
Academic Editor: Spyridon Nikolaidis

Received: 14 December 2024

Revised: 18 January 2025

Accepted: 25 January 2025

Published: 30 January 2025

Citation: Ciopiński, L. Methodology

of an Energy-Efficient Embedded

Self-Adaptive Software Design for

Multi-Cores and Frequency-Scaling

Processors Used in Real-Time Systems.

Electronics 2025, 14, 556. https://

doi.org/10.3390/electronics

14030556

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Methodology of an Energy Efficient-Embedded Self-Adaptive
Software Design for Multi-Cores and Frequency-Scaling
Processors Used in Real-Time Systems
Leszek Ciopiński

Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology,
Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland; l.ciopinski@tu.kielce.pl

Abstract: In a kind of system, where strong time constraints exist, very often, worst-case
design is applied. It could drive to the suboptimal usage of resources. In previous work, the
mechanism of self-adaptive software that is able to reduce this was presented. This paper
introduces a novel extension of the method for self-adaptive software synthesis applicable
for real-time multicore embedded systems with dynamic voltage and frequency scaling
(DVFS). It is based on a multi-criteria approach to task scheduling, optimizing both energy
consumption and proof against time delays. The method can be applied to a wide range
of embedded systems, such as multimedia systems or Industrial Internet of Things (IIoT).
The main aim of this research is to find the method of automatic construction of the task
scheduler that is able to minimize energy consumption during the varying execution times
of each task.

Keywords: self-adaptivity; energy efficiency; real-time system; energy demand management;
developmental genetic programing; multicore system; DVFS

1. Introduction
With the development of technology, more and more devices have been equipped

with smart features. Many of them are implemented as embedded systems. An embed-
ded system is a computer-based component designed to solve a complicated and defined
problem. It could be a subsystem for the automatic control of a larger construction. As an
example, it could be an ESP in a car. This kind of system should meet specific performance
requirements, such as optimizing efficiency with respect to cost and minimizing energy
consumption, among, occasionally, other criteria. In [1], hardware–software co-synthesis
was proposed as the classic design pattern for strongly optimized embedded systems. Since
heterogeneous CPUs are available, like SoC FPGAs, NXP Vybrid, TI Concerto, and ARM
DynamIQ big.LITTLE, they allow to achieve both high speed and energy efficiency. How-
ever, preparing software capable of using all the new features of such platforms requires a
new approach.

Nowadays, when designing a multicore system, very often, prepared components
like intellectual property cores are used; thus, the cost of the designed system is almost
constant across the same class of systems. For this reason, optimization is concerned
with enhancing performance and reducing energy consumption. Especially for a battery-
powered system, the minimization of energy usage is very crucial. This allows these devices
to work longer, reducing the cost of working and lowering the cooling requirements of the
system. Therefore, balancing between the demand for performance and the possibility of
low-power consumption is important in real-time embedded systems. To achieve this goal,

Electronics 2025, 14, 556 https://doi.org/10.3390/electronics14030556

https://doi.org/10.3390/electronics14030556
https://doi.org/10.3390/electronics14030556
https://doi.org/10.3390/electronics14030556
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6769-2780
https://doi.org/10.3390/electronics14030556
https://www.mdpi.com/article/10.3390/electronics14030556?type=check_update&version=1

Electronics 2025, 14, 556 2 of 20

during runtime, advanced power management technologies, such as digital voltage and
frequency scaling (DVFS) or ARM DynamIQ [2], could be used.

To avoid exceeding a deadline in real-time embedded systems, a very popular strategy
is designing it and its software for the worst case. It makes predicting energy consumption
much easier, but the worst cases may hardly ever happen. Thus, this approach is too
pessimistic and system resources can not be used efficiency. It is based on assigning
more tasks to high-performance cores instead of energy-efficient ones to ensure that time
constraints will not be violated. During a runtime, depending on input data, I/O waitings,
or interruptions, the execution time of each task could be shorter than estimated. If a
system is not designed for re-scheduling, the gain from the shorter execution time will be
lost. To increase system efficiency for those scenarios, self-adaptivity and self-optimization
could be applied.

Self-adaptivity is the ability of the system to change its behavior as an answer to
environmental changes [3]. The cost of a modern system could be increased by soft-
ware improvements, fault management, optimizing performance and power consumption,
and system maintenance. Most of these aspects are connected with run-time issues. Thus,
the self-adaptivity necessary to solve them is critical. In this paper, a methodology of
automated generation software, the execution of which meets time constraints and remains
energy efficient, is considered.

This paper expands previous work [4] by incorporating the usage of dynamic voltage
and frequency scaling (DVFS) for self-adaptive software synthesis used in real-time mul-
ticore embedded systems. The software should be given as an acyclic task graph, where
each node corresponds to the software tasks, and the edges between them to the sequence
constraints. As a result of the synthesis, a scheduler is obtained. Its main property is its
ability to dynamically reorder the execution and core assignment of tasks to minimize
energy consumption and avoid violating time restrictions. In this case, it is achieved by
ARM big.LITTLE (low-power and high-performance cores) and DVFS technologies. As a
tool to synthesize the software, developmental genetic programming (DGP) was used
because this method is able to reschedule the task reorder in response to a longer or shorter
time execution. Depending on it, tasks could be shifted to an energy-efficient core to
reduce energy consumption (self-optimization) if previous tasks were finished earlier or to
high-performance cores if the execution time deadline might be exceeded (self-adaptive).

This work builds upon previous research as presented in [4,5], by adding the usage of
DVFS. This demanded the implementation of significant improvements to the presented
method. It allows to achieve a more energy-efficient system with the same high quality of
service (QoS). Experimental results are also provided, demonstrating the advantages and
benefits of the proposed methodology.

The remainder of the article is organized as described. Related works are presented
in the next section. The concept of developmental genetic programming with respect to
synthesizing embedded software and supporting self-adaptivity is described in Section 3.
Next, Section 4 contains definitions of self-adaptivity and outlines the presented method.
In Section 5, an example and the experimental results are shown. The conclusions are
included at the end of the paper.

2. Related Works
Studies focusing on self-adaptiveness are connected with specific software features.

Self-adaptive systems can be divided into four categories: self-configuring, self-optimizing,
self-protecting, and self-healing [6]. The primary strategies emphasize various self-adaptive
methodologies, including internal and external control mechanisms [7], component-based

Electronics 2025, 14, 556 3 of 20

software engineering [8], model-driven approaches [9], nature-inspired techniques [10],
multi-agent systems [8,11], and feedback systems [12].

In the field of real-time embedded systems, self-adaptive strategies are primarily
focused on various elements of self-organization, such as self-configuration, self-adaptation,
self-optimization, self-healing, and self-protection [13]. Many task rescheduling techniques
have been suggested in the context of self-optimization by [14,15]. Rescheduling can occur
in a reactive or proactive manner.

If any changes in the execution time occur during the execution, reactive scheduling
comes into play by changing the order of task execution. The strategy discussed by
Calhoun [16] aims to decrease the number of these tasks that require updated start times
during re-scheduling. In contrast, the method in [17] focuses on minimizing the total
difference between the new and original finish times for all tasks. Similarly, ref. [18]
aims to reduce the sum of the deviations in both start and finish times. Meanwhile,
proactive scheduling [19] does not involve re-scheduling. Instead, it minimizes the impact
of disruptions by maximizing the available slack, whether it is the minimum or total slack,
during task execution.

Many scheduling methods aimed at real-time systems have prioritized efficient power
management [20]. To effectively exploit heterogeneous multi-core architectures, dedicated
scheduling methods have been formulated. In the Linux kernel, energy-aware scheduling
(EWS) is implemented. It is designed to optimize power consumption in heterogeneous
multi-core systems, including DynamIQ, and has been shown to be applicable to real-time
systems [21]. The adaptive minimum first fit (AMBFF) technique uses dynamic voltage
scaling (DVS) to save power [22]. In spite of the fact that the above-mentioned dynamic
scheduling methods offer some level of self-adaptability, none of them guarantee meeting
the real-time constraints required in hard real-time systems.

Each of the previously described algorithms treats self-adaptability as an unmeasur-
able attribute of a system. Due to the lack of self-adaptability metrics, comparing the
effectiveness of the current methods for designing self-optimizing systems is difficult.
Moreover, it is not possible to optimize a system considering self-adaptability if it cannot
be measured. In [5,23], an initial metric was introduced to define the self-adaptability
capabilities. This metric concerns the makespan slack, which represents the comparative
difference between the deadline duration and the schedule length. Nevertheless, it was
found that the precision of this metric is insufficient. Additionally, it fails to consider the
energy consumption self-optimization.

To solve the described problem, new metrics [4] were introduced. They allow compar-
ing each implementation of the system in terms of its self-adaptability and self-optimization
aspects. However, this study did not consider the use of DVFS, which is widely available
in embedded systems [24]. Balancing power consumption and system performance is also
very important in IoT applications, where multi-core platforms with DVFS capability are
also a consideration [25,26].

3. Developmental Genetic Programming
Developmental genetic programming (DGP) [27] is an extension of the genetic al-

gorithm (GA). It is improved using a development phase. In this way, DGP focuses on
developing and refining the method to construct an optimal solution, unlike GA, which
directly searches for an optimal solution. This difference is significant because it allows
DGP to identify the most efficient algorithm for constructing a solution, capable of adapt-
ing during run-time perturbations. On the other hand, GA has to be restarted after each
run-time perturbation. The first problem solved using this approach was the optimization

Electronics 2025, 14, 556 4 of 20

of analog circuits [28]. It has been demonstrated that DGP performs better than GA in
addressing complex constrained problems.

In contrast to GA, there is a difference between the search space (genotype) and the
solution space (phenotype) (Figure 1) used in DGP. The search space is unlimited, allowing
all individuals to evolve through reproduction, mutation, or crossover. Each genotype is
important because each is consistently transformed into the valid solution.

Genotype Phenotype

Genotype
to Phenotype

Mapping

Search space
(unconstrained)

Constraints Solution space
(constrained)

Figure 1. Developmental genetic programming.

During the experiments, remarkable self-adaptive features of DGP [29] were discov-
ered. The mapping function, which must consistently transform genotypes into correct
phenotypes, must be flexible enough to obey constraints. This property can be used
in self-adaptation.

The main change between the conventional method and the proposed technique is
illustrated in Figure 2. In the conventional method (Figure 2a), the system is optimized
based on specifications and constraints, resulting in a statically scheduled embedded
software, called phenotype. In the proposed technique (Figure 2b), the optimization is
performed in a similar way but also uses a self-adaptive metric for optimization instead
of pure energy efficiency (Section 4.3). As a consequence, an adaptive schedule, called
genotype, is generated. Scheduling is done at runtime. The mapping function (G2P), which
was used during an evolution, is now used to build a schedule based on the genotype of
the best individual. Because G2P and genotype are built in the system, if any perturbation
in time execution occurs, it is possible to reschedule without running the evolution again.

Task graph

(a)

Constraints

Synthesis
and

optimization

Statically
scheduled
embedded
software

Task graph

(b)

Constraints

DGP Synthesis
and

optimization

Adaptive
scheduler

Unscheduled
software

DGP

DGP

Figure 2. Design and optimization approaches: (a) conventional and (b) suggested. Software for an
embedded system is highlighted with a greyed background.

The main differences between GA and DGP are summarized in Table 1. To emphasize
them, a comparison with [30] will be described, where the classic genetic algorithm (GA)
was used. It is a suitable solution if a problem is not hard constrained and rescheduling
during runtime is not necessary. Opposite to GA, the goal of DGP optimization is a

Electronics 2025, 14, 556 5 of 20

procedure of solution creation, not the solution itself. To use GA in [30], there are two
groups of genes, Π and Ω, defined. The first decides on the assignment of a task to a
processing core. The second decides on the frequency of the core. Thus, it is a static
connection. If DGP was applied here, every gene would decide about a characteristic of
a core that should be chosen, e.g., “the fastest”, “the most energy efficient", or “the first
available”. The core type and frequency are taken into account to decide which one meets
the gene strategy. This feature makes DGP better to solve a problem where rescheduling
during a runtime is necessary.

Table 1. Comparison of genetic algorithm(GA) and developmental genetic programming (DGP).

Attribute GA DGP
Representation Genotype describes a solution. Genotype describes a

procedure of building
a solution.

Aim of
optimization

A solution directly. A procedure of building a
solution.

Search space Some individuals could be
eliminated, because they
violate a limitation.

Every genotype is mapped
into valid phenotype; thus, all
individuals are considered
during evolution.

Mapping function Not used Must be used.
Rescheduling Requires running the

evolution again.
Requires using mapping
function only.

The Genotype to Phenotype Mapping Function (G2P) presented in Figure 1 and used
in this paper is described as Algorithm 1. It uses strategies defined in genotypes, which
inform how to choose a resource, to build a schedule that is evaluated. Its quality defines a
quality of the genotype. If any perturbation in time execution occurs, it is enough to run
the mapping function again to obtain a new schedule.

Algorithm 1 A scheduler—Adaptive scheduling method. TG—task graph, TaskList—a list
of tasks ordered according to their deadlines

procedure STATICSCHEDULE(TG)
for each task Ti from TG do

Assign the strategy to the Ti
Calculate the deadline to execute Ti and add Ti to TList

end for
Reschedule(TList)

end procedure

procedure RESCHEDULE(TaskList)
for each task Ti from TaskList do

ResList = Order all resources according to the best fitting to the strategy of Ti
for each Rj from ResList do

end_time←max(Idle(Rj), Start(Ti)) + execution_time(Ti, Rj)
if end_time ≤ deadline(Ti) then

schedule(Ti, Rj)
break

end if
end for

end for
end procedure

Electronics 2025, 14, 556 6 of 20

4. Synthesis of Self-Adaptive Scheduler
When DGP is used to optimize task allocation in distributed systems, the genotype

represents the optimized scheduling strategy, and the phenotype denotes the final task-
implementation schedule. Typically, the phenotype is a description of the target system
that corresponds to a static scheduler. This approach incorporates both the phenotype and
genotype, utilizing a G2P mapping function within the system. Consequently, a system is
developed that features a self-adaptive scheduler.

4.1. System Specification

The behavior of a specialized distributed system is determined by the software running
on it. This program is a composition of functions, which could be executed concurrently as
separate tasks. The output of some of them can provide input to other tasks, establishing
relationships between them. Typically, a directed acyclic graph (DAG), known as a task
graph (TG), is used to illustrate the relationships between tasks. In this graph, nodes
represent tasks and edges between nodes indicate relationships between tasks. In the
context of a multicore system, communication time could be omitted, since the data are
presumed to be in shared memory. Figure 3 illustrates an example of a task graph.

T1

T2 T3

T4

T6

T5

Figure 3. Sample task graph

4.2. System Hardware

The target system architecture is assumed to be implemented using multi-core ARM
processors supporting DynamIQ and DVFS technologies for power management. This
configuration includes at least two processing element (PE) categories: energy-efficient PE
(e.g., Cortex-A55, Cortex-X2) and high-performance PE (e.g., Cortex-A77, Cortex-X3). Every
PE (resource) can run each task of the software. The estimated attributes of these resources,
such as the minimum, average, and maximum execution durations for each task, are cata-
loged in a resource library. Similar evaluations are made regarding the energy consumption
of each task. These estimates, encompassing both execution time and energy usage, can be
derived by obtaining actual measurements during task execution across various cores with
different inputs or through established code analysis techniques [31,32]. Table 2 presents a
sample dataset for ARM Cortex-A55/Cortex-A77, based on the TG depicted in Figure 3.
The values in the table correspond to the highest core speeds. The columns in Table 2 are
included below:

• Task—task identifier;
• t— estimated execution time;
• p—estimated power consumption;
• Min—shortest case;

Electronics 2025, 14, 556 7 of 20

• Avg—average case;
• Max—longest case.

Although this example is primarily for illustrative purposes and the values are selected
at random, the correlation patterns among these values are comparable (with slight random
variances) to those seen in actual benchmark analyses.

Table 2. Sample estimations for tasks.

Task A55 A77
min avg max min avg max
t p t p t p t p t p t p

T1 3 6 4 9 10 17 1 9 4 22 6 41
T2 4 7 8 14 13 24 3 14 7 30 10 37
T3 3 5 7 14 11 21 1 6 4 23 9 34
T4 2 4 5 11 10 18 2 8 5 27 7 31
T5 5 9 13 23 16 27 3 19 8 38 12 51
T6 4 6 7 11 9 16 5 12 7 21 9 29

4.3. Rating a Quality

The next key point of the proposed approach relies on determining the most efficient
schedule building rules that satisfy the conditions listed below:

• The sum of average execution times does not exceed the deadline;
• The frequency of the selected core is not changed during a task execution;
• During the scheduling, the core frequency can be freely selected for each task from the

available options;
• The level of an energy consumption is as low as possible;
• The level of self-adaptation is maximized.

The execution time and energy consumption of any solution can easily be determined.
However, evaluating self-adaptation requires an appropriate metric. Initially, the system is
optimized on the assumption that all tasks will run according to their average times. There
could be two cases during the run-time that require rescheduling:

1. The recently completed task exceeded its usual duration, which resulted in a violation
of the time constraints for the next task.

2. The most recently completed task was completed in a shorter time, which provides an
opportunity to save energy by reallocating some tasks to low-power cores or reducing
the frequency of occupied cores.

To compare both cases, two separate self-adaptivity metrics were defined: SRT and SEC.
For the first metric, it is assumed that the makespan of the task graph is fixed. Let

si represent a scenario that describes when, where, and how long each task is executed,
and let Vs represent the set of all scenarios; thus, Vs = {si}. The self-adaptivity of scenario
si is defined as follows:

sa(si) =

0 if T(si) > D

1 if T(si) ≤ D
(1)

where
T(si)—the length of the makespan in scenario si;
D—a deadline.
The self-adaptivity of the real-time scheduling (SRT) is defined by Equation (2).

SRT =
∑
|Vs |
k=1 sa(Sk)

|Vs|
(2)

Electronics 2025, 14, 556 8 of 20

The second metrics analyses cases are when the execution time of a task or a group of
tasks is shorter than expected. If this situation is described by scenario ri and a set of all
considered scenarios is Vr = {ri}, the saEC metric is defined as Equation (3).

sa(ri) =

0 if ec(ri)) > es

1− ec(ri)−emin
es−emin

if ec(ri) ≤ es

1 if es = emin

(3)

In this context, es is the energy used for the initial makespan, ec(ri) is the energy consumed
by the makespan in scenario ri, and emin denotes the minimum possible energy consumption
for the initial makespan (assuming that each task consumes the least amount of energy,
without care of time constrains). Thus, the self-adaptive energy consumption (SEC) for the
makespan is defined as follows:

SEC =
∑
|Vr |
k=1 sa(rk)

|Vr|
(4)

Given that the system is optimised for power efficiency, this parameter is defined as

PE =
emax − es

emax
(5)

where emax is the maximal energy consumption.
Finally, the quality of the given solution is defined as follows:

Q = α ∗ SRT + β ∗ SEC + (1− α− β) ∗ PE (6)

where
α and β are self-adaptivity coefficients, both ranging between 0.0 and 1.0;
sum α + β does not exceed 1.
Equation (6) is an example of a multi-objective linear optimization challenge, widely
recognized as the predominant technique to address the practical optimization problems of
multiple criteria [33].

4.4. Genotype and Phenotype

Each member of the population is described by its genotype, and its corresponding
phenotype represents the solution (example in Figure 4). The genotype has the shape of
a binary tree (example in Figure 4a) that contains a specific method of tasks allocation
and scheduling in the target system. Based on it, the final makespan (the phenotype)
is generated.

The internal nodes of the TG divide the system into subsystems, while the leaves
represent scheduling strategies. Each internal contains information about a cut position
(CutPos) that divides the list of tasks into two sublists. The left and right sublists are
assigned to the left and right children of the node. A randomly ordered list of all tasks is
assigned to the root node. CutPos is also randomly selected during the initial population
generation and can be modified if the associated gene is mutated. In Figure 4a, it is assumed
that gene G0 divides the system into two subsystems: one with tasks T1, T3, T4, and T6
and the other with tasks T2 and T5.

The strategies of assigning tasks to nodes and placing them in the schedule are as
follows:

• The highest performance core;
• The core that consumes the least energy during execution;

Electronics 2025, 14, 556 9 of 20

• The best ratio of time to energy consumption;
• The core that could start task execution first;
• Considering a start time, the core that finishes task execution first;
• The first available core from these ones that consumes the least energy during

execution;
• The fixed assignment defined by the second chromosome.

Gene 0
CutPos = 4

Gene 1
strategy=energyEfficient

Gene 2
strategy=fastest

(a)

1 3 4 6 2 5} }

T2A77

A55 T1 T3

T5

T4 T6

5 11 12 18 19 26

(b)

Figure 4. Example of a genotype (a) and, generated from it, a phenotype (b).

In Figure 4, how gene G0 divides a list of tasks into two parts is presented. The first
part is connected with gene G1, which favors allocating tasks T1, T3, T4, and T6 to the core
with minimal energy usage. The rest of the list is connected with gene G2 instructing a
scheduler to choose the core that is able to finish tasks T2 and T5 in the shortest time.

In some cases, strict applying strategies could violate time constraints. Thus, they are
used with flexibility. If allocating a core according to the preferred strategy is unsuccessful
(e.g., the time limit might be missed), the subsequent core or a core with different clock
frequency is attempted employing the same approach. This process continues until a viable
schedule is obtained or all cores and their frequency options are evaluated (i.e., none of the
solutions fulfill the time requirements). To illustrate it more precisely, if the strategy is to
use “the most energy efficient core” and the lowest energy-consuming core does not meet
the deadline, the scheduler will attempt to increase the clock frequency or use the next core,
which could consume more energy but comply with the time limits. In the experiments,
typically, the next most energy-efficient core was chosen in such situations, but occasionally,
a high-performance core was needed to meet time constraints. This selection process can
also occur during run-time when rescheduling is necessary.

The scheduling algorithm is detailed in Algorithm 1. The StaticSchedule() function is
executed once to create the system’s initial schedule. Initially, the genotype tree is traversed
to find the assignment strategy for each task. Next, for each task, deadlines are calculated.
In the next step, tasks are sorted, starting from the task with the shortest deadline. The task
with the longest deadline is put at the end of the list. Finally, static scheduling based
on the average execution time is conducted. It is similar to the list scheduling method
with static priorities. The Reschedule() function is used to formulate the initial schedule
and for subsequent rescheduling. When the execution of each task is finished, the actual
execution time is compared with the expected time. If there is a difference, whether the
task was completed faster or slower than in the initial schedule, a reschedule is performed
for all tasks that have not yet started. The following functions are defined: Idle(Rj) returns

Electronics 2025, 14, 556 10 of 20

the nearest time when the resource Rj will be available, Start(Ti) returns the earliest time
when the task Ti can be lauched, i.e., when all predecessor tasks have been completed,
and execution_time(Ti,Rj) calculates the mean time taken to execute the task Ti utilizing
resource Rj.

4.5. Evolution

DGP is an evoloutionary-based algorithm; thus, optimization is achieved by increas-
ing the quality of individuals in each generation. At the start, a random individuals
presenting solutions are generated. Successive generations of solutions are generated using
genetic operators such as crossover, mutation, and reproduction. In the presented method,
genotypes are trees; thus, during crossover in each tree, one branch is chosen randomly.
Then, subtrees connected to these branches are swapped. Mutation involves changing
the type (which aligns with the scheduling approach) of a node chosen at random within
the tree to a different type. Selection and reproduction are performed using a tournament
method [34]. More details about the genetic operators used in the described method can
be found in [35]. Evolution continues as long as the best solution improves in successive
populations. The quality metric Q (6) is used to evaluate fitness.

5. Experimental Results
This chapter starts with a quick introduction before providing the results of previous

work, starting from [5] to [4] and then presenting new research.

5.1. Overview of Previous Research

In this study, my methodology was validated using a practical example: a multimedia
system (MMS) [36]. Figure 5 shows the MMS task graph. A table presenting the runtime
and energy consumption for all tasks was published in [4]. The data reflect performance
at the core’s highest speed. These values were derived from measurements taken on
the Odroid-XU4 (https://wiki.odroid.com/odroid-xu4/odroid-xu4 [Access: 14 December
2024]) platform. Although this platform relies on the Samsung Exynos5422 CPU (4 × Cortex-
A15 + 4 × Cortex-A7 cores), it was chosen due to other developmental platforms being
unavailable. Energy consumption was recorded for each task on each core using the Odroid
SmartPower 1st generation (Monitoring: Voltage, Current, Watt, Watt-Hour (Sample rate:
10 Hz)). The data were then scaled to A55/A77 cores. Each task’s minimum, typical,
and maximum execution times are documented. These execution times were measured
by running the programs on each core with three different types of input data. The first
type corresponded to the simplest cases with the shortest execution times. The second
type represented the most challenging cases with the longest execution times. The third
type included the most commonly anticipated input data, referred to as “typical”. Energy
consumption is based on the typical execution time.

The impact of self-adaptivity was shown in [4] in Table 3. There is a analysis of how
the metrics of self-adaptivity influence a generated solution. When comparing results
generated with and without considering the metrics, it could be noticed that the initial
solution generated with them is slightly worse than that generated without them. But after
any disruption occurs, solutions that are built with an emphasis on self-adaptivity are able
to consume less energy. For more examples and detailed explanations, refer to previous
work [4].

The decision on using DGP in this kind of problem was made in [29]. A comparison
between DGP and the least laxity first algorithm (LLF) was there presented. The main
conclusion was that in spite of height efficiency, LLF creates a worse result than DGP.

https://wiki.odroid.com/odroid-xu4/odroid-xu4

Electronics 2025, 14, 556 11 of 20

1 2 3 4

5 6 7 8 9

13 12 10 11 14

16 15

19 18 17

21 22 20

24 25 23

30

26 28

29

27

31

32 33

34

35

36

37

38

39

40

Figure 5. Multimedia system task graph.

5.2. Influence of Self-Adaptation on Energy Consumption

Beginning with the research presented in [4], this study explores the influence of
self-adaptivity on the energy consumption of systems using not only the big.LITTLE

Electronics 2025, 14, 556 12 of 20

architecture, but also dynamic voltage and frequency scaling (DVFS). The first step was the
analysis of the influence of the parameters α and β in the fitness function. They control the
importance of these factors, with the results presented in Table 3. Tables 4 and 5 provide
additional information by showing energy consumption under scenarios of minimum and
maximum task completion times, respectively.

Table 3. Energy cost of the media player system [mJ]. The best results are in italic.

α
1.0 1715.00
0.8 1552.00 1578.00
0.6 1550.00 1565.00 1556.00
0.4 1529.00 1517.00 1549.00 1566.00
0.2 1527.00 1532.00 1554.00 1557.00 1570.00
0 1532.00 1534.00 1560.00 1566.00 1534.00 1566.00

0 0.2 0.4 0.6 0.8 1.0 β
The best individuals

α
1.0 1713.16
0.8 1571.93 1592.60
0.6 1572.91 1585.76 1564.83
0.4 1559.89 1541.70 1572.34 1577.15
0.2 1544.66 1557.80 1567.73 1571.50 1615.88
0 1555.25 1558.48 1580.86 1585.56 1562.16 1577.58

0 0.2 0.4 0.6 0.8 1.0 β
Average of the population

Table 4. Implementationcost in the most optimistic case for the multimedia player system.

α
1.0 1705.000
0.8 968.000 972.000
0.6 1011.000 1000.000 980.000
0.4 975.000 981.000 975.000 996.000
0.2 967.000 978.000 1005.000 990.000 1022.000
0 983.000 977.000 1015.000 1002.000 988.000 975.000

0 0.2 0.4 0.6 0.8 1.0 β
The best individuals

α
1.0 1890.117
0.8 968.06 971.961
0.6 1011.000 1000.000 980.000
0.4 971.039 981.000 983.164 996.000
0.2 969.922 978.000 970.000 990.000 1021.844
0 983.063 977.016 1015.000 1002.000 988.000 975.000

0 0.2 0.4 0.6 0.8 1.0 β
Average of the population

Electronics 2025, 14, 556 13 of 20

Table 5. Implementationcost in the most pessimistic case for the media player system.

α
1.0 1803.00
0.8 1557.00 1584.00
0.6 1554.00 1592.00 1577.00
0.4 1556.00 1532.00 1579.00 1579.00
0. 1539.00 1615.00 1574,00 1573.00 1591.00
0 1541.00 1539.00 1591.00 1566.00 1613.00 1577.00

0 0.2 0.4 0.6 0.8 1.0 β
The best individuals

α
1.0 1808.70
0.8 1557.00 1584.00
0.6 1554.00 1592.00 1577.00
0.4 1555.39 1532.00 1579.00 1579.00
0.2 1539.00 1615.00 1583,00 1573.00 1591.00
0 1541.00 1539.02 1591.00 1571.72 1613.00 1577.00

0 0.2 0.4 0.6 0.8 1.0 β
Average of the population

Several key observations were made from the analysis:

• Self-Adaptive Behavior and Energy Usage:
Self-adaptive behavior was observed to lead to the highest energy consumption. This
result is attributed to the system’s tendency to rely predominantly on the fastest
resources available, which, while reducing task completion time, increases overall
energy demand. The system’s prioritization of adaptability likely causes a shift
towards higher-performance (and, thus, higher-energy) cores to maintain flexibility
and responsiveness to changing workloads.

• Self-Optimization and Energy Efficiency:
In contrast, self-optimization was found to facilitate a reduction in energy consump-
tion. However, this approach does not inherently consider the potential benefits of
rescheduling tasks across different resources. As a result, while self-optimization
effectively reduces energy usage by optimizing resource allocation, it can miss
opportunities to further minimize energy consumption by dynamically adjusting
task scheduling.

• Energy-Only Evaluation and Resource Utilization:
When the evaluation metric focused only on energy consumption, it was expected to
produce the most energy efficient solution for the initial task scheduling. However,
this approach exhibited a significant drawback. By greedily selecting the lowest-
energy resources early in the scheduling process, the system was compelled to rely on
more powerful and energy-consuming resources, especially at the end of the schedule.
This behavior resulted in an overall increase in energy consumption, contrary to the
intended goal of minimizing it.

• Balanced Multi-Criteria Evaluation:
The most effective results were achieved when the evaluation uses all three criteria:
self-adaptation, self-optimization, and energy consumption. This comprehensive
approach allowed the algorithm to avoid local minima by considering the trade-
offs between adaptability, optimization, and energy efficiency. In effect, the system
was able to achieve a more balanced allocation of tasks across resources, leading to
improved energy efficiency without sacrificing performance.

Electronics 2025, 14, 556 14 of 20

These results suggest that while individual focus on self-adaptation, self-optimization,
or energy consumption can lead to suboptimal outcomes, a balanced approach that integrates
all three aspects is crucial for optimizing both energy efficiency and system performance.

5.3. Implementing DVFS in the Presented Method

One of the primary challenges encountered during the implementation of the dis-
cussed extension to the existing method was defining the relationship between different
operating frequencies of a processing core. Specifically, it was essential to determine that
a change in frequency represents a different state of an existing resource rather than a
completely distinct resource. This challenge was solved by an idea that each frequency state
is a quasi-independent resource. However, the utilization of any specific state excludes
the possibility of deploying the remaining states for other tasks. This approach ensures
that the same physical core cannot be used simultaneously at different frequencies for
different tasks.

To establish the relationship between execution time and energy consumption relative
to the data presented in [4], the characteristics of time frequency and energy frequency
described in [37] were used. This method provided a foundation for estimating the param-
eters needed to convert the required time and energy from a given frequency based on
the maximum operating frequency of the Samsung Exynos 980 processor. The conversion
factors specific to the A55 core are detailed in Table 6, while those for the A77 core are
presented in Table 7.

Table 6. Influence of changing frequency into speed and energy consumption on A55 core.

Frequency [GHz] In Relation to the Highest Frequency
Time Energy Consumption

ine 0.2 918.29% 2.87%
ine 0.3 681.34% 6.17%
ine 0.4 512.71% 9.71%
ine 0.5 392.69% 13.53%
ine 0.6 307.28% 17.64%
ine 0.7 246.49% 22.06%
ine 0.8 203.23% 26.83%
ine 0.9 172.44% 31.96%
ine 1.0 150.53% 37.49%
ine 1.1 134.94% 43.44%
ine 1.2 123.84% 49.84%
ine 1.3 115.94% 56.74%
ine 1.4 110.32% 64.17%
ine 1.5 106.32% 72.17%
ine 1.6 103.47% 80.78%
ine 1.7 101.44% 90.05%
ine 1.8 100.00% 100.00%

Electronics 2025, 14, 556 15 of 20

Table 7. Influence of changing frequency into speed and energy consumption on A77 core.

Frequency [GHz] In Relation to the Highest Frequency
Time Energy Consumption

ine 0.2 1341.30% 3.78%
ine 0.3 1018.50% 5.24%
ine 0.4 779.44% 6.87%
ine 0.5 602.40% 8.69%
ine 0.6 471.28% 10.71%
ine 0.7 374.17% 12.97%
ine 0.8 302.25% 15.48%
ine 0.9 248.99% 18.28%
ine 1.0 209.55% 21.40%
ine 1.1 180.34% 24.88%
ine 1.2 158.70% 28.76%
ine 1.3 142.68% 33.08%
ine 1.4 130.81% 37.90%
ine 1.5 122.02% 43.26%
ine 1.6 115.52% 49.24%
ine 1.7 110.70% 55.91%
ine 1.8 107.13% 63.33%
ine 1.9 104.48% 71.61%
ine 2.0 102.52% 80.83%
ine 2.1 101.07% 91.11%
ine 2.2 100.00% 100.00%

5.4. Effects of Introduced Improvements

The results of the experiment are summarized in Table 8. For comparison purposes,
Table 8 also contains schedules based on single-strategy approaches, each of which was
described in Section 4.4. These new experiments allow for a direct comparison of the
effectiveness of different strategies and to check if any one approach is significantly better
than the others.

In Figures 6–10, the schedules generated for the most expected completion times are
illustrated:

• Figure 6 presents a schedule that does not consider time buffers or DVFS (dynamic
voltage and frequency scaling). The behavior of the system here indicates an attempt
to save energy, but this decreases flexibility and responsiveness to potential delays.

• Figure 7 displays a schedule that incorporates time buffers but not DVFS. This ap-
proach increases the time resistance of the system for time delays, but the initial
scheduling consumes a little more energy, because there is a little more pressure to
choose more performance-oriented cores.

• Figures 8–10 present schedules generated during evolutionary processes. The dif-
ferences between these schedules are minimal, primarily focused on the duration of
certain tasks. These variations are different in buffer lengths and the frequencies of
the used cores.

The analysis reveals several key insights into the performance of different strategies:

• Speed-Oriented Strategies: Approaches focused basically on speed often yield subop-
timal results, as they do not leverage energy-saving opportunities. In some optimistic
scenarios, these strategies can even lead to worse results, as they may over-utilize
high-performance resources, leading to unnecessary energy consumption.

• Energy-Efficient Strategies: While energy-efficient strategies are effective in saving
energy under optimistic conditions, they tend to result in higher initial energy usage.

Electronics 2025, 14, 556 16 of 20

This is due to time constraints necessitating the use of more powerful, energy-intensive
resources early in the scheduling process to meet deadlines.

• Multi-Criteria Evaluation: The best results were achieved using a multi-criteria fitness
function, which balanced speed and energy efficiency. The optimal result was achieved
when the parameters of the fitness function were set to α = 40% and β = 20%. This
configuration favored the creation of time buffers that encouraged a more diversified
use of resources, leading to a more balanced and efficient schedule. The schedule
generated under these conditions is illustrated in Figure 10.

Table 8. Experimental results (energy cost [mJ]). In addition to the individuals generated during
evolution, control individuals representing the use of only one type of strategy were added.

Individuals Optimistic
Case

The Most
Expected Case

Pessimistic
Case

Only the fastest 2053 1890 1880
Only the most energy efficient 477 1699 1688
Only the best ratio of time

to energy consumption 468 1570 1556

Only determined by
the alternative gene 1661 1736 1696

Only the fastest available core 1903 1780 1880
Only the fastest finishing core 1868 1725 2047
Only the most energy-efficient
core that is available first 1903 1780 1880

The best one achieved when
α = 0% and β = 0% (Figure 8) 565 1501 1516

The best one achieved when
α = 40% and β = 20% Figure 9) 562 1484 1503

The best one achieved when
α = 20% and β = 20% (Figure 10) 572 1562 1590

The best one achieved when
α = 20% and β = 20% without DVFS 981 1517 1532

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

A770 1 234 569 101112 13 15 1719 21 23 36

A771 8 1418 27

A772 16 26

A773 7

A550 2022 2425 2829 31 3233 3435 37 383940

A551 30

A552

A553

Figure 6. Task scheduling without taking into account time buffers and without DVFS (time in [ms]).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

A770 1 234 69 101112 13 1516 1719 2829 31 32333435 37 383940

A771 8 18 27 30

A772 5 14 26 36

A773 7 23

A550 2022 2425

A551 21

A552

A553

Figure 7. Task scheduling with time buffers and without DVFS (time in [ms]).

Electronics 2025, 14, 556 17 of 20

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

A770 1 234 1112 1516 17 2022 2425 2829 31 32333435 37 383940

A771 5 1018 23 30

A772 14 27 36

A773 26

A550 9 13 19 21

A551 6

A552 8

A553 7

Figure 8. Best individual when α = 0%, β = 0% and DVFS is taken into account (time in [ms]).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

A770 1 234 1112 1516 17 2022 2425 2829 31 32333435 37 383940

A771 5 1018 23 30

A772 14 27 36

A773 26

A550 9 13 19 21

A551 6

A552 8

A553 7

Figure 9. Best individual when α = 40%, β = 20% and DVFS is taken into account (time in [ms]).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

A770 1 234 1112 1516 17 2022 2425 2829 31 32333435 37 383940

A771 5 1018 23 30

A772 14 27 36

A773 26

A550 9 13 19 21

A551 6

A552 8

A553 7

Figure 10. Best individual when α = 20%, β = 20% and DVFS is taken into account (time in [ms]).

Compared to the schedules shown in Figures 6 and 7, this approach shifted some
tasks from energy-efficient to high-performance cores, but at reduced operating frequen-
cies. This adjustment proved to be a more effective solution, as it maintained a balance
between energy savings and performance requirements. The resulting schedule demon-
strates the benefits of a multi-criteria approach to task scheduling, optimizing both energy
consumption and task completion time.

Figure 10 was added to highlight the influence of self-adaptive and self-optimization
on the final solution. The parameters α and β are close to the optimal values in Figure 9.
Despite that only the α factor was slightly described, the results are significantly worse.

6. Conclusions
In this paper, a novel extension of the automatic generation of a self-adaptive sched-

uler was presented. It was assumed that the software will run on a platform where the
big.LITTLE architecture and DVFS technology are used. The use of a multi-criteria eval-
uation function consistently yielded the most effective scheduling examples. Moreover,
an extension to the original method was proposed, allowing the cores to operate not only
at full frequency but also at lower frequencies. This modification was designed to reduce
energy consumption while ensuring that the system could still effectively manage possible
timing delays.

The proposed extension demonstrated a significant improvement in energy efficiency,
as evidenced by the comparisons in Tables 3–5 and 8. In particular, the solution provided
substantial gains in scenarios that involve faster task completion times. This improvement
is very important for battery-powered devices, such as those commonly used in the Internet
of Things (IoT), where energy efficiency is a critical aspect.

Electronics 2025, 14, 556 18 of 20

The results demonstrate that the improved method offers an effective solution to
balancing performance and energy usage, especially in scenarios where the time to perform
the task is shorter than expected. However, this method could still be developed. Future
research could investigate the incorporation of novel scheduling strategies, the real-time
adjustment of resource frequencies during task execution, and the improvement of the
mapping function to increase overall system performance.

Funding: This research received no external funding.

Data Availability Statement: The new data are contained within the article. The source data on
energy consumption of each task are available in the previous article [4].

Acknowledgments: I would like to thank Stanisław Deniziak, with whom I had the pleasure of
working on previous publications, for agreeing to use our joint experiences in conducting the research
described in this article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Yen, T.Y.; Wolf, W. Hardware-Software Co-Synthesis of Distributed Embedded Systems; Springer: Boston, MA, USA, 1996. https:

//doi.org/10.1007/978-1-4757-5388-2.
2. Humrick, M. Exploring DynamIQ and ARM’s New CPUs: Cortex-A75, Cortex-A55. 2017. Available online: https://www.

anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55 (accessed on 31 October 2023).
3. Macías-Escrivá, F.D.; Haber, R.; del Toro, R.; Hernandez, V. Self-adaptive systems: A survey of current approaches, research

challenges and applications. Expert Syst. Appl. 2013, 40, 7267 – 7279. https://doi.org/https://doi.org/10.1016/j.eswa.2013.07.033.
4. Deniziak, S.; Ciopiński, L. Synthesis of self-adaptable energy aware software for heterogeneous multicore embedded systems.

Microelectron. Reliab. 2021, 123, 114184. https://doi.org/https://doi.org/10.1016/j.microrel.2021.114184.
5. Deniziak, S.; Ciopiński, L., Synthesis of Power Aware Adaptive Embedded Software Using Developmental Genetic Programming.

In Recent Advances in Computational Optimization: Results of the Workshop on Computational Optimization WCO 2015; Fidanova, S.,
Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 97–121. https://doi.org/10.1007/978-3-319-40132-4_7.

6. Salehie, M.; Tahvildari, L. Self-Adaptive Software: Landscape and Research Challenges. ACM Trans. Auton. Adapt. Syst. 2009, 4,
1–42. https://doi.org/10.1145/1516533.1516538.

7. Schmeck, H.; Müller-Schloer, C.; Çakar, E.; Mnif, M.; Richter, U. Adaptivity and Self-Organization in Organic Computing Systems.
ACM Trans. Auton. Adapt. Syst. 2010, 5, 1–32. https://doi.org/10.1145/1837909.1837911.

8. Yeom, K.; Park, J.H. Morphological approach for autonomous and adaptive systems based on self-reconfigurable modular agents.
Future Gener. Comput. Syst. 2012, 28, 533–543. https://doi.org/https://doi.org/10.1016/j.future.2011.03.002.

9. Vogel, T.; Neumann, S.; Hildebrandt, S.; Giese, H.; Becker, B. Model-Driven Architectural Monitoring and Adaptation for
Autonomic Systems. In Proceedings of the 6th International Conference on Autonomic Computing, Barcelona, Spain, 15–19 June
2009; Association for Computing Machinery: New York, NY, USA, 2009; ICAC ’09; pp. 67–68. https://doi.org/10.1145/1555228.
1555249.

10. Leitao, P., Holonic Rationale and Bio-inspiration on Design of Complex Emergent and Evolvable Systems. In Transactions on
Large-Scale Data- and Knowledge-Centered Systems I; Hameurlain, A., Küng, J., Wagner, R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 243–266. https://doi.org/10.1007/978-3-642-03722-1_10.

11. Chen, T. A self-adaptive agent-based fuzzy-neural scheduling system for a wafer fabrication factory. Expert Syst. Appl. 2011,
38, 7158–7168. https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.044.

12. Oreizy, P.; Gorlick, M.M.; Taylor, R.N.; Heimhigner, D.; Johnson, G.; Medvidovic, N.; Quilici, A.; Rosenblum, D.S.; Wolf, A.L. An
architecture-based approach to self-adaptive software. IEEE Intell. Syst. Their Appl. 1999, 14, 54–62. https://doi.org/10.1109/52
54.769885.

13. Higuera-Toledano, M.T.; Brinkschulte, U.; Rettberg, A. (Eds.). Self-Organization in Embedded Real-Time Systems; Springer
Science+Business Media: New York, NY, USA, 2012. https://doi.org/10.1007/978-1-4614-1969-3.

14. Pułka, A.; Milik, A. Dynamic Rescheduling of Tasks in Time Predictable Embedded Systems. IFAC Proc. Vol. 2012, 45, 305–310.
https://doi.org/https://doi.org/10.3182/20120523-3-CZ-3015.00058.

15. Gharsellaoui, H.; Ktata, I.; Kharroubi, N.; Khalgui, M. Real-time reconfigurable scheduling of multiprocessor embedded systems
using hybrid genetic based approach. In Proceedings of the 2015 IEEE/ACIS 14th International Conference on Computer and
Information Science (ICIS), Las Vegas, NV, USA, 28 June–1 July 2015; pp. 605–609. https://doi.org/10.1109/ICIS.2015.7166665.

https://doi.org/10.1007/978-1-4757-5388-2
https://doi.org/10.1007/978-1-4757-5388-2
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55
https://doi.org/https://doi.org/10.1016/j.eswa.2013.07.033
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114184
https://doi.org/10.1007/978-3-319-40132-4_7
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1837909.1837911
https://doi.org/https://doi.org/10.1016/j.future.2011.03.002
https://doi.org/10.1145/1555228.1555249
https://doi.org/10.1145/1555228.1555249
https://doi.org/10.1007/978-3-642-03722-1_10
https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.044
https://doi.org/10.1109/5254.769885
https://doi.org/10.1109/5254.769885
https://doi.org/10.1007/978-1-4614-1969-3
https://doi.org/https://doi.org/10.3182/20120523-3-CZ-3015.00058
https://doi.org/10.1109/ICIS.2015.7166665

Electronics 2025, 14, 556 19 of 20

16. Calhoun, K.M.; Deckro, R.F.; Moore, J.T.; Chrissis, J.W.; Van Hove, J.C. Planning and re-planning in project and production
scheduling. Omega 2002, 30, 155–170. https://doi.org/10.1016/S0305-0483(02)00024-5.

17. Van de Vonder, S.; Demeulemeester, E.; Herroelen, W. A classification of predictive-reactive project scheduling procedures. J.
Sched. 2007, 10, 195–207. https://doi.org/10.1007/s10951-007-0011-2.

18. El Sakkout, H.; Wallace, M. Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints 2000, 5, 359–388.
https://doi.org/10.1023/A:1009856210543.

19. Al-Fawzan, M.; Haouari, M. A bi-objective model for robust resource-constrained project scheduling. Int. J. Prod. Econ. 2005,
96, 175–187. https://doi.org/https://doi.org/10.1016/j.ijpe.2004.04.002.

20. Bambagini, M.; Marinoni, M.; Aydin, H.; Buttazzo, G. Energy-Aware Scheduling for Real-Time Systems: A Survey. ACM Trans.
Embed. Comput. Syst. 2016, 15, 1–34. https://doi.org/10.1145/2808231.

21. Scordino, C.; Abeni, L.; Lelli, J. Energy-Aware Real-Time Scheduling in the Linux Kernel. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; Association for Computing Machinery: New York, NY,
USA, 2018; SAC ’18; pp. 601–608. https://doi.org/10.1145/3167132.3167198.

22. Zeng, G.; Yokoyama, T.; Tomiyama, H.; Takada, H. Practical Energy-Aware Scheduling for Real-Time Multiprocessor Systems. In
Proceedings of the 2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,
Beijing, China, 24–26 August 2009; pp. 383–392. https://doi.org/10.1109/RTCSA.2009.47.

23. Deniziak, S.; Ciopinski, L. Design for Self-Adaptivity of Real-Time Embedded Systems Using Developmental Genetic Program-
ming. In Proceedings of the 2018 Conference on Electrotechnology: Processes, Models, Control and Computer Science (EPMCCS),
Kielce, Poland, 12–14 November 2018; pp. 1–5. https://doi.org/10.1109/EPMCCS.2018.8596421.

24. Li, X.; Mo, L.; Kritikakou, A.; Sentieys, O. Approximation-Aware Task Deployment on Heterogeneous Multicore Platforms with
DVFS. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2022, 42, 2108–2121.

25. Shukla, S.K.; Pant, B.; Viriyasitavat, W.; Verma, D.; Kautish, S.; Dhiman, G.; Kaur, A.; Srihari, K.; Mohanty, S.N. An integration of
autonomic computing with multicore systems for performance optimization in Industrial Internet of Things. IET Commun. 2022 ,
https://doi.org/10.1049/cmu2.12505.

26. Deniziak, S.; Płaza, M.; Arcab, L. Approach for Designing Real-Time IoT Systems. Electronics 2022, 11, 4120. https://doi.org/10.3
390/electronics11244120.

27. Koza, J.; Poli, R. Genetic Programming. In Search Methodologies; Burke, E.; Kendall, G., Eds.; Springer: Boston, MA, USA, 2005;
pp. 127–164. https://doi.org/10.1007/0-387-28356-0_5.

28. Koza, J.R.; Bennett, F.H., III; Andre, D.; Keane, M.A. Evolutionary design of analog electrical circuits using genetic programming.
In Proceedings of the Adaptive Computing in Design and Manufacture; Springer: London, UK, 1998; pp. 177–192. https://doi.org/10
.1007/978-1-4471-1589-2_14.

29. Deniziak, S.; Ciopiński, L. Synthesis of power aware adaptive schedulers for embedded systems using developmental genetic
programming. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz,
Poland, 13–16 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 449–459. https://doi.org/10.15439/2015F313.

30. Wang, Y.; Liu, H.; Liu, D.; Qin, Z.; Shao, Z.; Sha, E.H.M. Overhead-aware energy optimization for real-time streaming applications
on multiprocessor System-on-Chip. ACM Trans. Des. Autom. Electron. Syst. 2011, 16, 1–32. https://doi.org/10.1145/1929943.1929
946.

31. Fornaciari, W.; Gubian, P.; Sciuto, D.; Silvano, C. Power estimation of embedded systems: A hardware/software codesign
approach. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1998, 6, 266–275. https://doi.org/10.1109/92.678887.

32. Ermedahl, A.; Engblom, J. Execution Time Analysis for Embedded Real-Time Systems. In Handbook of Real-Time and Embedded
Systems; Lee, I., Joseph Y.-T., Leung, S.H.S., Eds.; Chapman & Hall/CRC: New York, NY, USA, 2008; pp. 437–455.

33. Noghin, V.D. Linear scalarization in multi-criterion optimization. Sci. Tech. Inf. Process. 2015, 42, 463–469. https://doi.org/10.310
3/S014768821506009X.

34. Michalewicz, Z. Genetic Algorithms+ Data Structures= Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. https:
//doi.org/10.1007/978-3-662-03315-9.

35. Sapiecha, K.; Ciopiński, L.; Deniziak, S. An application of developmental genetic programming for automatic creation of
supervisors of multi-task real-time object-oriented systems. In Proceedings of the 2014 Federated Conference on Computer
Science and Information Systems (FedCSIS), Warsaw, Poland, 7–10 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 501–509.
https://doi.org/10.15439/2014F208.

https://doi.org/10.1016/S0305-0483(02)00024-5
https://doi.org/10.1007/s10951-007-0011-2
https://doi.org/10.1023/A:1009856210543
https://doi.org/https://doi.org/10.1016/j.ijpe.2004.04.002
https://doi.org/10.1145/2808231
https://doi.org/10.1145/3167132.3167198
https://doi.org/10.1109/RTCSA.2009.47
https://doi.org/10.1109/EPMCCS.2018.8596421
https://doi.org/10.1049/cmu2.12505
https://doi.org/10.3390/electronics11244120
https://doi.org/10.3390/electronics11244120
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1007/978-1-4471-1589-2_14
https://doi.org/10.1007/978-1-4471-1589-2_14
https://doi.org/10.15439/2015F313
https://doi.org/10.1145/1929943.1929946
https://doi.org/10.1145/1929943.1929946
https://doi.org/10.1109/92.678887
https://doi.org/10.3103/S014768821506009X
https://doi.org/10.3103/S014768821506009X
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.15439/2014F208

Electronics 2025, 14, 556 20 of 20

36. Hu, J.; Marculescu, R. Energy-and performance-aware mapping for regular NoC architectures. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 2005, 24, 551–562. https://doi.org/10.1109/TCAD.2005.844106.

37. Ara, G.; Cucinotta, T.; Mascitti, A. Simulating execution time and power consumption of real-time tasks on embedded platforms.
In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, 25–29 April 2022; Association for
Computing Machinery: New York, NY, USA, 2022; SAC ’22; pp. 491–500. https://doi.org/10.1145/3477314.3507030.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCAD.2005.844106
https://doi.org/10.1145/3477314.3507030

	Introduction
	Related Works
	Developmental Genetic Programming
	Synthesis of Self-Adaptive Scheduler
	System Specification
	System Hardware
	Rating a Quality
	Genotype and Phenotype
	Evolution

	Experimental Results
	Overview of Previous Research
	Influence of Self-Adaptation on Energy Consumption
	Implementing DVFS in the Presented Method
	Effects of Introduced Improvements

	Conclusions
	References

