.

Büyük et al. [31] utilized transfer learning to fine-tune a pre-trained transformer model
for intention recognition, which preliminarily demonstrated the powerful capabilities of the
BERT model [14] in the field of intention recognition. Liu et al. [32] proposed the RoBERTa
model for text classification, which only trained the BERT model longer with bigger batches
to improve the BERT’s performance. This simple training strategy does not essentially
improve the classification ability of the model. Jiang et al. [33] cascaded a BERT-BiLSTM-
TextCNN network for sentiment analysis of netizens’ comments, which only transferred
the semantics information from shallow to deep without any interactions between shallow
and deep. The method by Cai et al. [34] designed a hybrid BERT model for multi-label text
classification, which used an attention mechanism to establish the semantic relationship
between labels and words. As they claimed, their method would evidently degrade in the
case of the imbalanced data with many classes. Similar to [34], Xiong et al. [35] encoded the
text of category labels along with documents into the BERT model, which could confuse
the correspondence between the label and the text. Benayas et al. [36] fine-tuned the
popular pre-trained BERT variant to extract text semantic features for the subsequent
joint recognition of intentions and named entities. Although they interacted with the text
semantic features for the two tasks, this task-specific interaction possibly influences each
other. Shi et al. [37] proposed a protocol regularization training mode for a pre-trained BERT
model on high-resource languages to detect offensive language in low-resource languages.
Since offensive languages exhibit more distinct features compared to daily languages with
colloquial expressions, their method may face some biases when dealing with the colloquial
texts. Xu et al. [38] incorporated the auxiliary knowledge extracted by a pre-trained large-
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scale language model into the pre-trained BERT for quadruple identification and extraction
tasks in the sentiment analysis domain for the tourism sector.

Although these transformer-based methods have performed well on some popular
text datasets by fine-tuning pre-trained language models [39,40], the pre-trained models
established on general-purpose corpus data tend to have some bias in the characterization
learning task in real application scenarios, such as in financial customer service.

Table 2 summarizes some studies on CNN-based and Transformer-based NLP methods.
As indicated in Table 2, due to confidentiality issues, it is difficult to acquire a large amount
of corpus data in financial customer service scenarios. Additionally, the corpus data
for certain intentions may be very scarce, and CNN-based methods [25–27] cannot be
adequately trained, which leads to unsatisfactory performance. In contrast, Transformer-
based methods can better handle the issue of limited corpus data by fine-tuning pre-trained
language models. However, pre-trained models established on general-purpose corpus
data are insufficient to address the domain-specific semantics and contexts, which limits
the performance improvements of the models.

Table 2. Some studies on CNN-based and Transformer-based methods for NLP.

Years Authors Methods Advantages Limitations

2015 Lai et al. [26] TextCNN

The combination of the
recursive structure and
CNN can enhance the
ability to understand

the text.

Weak in capturing the
long-term dependencies in

the context.

2016 Liu et al. [25] RNN Shares information
between different tasks.

Sufficient corpus data are
needed for training.

2017 Johnson et al. [27] DPCNN

Low computational
complexity, and efficiently

represents long-term
associations in the text.

Cannot well capture the
context information in
complex expressions.

2019 Liu et al. [32] RoBERTa Enhances the model’s
expressiveness.

Simple training strategy does
not essentially improve the

classification ability.

2020 Cai et al. [34] Hybrid BERT
Establishes the semantic

relationship between
labels and words.

Evidently degrades in the case
of the imbalanced data with

many classes.

2021 Xiong et al. [35] Combines label with
BERT

Establish the semantic
relationship between

labels and words.

Confuses the correspondence
between the label and the text.

2021 Lee-Thorp et al. [30] FNet

Replace the self-attention
mechanism with Fourier

transform to improve
training efficiency.

Cannot better capture the
long-term dependencies.

2021 Benayas et al. [36]
Fine-tunes the

popular pre-trained
BERT variant

Enhance the interaction
between intention

and entity.

Task-specific interactions
possibly influence each other.

2022 Shi et al. [37]

Combines protocol
regularization
training mode

with BERT

Strong cross-lingual
adaptability.

Weak generalization for
colloquial texts.
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2.4. Current Development of NLP Methods in the Finance Domain

The development of NLP technology has made it possible to more accurately capture
the sentiment and semantics in corpus data, which has been employed in the financial
domain. NLP studies in the finance domain can mainly be categorized into traditional
corpus-based [41,42] and deep learning-based [43,44] studies, as summarized in Table 3.

Table 3. Some NLP studies in the finance domain.

Years Authors Methods Advantages Limitations

2019 Araci et al. [43] Pre-trained BERT Works well in extracting
explicit sentiments.

Does not work well with
model-implicit information.

2020 Garcia-Mendez et al. [41] Corpus-based

The Jaccard
distance-based short-text

similarity detector
reduces training

redundancy.

The constructed lexicon and
corpus features are designed
based on specific rules, and

may not be able to cope with
complex and rapidly

changing environments.

2022 Huang et al. [44] Pre-trained BERT
Works exceptionally well
in identifying positive or

negative sentiment.

Does not work well with
model-implicit information.

2023 Garcia et al. [42] Corpus-based Highlights the more
influential words.

The constructed lexicon and
corpus features are designed
based on specific rules, and

may not be able to cope with
complex and rapidly

changing environments.

Garcia et al. [42] proposed a robust multinomial inverse regression model to con-
struct a lexicon for earning calls between the firm’s management and analysts/investors,
which could characterize the stock market reaction to the event. Garcia-Mendez et al. [41]
proposed a corpus machine learning method combining meta-information and linguistic
knowledge for the classifying of short texts in bank transaction descriptions. For text classi-
fication via the SVM, the corpus data were preprocessed for linguistic knowledge extraction
and selection, successively involving data retrieval, text tokenization and stopwords re-
moval, proper name detection, and sample reduction with Jaccard similarity. The above
corpus-based methods highly rely on the quality of the constructed lexicon and corpus
features via elaborately selected/designed approaches, which are inflexible in complex and
mutable financial environments.

Araci et al. [43] fine-tuned the pre-trained BERT model for financial sentiment analysis.
As they claimed, their method could not well model implicit information. Compared
to [43], Huang et al. [44] utilized much more financial texts to fine-tune the pre-trained
BERT model for sentiment classification, involving three types of financial texts from two
websites and a firm’s investment database. Since they also directly utilized the pre-trained
BERT, their method has a similar problem to the method in [43].

3. Methodologies
In this section, we will provide a detailed introduction of our proposed hybrid frame-

work for intention recognition. Specifically, Section 3.1 briefly provides the architecture of
the hybrid framework. Section 3.2 introduces semi-supervised learning data augmentation.
The design of label semantics inference is presented in Section 3.3. The design of the text
classification network is introduced in detail in Section 3.4.
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3.1. Architecture of the Proposed Hybrid Framework

As illustrated in Figure 1, the proposed hybrid framework for intention recognition
involves semi-supervised learning data augmentation, semantic inference, and text clas-
sification. At the stage of data augmentation, the corpus samples in the training set are
augmented with the semi-supervised learning fashion by back-translation and a BERT
model. At the stage of semantic inference, label semantics of the corpus samples in the train-
ing set are extracted by means of a K-means method. At the stage of text classification, label
semantics and the augmented corpus data are incorporated into a two-branch-structure
network based on a modified BERT to recognize the financial customers’ intentions. The
proposed hybrid framework that is well trained by the above stages is evaluated by the
test set.
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3.2. Semi-Supervised Learning Data Augmentation

Due to confidentiality in financial customer service, the acquired corpus data are
often insufficient to train an effective text classification network for intention recognition.
Semi-supervised learning data augmentation is an alternative to address this issue [45], in
which pseudo-labels for unlabeled data generated by a well-trained classifier are utilized
to mix pseudo-labeled data with the original data to enrich the original dataset. Inspired
by this, a semi-supervised learning method is utilized in this paper to augment the corpus
data, involving back-translation and a pre-trained BERT. As illustrated in Figure 1, back-
translation is utilized to generate a large amount of low-quality corpus data from the
original corpus data. Also, the original corpus data are utilized to fine-tune a pre-trained
BERT model. Then, the fine-tuned BERT model is used to clean up the back-translated
corpus data. The cleaned corpus data are combined with the original corpus to construct a
high-quality corpus dataset.

In this paper, the corpus data of financial customer service are acquired from a financial
enterprise in China. Since Japanese and Korean have similar syntaxes with Chinese and
even involve a number of Chinese characters, they are utilized as the intermediaries for
back-translation. Also, English is used as the intermediary for back-translation, since a
number of English characters and digits exist in the corpus data.
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Assume that the training set D for the acquired corpus data can be defined as the
following:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} (1)

where xi(i = 1, 2, . . . , n), and yi denote the i-th corpus sample and the corresponding
ground-truth category label, respectively. n denotes the number of corpus samples for train-
ing. Then, the low-quality augmented corpus dataset can be acquired by back-translation,
defined as follows:

Da =
{(

x′11, y1
)
,
(
x′12, y1

)
, . . . ,

(
x′1m, y1

)
,
(
x′21, y2

)
, (x′22, y2), . . . ,

(x′2m, y2), . . . ,
(
x′n1, yn

)
, (x′n2, yn), . . . , (x′nm, yn)

} (2)

where x′ij(j = 1, 2, . . . , m) denotes the new corpus data generated by xi. m denotes the
number of augmented samples for each xi.

Since some newly generated corpus data cannot fully reflect the original semantics
of the corpus sample due to the influence of linguistic paraphrase diversity [46], the low-
quality augmented corpus data possibly influence the generalization ability of the text
classification model trained by these data. To obtain high-quality corpus data, a pre-trained
BERT model [14] is fine-tuned by the original acquired corpus data to clean up the low-
quality augmented corpus data. To do so, the pre-trained BERT model is fine-tuned on the
training set D to predict category labels for the back-translated corpus dataset Da, achieving
a new dataset D∗

a with predicted category labels that are obtained as follows:

D∗
a =

{(
x′11, y′11

)
,
(

x′12, y′12
)
, . . . ,

(
x′1m, y′1m

)
,
(
x′21, y′21

)
, (x′22, y′22), . . . ,

(x′2m, y′2m), . . . ,
(

x′n1, y′n1
)
, (x′n2, y′n2), . . . , (x′nm, y′nm)

} (3)

where y′ij denotes the predicted label of the back-translated corpus sample x′ij, predicted
by the fine-tuned BERT model. Then, the corpus data that their predicted category labels
y′ij that are consistent with the ground-truth ones yi are manually guaranteed to involve
corresponding correct semantics. These guaranteed corpus data are combined with the
original acquired corpus data to construct the high-quality corpus dataset.

3.3. Label Semantic Inference

In financial service scenarios, many corpus texts usually consist of 3 to 13 words to
express the customers’ intentions, which possibly involve highly similar expressions with
different semantics (i.e., different semantic labels). Such short corpus texts will influence
text classification, if they are directly utilized for classification. Thus, we aim to integrate
semantic label-related knowledge into the feature information of the corpus texts. Here,
we assume that it is sufficient for this integration of semantic label-related knowledge
to identify an approximately central text of the label semantics. Due to its advantages
of having a small number of parameters, a fast convergence, and effective clustering, K-
means clustering is utilized for this identification of the approximately central text for each
semantic category in the short-text corpus data. Our purpose is to find a representative
corpus text in a category of corpus texts with similar semantics to characterize this category,
rather than to simultaneously cluster all the corpus texts. Thus, for simplicity, the value of
k for K-means is set to 1 for each semantic label category. Figure 2 illustrates the process of
label semantic inference.

Firstly, the corpus samples are divided into words using jieba (0.42.1). Then, the vector
space model (VSM) [47] is constructed according to term frequency–inverse document
frequency (TF-IDF) [48] defined as the following:

W = TF ∗ IDF (4)
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where TF and IDF denote term frequency and inverse document frequency, respectively. ∗
denotes the product of the element. To achieve the center of the category, the K-means is
utilized to cluster the corpus samples. To find the approximately central text that represents
the label semantics, K-means is utilized to cluster the corpus data, formulated as follows:

V =
A−1

∑
v=0

∑
Su∈Cv

(Su − Z)2 (5)

where A denotes the number of classes in the corpus dataset (here A = 49). Su denotes
all the corpus samples in the category, and Cv, and Z denotes the category center of Cv,
V denotes the sum of distances between all corpus samples Su in the Cv category and
the category center of Cv. Semantic inference for the label of each corpus sample can be
transformed into the problem of optimizing the minimal semantic difference L between the
corpus sample S and the category center Z, defined as follows:

L = min(dist(S, Z)) (6)

where dist(S, Z) denotes the Euclidean distance of the corpus sample S and the label center
Z. The corpus sample with the minimal semantic difference L is set as the label semantics
of the category to which it belongs.
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3.4. Text Classification Network

As mentioned in Section 3.1, the integration of the label semantics is beneficial for text
classification. So, we designed a dual-branch network architecture for text classification,
in which label semantics and corpus data are processed by a label semantics information
branch and a corpus information branch, respectively, and are integrated by the designed
shallow and deep Fusion (SDF) module. As illustrated in Figure 3, the designed text
classification network is composed of two BERT encoders for shallow feature extraction,
a cascading combination of the BiLSTM [49] and the efficient multi-head self-attention
(EMSA) [50] for deep feature extraction, an an SDF module for shallow and deep feature
fusion and an StD mechanism for the alleviation of feature collapse.

Specifically, since the bidirectional Transformer encoder of the BERT model can ef-
fectively capture contextual dependencies and has a good generalization ability for NLP
tasks, two pre-trained BERT models [14], each of which is composed of 12 BERT layers,
is utilized in the shallow layers of the network to separately extract the features from the
label semantics and the corpus data. With the feature transferring layer by layer, feature
collapse easily occurs in the Transformer architecture, which can be addressed by residual
connections [51]. Moreover, we attempted to integrate the label semantics as label prior
knowledge into the corpus data to improve the classification ability. So, an StD mechanism
is proposed to alleviate the feature collapse in the corpus information branch rather than
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in the label semantics information branch. To effectively extract the sequence information
embedded in the label semantics and to reduce network parameters, the Bi-LSTM and the
EMSA are cascaded in the deep layer of the label semantics information branch to well
extract deep label semantic features. In the BERT model, lower layers mainly learn the
basic features of the text, such as word spelling patterns and basic grammatical structures;
middle layers can capture further syntactic relations and phrase structures; while deeper
layers mainly extract deep semantic information and complex contextual dependencies [52].
Inspired by this idea, the SDF module is designed to merge the label semantics and corpus
data at the levels of word spelling patterns and basic grammatical features, syntactic fea-
tures, and semantic features. Moreover, in the SDF module, these fused features at the three
levels are concatenated to help the classification network well understand the semantics of
short texts.
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Assume the input of the i-th BERT layer in the corpus information branch is vi−1
t , its

corresponding output hi
t can be formulated as follows:

hi
t = BERTi

(
vi−1

t

)
(7)

where BERTi(·) denotes the operation of the i-th BERT layer. It is noted that v0
t is the

original corpus data. Then, the StD mechanism is proposed to perform the multi-scale
fusion of shallow corpus information and its corresponding deep information, involving
multiple skip connections, three convolutions with different kernels, and a combination
operation of a concatenation and fully connection (FC), as illustrated in Figure 4. Thus, the
deep features of the corpus data can be formulated as follows:

h′
dt = (1 − γ)× (hdt + ht) + γ × h6

t (8)

hdt = FC
(

concat
(

h12
t , conv1

(
h12

t

)
, conv2

(
h12

t

)
, conv3

(
h12

t

)))
(9)

where γ∈(0, 1] is a trainable parameter, which can help alleviate feature collapse and
increase feature diversity. concat(·) is a concatenating operation. The kernel sizes of the
three convolutions, i.e., conv1(·), conv2(·), and conv3(·), are set to (2, 768), (3, 768), and (4,
768), correspondingly.
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Assume the input of the i-th BERT layer in the label semantic information branch is
vi−1

l , its corresponding output hi
l can be formulated as follows:

hi
l = BERTi

(
vi−1

l

)
(10)

It is noted that v0
l is the inferenced label semantics. Next, the encoded label semantic

features h12
l via the BERT encoder successively pass through the LSTM and the EMSA,

formulated as the following:

hdl = EMSA
(

BiLSTM
(

h12
l

))
(11)

In (11), BiLSTM(·) denotes the operation of the BiLSTM whose hidden layer dimension
is set to 1024. EMSA(·) denotes the operation of the EMSA, in which the number of the
multi-head attention heads is set to 4 and the hidden layer dimension is set to 852.

To better characterize the corpus data, the extracted shallow and deep features are
fused as H, and formulated as follows:

H = concat
((

h1
t ∗ h1

l + h1
t

)
,
(

h6
t ∗ h6

t + h6
t

)
,
(
h′

dt ∗ hdl
))

(12)

where
(

h1
t ∗ h1

l

)
and

(
h6

t ∗ h6
t

)
are the integrated shallow features of the corpus data and

label semantics at the first and sixth BERT layers, respectively.
(
h′

dt ∗ hdl
)

denotes the
corresponding integrated deep features. Finally, the features H pass through the FC layer
to implement text classification.

4. Experimental Results and Discussions
4.1. Dataset and Training Details

The corpus data of financial customer service were provided by a financial company
in China, involving 2977 corpus texts about loan service. Figure 5 illustrates the data
distribution of the original corpus data, with the label indices range from 0 to 48. There is a
certain discrepancy in the data distribution across various categories, with the ratio of the
largest category size to the smallest one being approximately 3:1. Moreover, as shown in
Figure 6, the lengths of the original corpus data primarily range from 3 to 20 words. Also,
the corpus samples contain a mixture of Chinese and English, which can easily lead to
semantic confusions. To well train the text classification network, the semi-supervised data
augmentation method described in Section 3.2 is utilized to augment the original corpus
texts to 3904 ones, which is split into training/validation/test sets in a ratio of 2688:384:832.
Then, 2688 corpus texts are further preprocessed by several traditional augmentation
methods to construct the final training set in this study, involving random deletion (twice),
synonym replacement (twice), and back-translation (once). That is, 16,128 augmented
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corpus texts via semi-supervised data augmentation and traditional data augmentation
were utilized for training, while 384 and 832 ones via semi-supervised data augmentation
for validation and testing were utilized.
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All the experiments were conducted on a computer with an intel(R)Xeon(R)CPU Es-
2630 v3 @ 2.40GHz, a 64G RAM, NVIDIA GeForce RTX 2080 Ti. Python3 was utilized as the
programming language, and PyTorch as the deep learning framework due to its widespread
use in the field of deep learning. The pre-training model used in the experiments was the
bert-base-chinese model with the following parameters: the batch_size was set to 8, the
max_len was set to 30 for samples, the max_len was set to 400 for labels, the loss function
was the cross-entropy loss function, the optimizer was Adam, the learning rate was set to
2 × 10−5, every 10 epochs was multiplied by a 0.1 attenuation factor, and the epoch was set
to 30. Four commonly used metrics were utilized to perform a comprehensive evaluation of
the intention recognition, which accuracy (Acc), precision (Prec), Recall, and F1-score (F1).

4.2. Comparisons with Other Deep Learning Methods

To validate the proposed hybrid intention recognition framework, we utilized eight
deep learning-based text classification methods for comparisons, involving two CNN-based
models (TextRCNN [26] and DPCNN [27]) and six Transformer-based models (FNet [30],
BERT [14], Xiong et al. [35], FinBERT [44], BERT-DBRU [53], and CBLMA-B [54]). Specif-
ically, there are five models specifically designed for text classification, involving two
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CNN-based models, a Transformer-structure model (FNet), and two BERT-based models
(BERT [14] and Xiong et al. [35]). Two BERT-based models are specifically designed for
intention recognition, involving BERT-DBRU and CBLMA-B. FinBERT is a tailored fine-
tune BERT model for the financial domain, demonstrating strong capabilities in sentiment
classification for financial texts. During training, the two CNN-based models were directly
trained on our training set. FNet and FinBERT were fine-tuned on our training set us-
ing their pre-trained models. The other four BERT-based models were fine-tuned on our
training set, using the pre-trained Google BERT model [14]. For fair comparisons, all the
comparison models were trained according to the configurations described in their studies
and tested on our test set. The comparison results achieved by different methods are shown
in Table 4.

Table 4. Comparison results achieved by different deep learning-based methods.

Methods Acc (%) Prec (%) Recall (%) F1 (%) Inference
Time/s

TextRCNN (2015) [26] 79.59 80.33 81.15 80.02 0.62
DPCNN (2017) [27] 68.30 70.08 68.94 67.91 0.36

BERT (2019) [14] 85.52 87.89 86.15 86.30 0.86
Xiong et al. (2021) [35] 85.75 87.67 87.40 86.94 1.48

FNet (2021) [30] 87.50 88.34 88.49 88.08 12.65
FinBERT (2022) [44] 86.78 87.78 88.29 87.68 0.80

BERT-DBRU (2023) [53] 85.70 87.70 86.89 86.67 1.64
CBLMA-B (2024) [54] 87.50 88.68 88.63 88.19 4.65

Ours 89.06 90.27 90.40 90.07 11.87

The DPCNN [27] increases the perceptual field by multiple down-sampling operations
to obtain the long-term dependency of the text. However, the associations of phrases within
the text need to be supported by sufficient data, and customers with the same intention
category have different expressions in real scenarios. These two facts result in the fact that
the DPCNN cannot function well for new text expressions.

The TextRCNN [26] utilizes the RNN to capture the contextual information of the
text, which results in a much better intention recognition performance than the DPCNN.
However, the TextRCNN is also a one-hot encoder method, which limits its ability to extract
the associations of word-to-word. Moreover, the short length of the sentences in financial
service scenarios leads to limited contextual information in the text.

FNet [30] replaces the self-attention layer in traditional Transformer networks with
Fourier transform to capture feature information by transforming the features into the fre-
quency domain. So, it can achieve a much better intention recognition performance than the
two CNN-based models and several BERT models. However, its Fourier transform possibly
loses some long-term dependencies, which to some extent influences its recognition ability.

Due to BERT’s ability to effectively capture global contextual semantic representa-
tions, five existing BERT-based methods (BERT [14], Xiong et al. [35], FinBERT [44], BERT-
DBRU [53], and CBLMA-B [54]) perform significantly better than the two CNN-based
models. Xiong et al. [35] cascades the BERT structure and the bi-GRUs to promote the pre-
trained Google BERT model, while BERT-DBRU [53] concatenates texts and corresponding
text labels to input into the pre-trained Google BERT model. So, the two models more or
less perform a better intention recognition than the Google BERT [14]. Since FinBERT [44]
directly fine-tunes the Google BERT model on a large amount of financial text data, it can
achieve a fairly good performance for intention recognition on our dataset, with an accuracy
of 86.78%, a precision of 87.78%, a recall of 88.29%, and an F1 score of 87.68%. Compara-
tively, CBLMA-B [54] utilizes a relatively complex network structure for feature extraction,
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which is a dual-branch structure incorporating BERT, CNN, BiLSTM, and self-attention.
So, it achieves the second-best performance for intention recognition, with an accuracy of
87.50%, a precision of 88.68%, a recall of 88.63%, and an F1 score of 88.19%. However, its
simple concatenation of the dual-branch features cannot reveal the inherent relationship
between texts and corresponding text labels, which limits its intention recognition ability.

Our model performs best in the intention recognition task for financial customer
service, achieving an accuracy of 89.06%, a precision of 90.27%, a recall of 90.40%, and an F1
of 90.07%. This is primarily attributed to four aspects. Firstly, the label semantic inference
scheme provides effective label information for datasets lacking real label semantics and
serves as a constraint for subsequent text classification. Secondly, the text classification
network seamlessly integrates shallow and deep features of the corpus data and their
label semantics at different levels for intention recognition. Thirdly, the StD mechanism
enriches the semantic features in the deep network, alleviating the issue of feature collapse.
Additionally, the augmented dataset provides more trainable data, enabling the model to
learn more variations in the intention categories.

Tabel 4 illustrates the inference time for 832 corpus texts via various models. Two
CNN-based models have significant advantages in terms of inference speed due to their
simple structures and small numbers of parameters. The Fourier transforms in FNet are
time-consuming, which results in the most inference time of 12.65 s for FNet. Since the
three BERT-based models (i.e., Xiong et al. [35], FinBERT [44], and BERT-DBRU [53]) utilize
various simple schemes to improve the classification ability of the Google BERT model [14],
they cost nearly inference time, ranging from 0.8 s to 1.7 s. In comparison, the dual-branch
structure of CBLMA-B [54] makes it time-consuming, with an inference time of 4.65 s. Due
to feature interactions in the dual-branch structure, our model consumes more inference
time than CBLMA-B [54], with an inference time of 11.87 s.

4.3. Ablation Experiments

Here, we conducted ablation experiments to discuss the influences of the semi-
supervised data augmentation (SDA) and label semantic inference (LSI) on the hybrid
framework, and those of the network structures on the text classification network. Since
SDA and LSI generate the augmented corpus data and corresponding label semantics,
respectively, which serve as the inputs of the text classification network, they do not partici-
pate in the joint training of the text classification network. So, we conducted two ablation
experiments to separately discuss the influences of SDA and LSI, as well as those of the
text classification network structures, as shown in Tables 5 and 6, respectively.

Table 5. Framework ablation study.

Baseline SDA LSI Acc (%) Prec (%) Recall (%) F1 (%)
√

85.52 86.24 87.40 86.42√ √
86.66 87.82 88.00 87.59√ √
86.20 87.65 87.70 87.21√ √ √
89.06 90.27 90.40 90.07

Table 6. Module ablation study.

Baseline SDF StD Acc (%) Prec (%) Recall (%) F1 (%)
√

87.80 89.09 89.57 88.95√ √
88.94 89.37 90.08 89.48√ √
88.46 89.62 89.66 89.39√ √ √
89.06 90.27 90.40 90.07
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4.3.1. Framework Ablation Study

To validate SDA and LSI in our hybrid framework, we conducted an ablation experi-
ment to discuss the text classification network (baseline model) with/without SDA and/or
LSI. The hybrid framework only with SDA shows that the inputs of the baseline model are
the original corpus data and their corresponding label semantics. The hybrid framework
only with LSI shows that the inputs of the baseline model are the augmented corpus data.

As shown in Table 5, the hybrid framework with only LSI performs better than the
baseline model, indicating that the incorporation of label semantic knowledge into the
corpus data can effectively help the text classification network learn label-related semantic
information to alleviate the influence of ambiguous expressions. However, insufficient
corpus data make LSI not well find the approximately central text representing the label
semantics. Thus, the hybrid framework with only LSI is inferior to that with only SDA,
with an intention recognition performance of 87.21% vs. 87.59% F1, demonstrating the
significance of sufficient corpus data for intention recognition. When both SDA and LSI
are combined with the baseline model, the hybrid framework achieves the best intention
recognition performance.

4.3.2. Classification Module Ablation Study

To validate SDF and StD in our designed text classification network, we conducted
an ablation experiment to discuss the hybrid framework with/without SDF and/or StD.
Specifically, the baseline framework in this ablation study shows that the hybrid framework
involves SDA and LSI for augmented corpus data and the corresponding label semantics,
and the dual-branch baseline text classification model without SDF and StD.

Since StD can, to some extent, alleviate the feature collapse with the increase of the
network depth to enrich the representation of deep features, the hybrid framework with
only StD performs better than the baseline framework, with an intention recognition perfor-
mance of 89.39% vs. 88.95% F1. However, due to the lack of effective interactions between
label semantics and corpus semantics, the text classification network fails to effectively
integrate label semantics into the corpus information. Therefore, the text classification
network using only StD is less effective in intention recognition performance compared
to the one using only SDF, with F1s of 89.48% and 89.39%, respectively. This indicates the
importance of label semantic fusion for intention recognition. When the baseline framework
is combined with both SDF and StD, its corresponding intention recognition performance
reaches the best value.

4.4. Analysis

To further demonstrate the intention recognition ability of our proposed hybrid frame-
work, we have illustrated the confusion matrix of the predicted results for the test set
in Figure 7.

As indicated in Figure 7, most of the corpus texts are correctly recognized in their
intentions by our hybrid framework, with an 89.06% accuracy. However, due to compli-
cated financial text expressions, some intentions are misunderstood. For example, some
confusions occur between the corpus data with Label 24 and those with Labels 4, 5, 8, and
25. After we checked the related corpus data, we found out that exactly that some corpus
data have ambiguous short expressions which result in these confusions. For instance, the
text “No problem.” with Label 24 is semantically similar to the text “No problem. I will do
it.” with Label 4; the text “I will repay it.” with Label 24 vs. the text “I will repay it today.”
with Label 5; the text “It’s wrong in time.” with Label 24 vs. the text “No, it’s wrong.” with
Label 8; and the text “I will repay it.” with Label 24 vs. the text “I will repay it next month.”
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with Label 25. In the future, we will collect more financial corpus data to better learn the
subtle differences among various corpus texts.
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5. Conclusions
Due to the small number of samples, high colloquialism, and semantic ambiguity,

automatic intention recognition is a challenging task in finance customer service. In this
paper, a hybrid framework is designed for automatically recognizing financial customer
intentions, consisting of semi-supervised learning data augmentation for high-quality
corpus data acquisition, K-means-based label semantic inference for labels constraints
of intention recognition, and a specific-designed BERT-based text classification. Here, a
dual-branch BERT deep network is designed, which integrates corpus information and
label semantic information, and an StD mechanism for alleviating semantic feature collapse.
Compared to existing deep learning methods, the hybrid framework achieves better in
financial customer service intention recognition on a corpus dataset about loan service
provided by a financial company in China, with an accuracy of 89.06%, a precision of
90.27%, a recall of 90.40%, and an F1 score of 90.07%. The facts demonstrate the potential
of the hybrid framework to automatic intention recognition in financial customer service,
enabling the automatic identification of customer intentions to further provide timely
and accurate services. Moreover, our method can reduce the manual intervention to save
labor costs.

Despite the excellent performance of the framework in intention recognition, more
than 10% of the samples in the test set were not correctly recognized. This may be due
to the limited number of training samples and the framework’s inability to effectively
extract emotional contextual semantics from these samples. In the future, we can further
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fine-tune the model by collecting a large amount of corpus data related to NLP tasks in the
financial domain to better learn the subtle differences between various corpus texts, which
can enhance the model’s ability to recognize colloquial texts in the financial domain, and
provide stronger support for intelligent financial customer service.
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Acc accuracy
BERT bidirectional encoder representation from transformers
CNNs convolutional neural networks
DPCNN depth pyramid convolution neural network
EDA easy data augmentation
EMSA efficient multi-head self-attention
FC fully connection
F1 F1-score
GloVe global vectors for word representation
IoT Internet of Things
LSI label semantic inference
MLP multi-layer perceptron
NLP natural language processing
NER named entity recognition
OADA order-agnostic data augmentation
PET Pattern-Exploiting Training
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VSM vector space model



Electronics 2025, 14, 495 19 of 20

References
1. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies,

security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]
2. Ponce, V.; Abdulrazak, B. Intention as a context: An activity intention model for adaptable development of applications in the

internet of things. IEEE Access 2021, 9, 151167–151185. [CrossRef]
3. Kyj, L.S.; Kyj, M.J. Customer service: Product differentiation in international markets. Int. J. Phys. Distrib. Mater. Manag. 1989, 19,

30–38. [CrossRef]
4. Wei, J.; Zou, K. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. arXiv 2019,

arXiv:1901.11196.
5. Sennrich, R.; Haddow, B.; Birch, A. Improving neural machine translation models with monolingual data. arXiv 2015,

arXiv:1511.06709.
6. Schick, T.; Schütze, H. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings

of the European Chapter of the Association for Computational Linguistics, Online, 5–10 July 2020.
7. Wang, H.; Cheng, L.; Zhang, W.; Soh, D.W.; Bing, L. Order-Agnostic Data Augmentation for Few-Shot Named Entity Recognition. In

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 11–16 August 2024.
8. Cui, L.; Huang, S.; Wei, F.; Tan, C.; Duan, C.; Zhou, M. Superagent: A customer service chatbot for e-commerce websites. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017.
9. Rabino, S.; Onufrey, S.R.; Moskowitz, H. Examining the future of retail banking: Predicting the essentials of advocacy in customer

experience. J. Direct, Data Digit. Mark. Pract. 2009, 10, 307–328. [CrossRef]
10. Zou, Y.; Liu, H.; Gui, T.; Wang, J.; Zhang, Q.; Tang, M.; Li, H.; Wang, D. Divide and conquer: Text semantic matching with

disentangled keywords and intents. arXiv 2022, arXiv:2203.02898.
11. Chen, F.; Li, M.; Wu, H.; Xie, L. Web service discovery among large service pools utilising semantic similarity and clustering.

Enterp. Inf. Syst. 2017, 11, 452–469. [CrossRef]
12. Yang, Z.; Wang, L.; Wang, Y. Multi-intent text classification using dual channel convolutional neural network. In Proceedings of

the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, 6–8 June 2019;
pp. 397–402.

13. Goyal, P.; Pandey, S.; Jain, K. Deep Learning for Natural Language Processing; Springer: Cham, Switzerland, 2019.
14. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA,
2–7 June 2019.

15. Devi, S.A.; Ram, M.S.; Dileep, P.; Pappu, S.R.; Rao, T.S.M.; Malyadri, M. Positional-attention based bidirectional deep stacked
AutoEncoder for aspect based sentimental analysis. Big Data Res. 2025, 39, 100505. [CrossRef]

16. Shah, P.; Patel, H.; Swaminarayan, P. Multitask Sentiment Analysis and Topic Classification Using BERT. ICST Trans. Scalable Inf.
Syst. 2024, 11, 1–12. [CrossRef]

17. Cheng, Q.; Shi, W. Hierarchical multi-label text classification of tourism resources using a label-aware dual graph attention
network. Inf. Process. Manag. 2025, 62, 103952. [CrossRef]

18. Anno, S.; Kimura, Y.; Sugita, S. Using transformer-based models and social media posts for heat stroke detection. Sci. Rep. 2025,
15, 742. [CrossRef] [PubMed]

19. Petrillo, L.; Martinelli, F.; Santone, A.; Mercaldo, F. Explainable Security Requirements Classification Through Transformer
Models. Futur. Internet 2025, 17, 15. [CrossRef]

20. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
2020, 53, 63. [CrossRef]

21. Zhou, J.; Zheng, Y.; Tang, J.; Jian, L.; Yang, Z. FlipDA: Effective and Robust Data Augmentation for Few-Shot Learning. arXiv
2021, arXiv:2108.06332.

22. Guo, S.; Wang, Q. Application of knowledge distillation based on transfer learning of ernie model in intelligent dialogue intention
recognition. Sensors 2022, 22, 1270. [CrossRef]

23. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A survey on text classification: From traditional to deep learning.
ACM Trans. Intell. Syst. Technol. 2020, 13, 31. [CrossRef]

24. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep learning-based text classification. ACM
Comput. Surv. 2020, 54, 40. [CrossRef]

25. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv 2016, arXiv:1605.05101.
26. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [CrossRef]
27. Johnson, R.; Zhang, T. Deep pyramid convolutional neural networks for text categorization. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics 2017, Vancouver, BC, Canada, 30 July–4 August 2017.

https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/ACCESS.2021.3126000
https://doi.org/10.1108/EUM0000000000305
https://doi.org/10.1057/dddmp.2009.12
https://doi.org/10.1080/17517575.2015.1081987
https://doi.org/10.1016/j.bdr.2024.100505
https://doi.org/10.4108/eetsis.5287
https://doi.org/10.1016/j.ipm.2024.103952
https://doi.org/10.1038/s41598-024-84992-y
https://www.ncbi.nlm.nih.gov/pubmed/39753702
https://doi.org/10.3390/fi17010015
https://doi.org/10.1145/3386252
https://doi.org/10.3390/s22031270
https://doi.org/10.1145/3495162
https://doi.org/10.1145/3439726
https://doi.org/10.1609/aaai.v29i1.9513


Electronics 2025, 14, 495 20 of 20

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

29. Gong, J.; Ma, H.; Teng, Z.; Teng, Q.; Zhang, H.; Du, L.; Chen, S.; Alam Bhuiyan, Z.; Li, J.; Liu, M. Hierarchical graph transformer-
based deep learning model for large-scale multi-label text classification. IEEE Access 2020, 8, 30885–30896. [CrossRef]

30. Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. Fnet: Mixing tokens with fourier transforms. arXiv 2021, arXiv:2105.03824.
31. Buyuk, O.; Erden, M.; Arslan, L.M. Leveraging the information in in-domain datasets for transformer-based intent detection. In

Proceedings of the 2021 Innovations in Intelligent Systems and Applications Conference (ASYU), Elazig, Turkey, 6–8 October
2021; pp. 1–4.

32. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. toRoBERTa: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

33. Jiang, X.; Song, C.; Xu, Y.; Li, Y.; Peng, Y. Research on sentiment classification for netizens based on the bert-bilstm-textcnn model.
PeerJ Comput. Sci. 2022, 8, e1005. [CrossRef] [PubMed]

34. Cai, L.; Song, Y.; Liu, T.; Zhang, K. A hybrid bert model that incorporates label semantics via adjustive attention for multi-label
text classification. IEEE Access 2020, 8, 152183–152192. [CrossRef]

35. Xiong, Y.; Feng, Y.; Wu, H.; Kamigaito, H.; Okumura, M. Fusing label embedding into bert: An efficient improvement for text
classification. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online,
1–6 August 2021.

36. Benayas, A.; Hashempour, R.; Rumble, D.; Jameel, S.; de Amorim, R.C. Unified Transformer Multi-Task Learning for Intent
Classification with Entity Recognition. IEEE Access 2021, 9, 147306–147314. [CrossRef]

37. Shi, X.; Liu, X.; Xu, C.; Huang, Y.; Chen, F.; Zhu, S. Cross-lingual offensive speech identification with transfer learning for
low-resource languages. Comput. Electr. Eng. 2022, 101, 108005. [CrossRef]

38. Xu, C.; Wang, M.; Ren, Y.; Zhu, S. Enhancing Aspect-based Sentiment Analysis in Tourism Using Large Language Models and
Positional Information. arXiv 2024, arXiv:2409.14997.

39. Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Chen, X.; Zhang, H.; Tian, X.; Zhu, D.; Tian, H.; Wu, H. Ernie: Enhanced representation through
knowledge integration. arXiv 2019, arXiv:1904.09223.

40. González-Carvajal, S.; Garrido-Merchán, E. Comparing bert against traditional machine learning text classification. arXiv 2020,
arXiv:2005.13012.

41. Garcia-Mendez, S.; Fernandez-Gavilanes, M.; Juncal-Martinez, J.; Gonzalez-Castano, F.J.; Seara, O.B. Identifying Banking
Transaction Descriptions via Support Vector Machine Short-Text Classification Based on a Specialized Labelled Corpus. IEEE
Access 2020, 8, 61642–61655. [CrossRef]

42. García, D.; Hu, X.; Rohrer, M. The colour of finance words. J. Financ. Econ. 2023, 147, 525–549. [CrossRef]
43. Araci, D. FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. arXiv 2019, arXiv:1908.10063.
44. Huang, A.H.; Wang, H.; Yang, Y. FinBERT: A Large Language Model for Extracting Information from Financial Text *. Contemp.

Account. Res. 2022, 40, 806–841. [CrossRef]
45. Shim, H.; Luca, S.; Lowet, D.; Vanrumste, B. Data augmentation and semi-supervised learning for deep neural networks-

based text classifier. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic,
30 March–3 April 2020.

46. Xie, Q.; Dai, Z.; Hovy, E.H.; Luong, M.-T.; Le, Q.V. Unsupervised data augmentation for consistency training. arXiv 2019, arXiv:1904.12848.
47. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
48. Wang, X.; Yang, L.; Wang, D.; Zhen, L. Improved TF-IDF Keyword Extraction Algorithm. Comput. Sci. Appl. 2013, 3, 64–68.
49. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
50. Zhang, Q.; Yang, Y. ResT: An Efficient Transformer for Visual Recognition. arXiv 2021, arXiv:2105.13677.
51. Diko, A.; Avola, D.; Cascio, M.; Cinque, L. ReViT: Enhancing vision transformers feature diversity with attention residual

connections. Pattern Recognit. 2024, 156, 110853. [CrossRef]
52. Jawahar, G.; Sagot, B.; Seddah, D. What does bert learn about the structure of language? In Proceedings of the Annual Meeting of

the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019.
53. Ma, X.; Chen, Y.; Liu, X.; Kuang, H. A Chinese short-text oriented intent classification network based on BERT and Bi-GRU.

In Proceedings of the 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence
(ICIBA), Chongqing, China, 26–28 May 2023; pp. 1692–1696.

54. Wu, T.; Wang, M.; Xi, Y.; Zhao, Z. Intent recognition model based on sequential information and sentence features. Neurocomputing
2024, 566, 127054. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2972751
https://doi.org/10.7717/peerj-cs.1005
https://www.ncbi.nlm.nih.gov/pubmed/35721405
https://doi.org/10.1109/ACCESS.2020.3017382
https://doi.org/10.1109/ACCESS.2021.3124268
https://doi.org/10.1016/j.compeleceng.2022.108005
https://doi.org/10.1109/ACCESS.2020.2983584
https://doi.org/10.1016/j.jfineco.2022.11.006
https://doi.org/10.1111/1911-3846.12832
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.patcog.2024.110853
https://doi.org/10.1016/j.neucom.2023.127054

	Introduction 
	Related Work 
	Data Augmentation for NLP 
	Convolutional Neural Network Based Methods for NLP 
	Transformer Based Methods for NLP 
	Current Development of NLP Methods in the Finance Domain 

	Methodologies 
	Architecture of the Proposed Hybrid Framework 
	Semi-Supervised Learning Data Augmentation 
	Label Semantic Inference 
	Text Classification Network 

	Experimental Results and Discussions 
	Dataset and Training Details 
	Comparisons with Other Deep Learning Methods 
	Ablation Experiments 
	Framework Ablation Study 
	Classification Module Ablation Study 

	Analysis 

	Conclusions 
	References

