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Abstract: Dynamic gesture recognition has recently aimed to learn static and motion
features by exploiting point clouds from depth images. However, the weak correlation
between some pixels and hand gestures makes the extracted dynamic features redundant.
When search points and adjacent points in a larger feature space maintain movement
consistency, more detailed movements are ignored. To improve the ability to capture
fine-grained dynamic features and improve the relevance of point clouds and gestures,
we propose a novel method of fusing skeleton-based scene flow for gesture recognition
(FSS-GR) for higher recognition accuracy. Firstly, skeletons are automatically converted
into pairs of point clouds. Based on the time interval between source and target point
clouds and scene flow measurement indicators, four scene flow estimators are obtained. To
minimize the additional cost of capturing fine-grained information, scene flow is used as
datasets before fusion. Then, the coarse-grained dynamic features from depth images are
fused with the obtained scene flow using different strategies, so that the flexible tradeoffs
between model complexity and recognition performance are available for various scenarios.
The comprehensive experiments and ablation study on SHREC’17 and DHG demonstrate
that FSS-GR achieves a higher accuracy than state-of-the-art works.

Keywords: dynamic gesture recognition; scene flow; point cloud; skeleton

1. Introduction
Dynamic gesture recognition, as a popular task in computer vision, is widely used

in various scenarios such as autonomous driving, smart home, and smart healthcare.
Recent related works [1–9] have achieved good performance in terms of common gesture
datasets [10,11].

According to the modality of inputs, the existing work on dynamic gesture recognition
can be classified into three categories: image [5,11–13], skeleton [4,7–10,14–17], and point
clouds [1–3,6]. The RGB or RGB-D images are easily obtained and the large data size makes
the models converge faster. However, images are susceptible to irrelevant factors, such
as occlusion and background. Recently, more and more work [1–3] has begun to focus on
the 3D point cloud. The point cloud contains the latent spatial information of objects and
maintains shape features. The first step of those works [1–3,6] is to convert depth images
to point clouds without using skeletons. The data size of the depth image (for example,
128 points) is larger than that of the skeleton (22 joints) [10]. The bigger data size is positive
for making the models converge. However, the neighborhood of the search point in the
images is composed of some pixels which are joint points and other pixels that have less
correlation with hand gesture. Instead, the skeleton information from the coordinates of
the hand joints is more robust to irrelevant factors such as lighting or occlusion [4].
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The correlation between skeletons and hand movements is greater. Therefore, our
work explores the point cloud from both skeletons and depth images for better recognition
performance. We convert the skeleton information of each gesture into pairs of point
clouds. Every gesture is uniformly divided into different groups along the time dimension.
The source point cloud comes from the first frame of each group, and its corresponding
target point cloud depends on the time interval. Then, dynamic features are captured from
pairs of point clouds.

Due to the irregularity of the point clouds, it is challenging to track the point-by-point
correspondence between different frames [1]. Previous works [1–3,6] indirectly represent
motion features by capturing the features of adjacent points. Kinet [1] keeps the adjacent
points in the same feature-level ST-surfaces, and the normal vector of the surface can
represent the dynamic features well. PointLSTM [2] optimizes the long short-term memory
(LSTM) by combining information from the current frame and neighbors from the past
frame while preserving the spatial structure. However, as shown in Figure 1, most of the
works extract the dynamic features of the search point in the feature space of Neighborhood
1. In Neighborhood 1, the adjacent points of the search point are learned from the pixels on
depth images. These points are related to the search radius of the ball query, the number
of samples for adjacent points, and the time interval ∆tc. The works suppose that search
point and its neighborhood keep consistency in movement. Therefore, the learned motion
features of adjacent points (gray) are similar. And, detailed information is ignored that
changes rapidly in time, such as fine-grained features (orange).

Some works aim to learn fine-grained dynamic features for higher accuracy while
capturing coarse-grained features. MAE [7] is self-supervised in skeleton data to gen-
eralize with different hand gestures. Graph convolutional network (GCN)-based ap-
proaches [3–6,16] are widely explored by defining spatio-temporal graphs to incorporate
spatial connectivity. SOGTNet [6] introduces multi-head attention to extract global features
and an improved DGCNN to capture local features. ST-SGCN [5] pays more attention to
directional or sparse interactions between the hand joints when learning subtle interac-
tions. And, they introduce the cross-spatio-temporal module. FPPR-PCD [3] captures local
features using DGCNN and the global position using DenseNet [18]. However, they only
convert depth images to point clouds or extract skeletons from images. And, those models
have a lower performance on SHREC’17 [10], which is a mixture of fine and coarse gestures.
That is because coarse gestures lack distinctive features. And, precision in directed interac-
tions is important when identifying fine gestures. Therefore, it is necessary to express the
subtle gesture changes more accurately.

Scene flow estimation can provide the map of each 3D point in the previous frame to
each point in the next frame. In other words, scene flow estimation aims to capture the
motion vector of each point [19]. By converting the skeleton data into scene flow, we can
capture dynamic information such as the trajectory, speed, direction, and acceleration of
joint movements. This not only enables researchers to intuitively analyze actions, but also
allows for the capture of the details of dynamic gestures. There have been many mature
scene flow estimators [20–28]. Scene flow estimation is widely used in those areas such as
robotics (path planning, collision avoidance), autonomous driving (tracking vehicles or
people) and visual surveillance, which contain multiple tracked objects and complex spatial
information. Recently, works have aimed to build self-supervised scene flow estimators that
do not use ground-truth flow as labels [23,24,29,30]. Finding point cloud correspondences
is widely applied to self-supervised scene flow estimators [23,31]. These works are inspired
by Lang’s work [32]. Lang et al. [32] suggests using latent space similarity and point
features rather than regressing the true flow. However, to the best of our knowledge,
they have not been used in gesture recognition in dynamic point clouds [1]. And, no
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work has generated ground-truth flow in the existing gesture datasets. In addition to the
irregularity of point clouds that makes the training time and inference time longer [23],
the other primary reason is that most scene flow estimators rely on large datasets with
ground-truth flow (FlyingThings3D [33] and KITTI [34,35]) to make the regression learning
network converge.
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Figure 1. The basic idea of FSS-GR. (a) Multi-stream FSS-GR. (b) Two-stream FSS-GR. Compared
with the general framework based on point clouds and FSS-GR, FSS-GR not only takes advantage of
both the depth image and skeleton, but also integrates 3D motion features at different fine-grained
levels. Most works learn the dynamic features of search point in Neighborhood 1. Our work fuses
the fine-grained features represented by scene flow in smaller Neighborhood 2. ∆tc is the frame time
interval between search points and adjacent points during the learning of coarse-grained features.
∆t is the frame time interval between search (source) points and adjacent (target) points during the
extraction of fine-grained features.

The paper proposes fusing skeleton-based scene flow for gesture recognition on point
clouds (FSS-GR) for accurate recognition, as shown in Figure 1. We aim to use scene flow to
measure the fine-grained feature of dynamic gestures represented by skeletons. Then, the
scene flow and coarse-grained features are fused with different strategies. It is necessary
to design an automatic converter to convert skeletons. In our work, gesture skeletons
are converted into pairs of point clouds. And, point clouds are fed into self-supervised
estimators to obtain scene flow. According to the time interval between different source and
target point clouds and different scene flow measurement indicators, four different scene
flows are estimated. The different time intervals and indicators are related to the feature
space of spatial and temporal neighborhoods. Our work learns fine-grained features in
Neighborhood 2, as shown in Figure 1. In Neighborhood 2, the features of adjacent points
are captured from hand joints, which have a stronger correlation with gestures. The size of
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Neighborhood 2 is related to the number of samples for adjacent (target) points and the
time interval ∆t. By setting ∆t and the number of samples for source points, the size of
Neighborhood 2 is smaller than that of Neighborhood 1. If we extract the scene flow in
Neighborhood 2, the feature space of every gesture will be grouped into more different
neighborhoods. The estimated 3D scene flow is more detailed and represents the subtle
differences between the search point (red) and the adjacent point (blue). To avoid the
high time cost of the scene flow estimator, the estimated scene flow is printed as the scene
flow dataset.

As shown in Figure 1, multi-stream FSS-GR adds an independent scene flow branch to
learn fine-grained motion features. The prediction scores from three branches are averaged
as the final outputs during the testing phase. Two-stream FSS-GR fuses scene flow before
the fusion of low-level static features and high-level dynamic features to supplement the
fine-grained dynamic features.

In this paper, the main contributions are as follows:

• Point clouds used in previous gesture recognition methods are generated from depth
images. FSS-GR explores the point cloud from both skeletons and depth images.
Skeletons and depth images form an effective information supplement. And, bones
with small data volumes are highly correlated with hand movements. Compared with
works that feed skeletons to GCN-based networks, this work is the first to transform
the skeleton information into pairs of point clouds. The time interval between source
point clouds and target point clouds and fewer hand joints make the feature space of
a search point smaller;

• We measure fine-grained features using scene flow. Then, the scene flow and coarse-
grained features are fused with different strategies. An automatic converter is designed
to convert skeletons, and four scene flow datasets are obtained: SHRECsft, SHRECsfe,
SHRECsfe2, and SHRECsfe3. Those datasets can be fused with other static and
dynamic features in gesture recognition to reduce the time cost. FSS-GR fuses scene
flow and coarse-grained dynamic features with two strategies. Multi-stream FSS-GR
includes an independent scene flow branch. Two-stream FSS-GR fuses the scene flow
before the fusion of low-level static features and high-level dynamic features. The code
is available at https://github.com/shawn-fei/fss-gr.git (accessed on 25 January 2025);

• Comparative experiments are conducted on various datasets to show efficacy in the
performance, efficiency in parameters, and computational complexity of FSS-GR.
Experiments are conducted on the SHREC’17 dataset [10] and DHG [14]. Notice-
ably, on SHREC’17, multi-stream FSS-GR obtains 1.4% and 0.8% accuracy gains in
comparison with Kinet [1] and SOGTNet [6].

The structure of this paper is presented as follows. In Section 2, we analyze the related
work on dynamic gesture recognition and flow estimation. In Section 3, we introduce
FSS-GR. Initially, preprocessing is described in Section 3.1. In Section 3.2, two strategies
are designed to fuse the scene flow with dynamic features. In Section 4, the experimental
setup, results and cost analysis are presented, discussed, and analyzed. In Section 5, we
conclude the contributions and limitations of FSS-GR.

2. Related Work
2.1. Deep Learning on Dynamic Gesture Recognition

Most previous works capture motion features using deep learning methods instead
of manual features. That is because a deep learning method can be used for processing
complex gestures.

The often-used deep learning methods for dynamic gesture recognition include a
3D convolutional neural network (CNN) [36–38], recurrent neural network (RNN) [11],

https://github.com/shawn-fei/fss-gr.git 
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long short-term memory (LSTM) [17], and self-attention [3,39]. Three-dimensional CNN-
based recognition methods [36–38] use 3D convolution and 3D pooling to extract temporal
and spatial features from the original video in a parallel way. In the combination of 3D
CNN and RNN, each video segment is usually sent to 3D CNN to extract spatio-temporal
features, and the spatio-temporal information is sent to RNN to make up for the loss of time
information due to video segmentation. The above works on 3D CNN and RNN are more
concerned with capturing short-term relationships and using skeletons or depth images as
input. Depth image-based methods are sensitive to occlusion and image resolution. In some
skeletal-based methods [7,15], joint coordinates are fed into the network to learn hand
characteristics. However, these methods ignore the spatial structure and motion features of
skeletons. Some studies [4,5,16] define spatio-temporal maps based on skeletons or images.
However, these methods face challenges with the mixture of coarse and fine features.

Most recent works have focused on extracting motion features from point
clouds [1–4,6,40–42]. The point cloud contains the latent spatial information of objects
for accurate recognition. Kinet [1] solves the normal vector of feature-level ST-surfaces
to encode dynamically. PointLSTM [2] gathers current information and information from
previous neighbors to avoid tracking the relationship between points of contact. FPPR-
PCD [3] fuses local and global features in an LSTM to capture dynamic features. DG-STA [4]
constructs a fully connected graph from a hand skeleton, and uses spatial and temporal
self-attention to capture node features and edges. However, these works extract features
without explicitly finding the corresponding relationship of joints. The proposed method
FSS-GR fuses scene flow for considering the corresponding point of every source point.
SOGTNet [6] has a similar motivation that extracts fine-grained features while capturing
global gesture features. However, they only convert depth images to point clouds. This
makes learned features redundant. In our work, point cloud sequences as input can be
from both skeletons and depth images. We transform skeletons into pairs of point clouds
to make point clouds and gestures more relevant.

2.2. Flow Estimation

Two-dimensional optical flow and 3D scene flow are often used to capture motion
features. Two-stream network based on 2D optical flow [43,44] is composed of a spatial
branch for extracting spatial features and a time branch for extracting dynamic features.
However, the optical flow cannot represent the real motion of an object, and is actually the
real motion projected onto images.

Scene flow estimators are used in autonomous driving [29,34], motion segmenta-
tion [30,45], free-viewpoint video [46,47], and visual tracking [48,49]. According to whether
the model uses ground-truth flow, recent scene flow estimators are divided into super-
vised [20,45,46,49] and self-supervised methods [23,24,29,30]. FlowNet3D [20] is a classic
model that uses flow regression, and the regression model relies on large datasets to make
the network converge because of the irregularity and disorder of point clouds. FLOT [31]
does not use flow regression in the training phase, but estimates points corresponding to
source point cloud through spatial similarity. However, in the testing phase, the method still
optimizes the flow of the initial scene with flow regression. In the testing phase, SCOOP [23]
optimizes the initial scene flow with custom distance loss and smooth loss. This method
reduces the training cost, but it relies on two large datasets synthesized in the middle,
FlyingThings3D [33] and KITTI [34,35]. To the best of our knowledge, the ground-truth
flow of gestures does not appear in the publicly available gesture datasets. This is because
the scene flow at each joint point is complex and the high cost of annotation does not lead
to efficient identification. This makes it difficult to generalize the previous approach to
unknown test environments. Scene flow can play a complementary role in the recognition
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of point cloud sequences, where hand skeletons are converted into pairs of point clouds,
and the estimated scene flow is used as an intermediate synthetic dataset for 3D motion
feature fusion.

3. Proposed Method
Dynamic gesture recognition on point clouds seeks to output the category label for

a specific gesture. As shown in Figure 1, the proposed method named FSS-GR contains
two parts:

• Preprocessing: scene flow is from hand skeletons. As described in Section 3.1, skeletons
are converted into point clouds, and scene flow is estimated based on the different
pairs of point clouds and metrics;

• Feature information extraction: static features and dynamic features are extracted to
identify different types of gestures. It is the key to fuse the learned scene flow with
the dynamic features captured from depth images.

Two strategies are designed to fuse scene flow with the dynamic features, as described
in Section 3.2. A multi-stream network is called multi-stream FSS-GR and a two-stream
network is called two-stream FSS-GR.

3.1. Preprocessing: Learn Scene Flow from Hand Skeletons

In this section, the goal is to input the 3D skeletal information of gestures at different
moments, and output a scene flow of each joint.

Given a dynamic gesture of T0 frames, the skeletons of each frame are represented
by the 3D coordinate vectors of N0 hand joints. In order to obtain the scene flow of joints,
firstly source point clouds X are constructed from the skeletons of T key frames in the
gesture. Then, target point clouds Y are constructed from the skeletons of T frames that
are distinct from the T frames of source point clouds X so that each dynamic gesture has T
pairs of point clouds as described in Section 3.1.1. Finally, the flow field about point-by-
point motion from X to Y is estimated by using the self-supervised scene flow estimator.
Because different metrics are used to build target point clouds and measure scene flow,
different types of scene flow datasets can be extracted for gesture recognition, as described
in Section 3.1.2.

3.1.1. Constructing Pairs of 3D Point Clouds on Skeletons

In this section, our goal is to build T pairs of point clouds. T pairs of point clouds
consist of the source point cloud X and the corresponding target point cloud Y. For clarity,
this work denotes a source point cloud, a target point cloud and pairs of point clouds as
follows:

• A source point cloud: Xt =
{

Xi
t∣∣i = 1, 2, . . . N

}
;

• A target point cloud: Yt =
{

Yt
j

∣∣∣j = 1, 2, . . . N
}

;

• Pairs of point clouds in one hand gesture:
{
(Xt, Yt)

∣∣t = 1, 2, . . . T
}

.

X is a sequence of T key frames. Xt ∈ RN×3 is the tth source point cloud in chronolog-
ical order, where t is an integer from 1 to t and N is the number of hand joints in the source
point clouds X. Yt ∈ RN×3 is the tth target point cloud that corresponds to Xt.

Firstly, the point cloud Xt is composed of N disordered 3D points and represents static
features. Each point is represented by the 3D coordinates of hand joints. There are N0 hand
joints in each frame of dynamic gesture. In order to reduce the computational cost on the
premise of retaining most of the skeletal information, this work chooses to discard some
points directly and retain the N hand joints. N points are sampled uniformly from the N0
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points of the original gesture. Therefore, static features represented by point clouds are the
raw coordinates of joints without interference from irrelevant factors.

Secondly, T source point clouds are selected from every gesture and correspond to the
T key frames of gestures. Similarly to Kinet [1] and PointLSTM [2], T frames are sampled
uniformly from the T0 frames of the original gesture.

Finally, in order to extract the dynamic features of each point in the source point cloud
Xt, it is also necessary to obtain a target point cloud to form a pair of point clouds, which is
part of dynamic scene.

This work assumes that Xt and a target point cloud Yt form a pair of point clouds
(Xt, Yt). Then, the T source point clouds and the corresponding T target point clouds form
T pairs of point clouds in each gesture.

The frame time interval ∆t between the source and target point clouds will affect
the scene flow and further influence the accuracy of gesture recognition. The larger ∆t is,
the more the learned scene flow characterize the long-term point-by-point correspondence.
In this paper, in order to capture fine-grained features, only a small value is taken for ∆t.

Figure 2 shows the process of extracting source point clouds and target point clouds
from skeletons.
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Figure 2. A pair of point clouds includes source point cloud and target point cloud. There are three
methods to choose the target point cloud based on ∆t. ∆t is the frame time interval between the
source and target point clouds. k is the average number of frames in every grouped gesture. When
∆t is set to ∆t1, the scene flow of the search point(red) is learned from points(blue) in S(t). When ∆t is
set to ∆t2, the scene flow of the search point(red) is learned from points(green) in S(t+1) and points in
Xt. When ∆t is set to ∆t3, the scene flow of the search point(red) is learned from points(purple) in
S(t+2) and points in Xt.

The initial gesture composed of T0 frames is represented by Sraw, as shown in Equa-
tions (1). Sp

r is the tth frame in chronological order, where p is an integer from 1 to T0.

Sraw =
{

Sp
r

∣∣∣p = 1, 2, . . . , T0

}
. (1)
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Similarly to traditional methods for sampling, the T0 frames in a gesture are uni-
formly divided into T(32) groups along the time dimension. The grouped gesture Sgroup

is shown in Equation (2). In the sequence Sgroup consisting of T groups, S(m) is the mth
group in chronological order, and m is an integer from 1 to T. Each group contains k
frames. It is worth noting that T0

T is not necessarily an integer, so we round T0
T , as shown in

Equation (3). The first group S(1) and the mth group S(m) are shown in Equation (4) and (5).
S(m) is a sequence consisting of k frames, and Sq

(m)
is the qth frame in chronological order.

In particular, the last group S(T) is shown in Equation (6).

Sgroup =
{

S(m ) | m = 1, 2, . . . , T
}

. (2)

k =

[
T0

T

]
. (3)

S(1) =
{

Sq
(1)

∣∣∣q = 1, 2, . . . , k
}
= (S1

r , S2
r , . . . , Sk

r ). (4)

S(m) =
{

Sq
(m)

∣∣∣q = 1, 2, . . . , k
}
= (S(m−1)k+1

r , S(m−1)k+2
r , . . . , Smk

r ). (5)

S(T) = (S(T−1)k+1
r , S(T−1)k+2

r , . . . , ST0
r ). (6)

Then, the T source point clouds X are composed of the first frame of each group.
For example, Xt is shown in Equation (7).

Xt = S1
(t) = S(t−1)k+1

r = Stk−k+1
r . (7)

The target point cloud Yt depends on the frame time interval ∆t. As shown in Figure 2,
there are three ways to select target point clouds. In three methods, ∆t is denoted as ∆t1,∆t2

and ∆t3. The target point cloud Yt
1 is from the next frame of the source point cloud Xt. It is

as follows:
Yt

1 = S2
( t ) = S(t−1)k+1+∆t1

r = Stk−k+2
r , (8)

where ∆t1 is set to one frame time. The target point cloud Yt
2 is from the first frame in the

next group of the source point cloud Xt. It is as follows:

Yt
2 = S1

( t+1 ) = S(t−1)k+1+∆t2
r = Stk+1

r , (9)

where ∆t2 is the k frame time. If tk + 1 is greater than T0, the target point cloud is set to the
last frame ST0

r . When ∆t3 is set to 2k frame time, target point cloud Yt
3 is as Equation (10).

If tk + k + 1 is greater than T0, then the target point cloud is set to the last frame ST0
r .

Yt
3 = S1

( t+2 ) = S(t−1)k+1+∆t3
r = Stk+k+1

r . (10)

The value of ∆t suggests that a pair of point clouds (Xt, Yt) on skeletons represents a
short segment of a dynamic gesture for fine-grained feature extraction.

3.1.2. Different Scene Flow Datasets Based on Different Metrics

Pairs of point clouds are fed into self-supervised scene flow estimator. Estimated scene
flow has two representations. Based on different representation and pairs of point clouds,
four scene flow datasets are automatically generated by our converter.

Since there is no ground-truth flow in gesture datasets, this work uses the self-
supervised scene flow estimator SCOOP [23] as the backbone. Ground-truth flow is not
used as supervision during the train and test phases. In the train phase, a softly matched
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target point Ŷ is obtained for each source point Xi
t based on the similarity of the points in

the feature space. Finally, the initial scene flow F = Ŷ − Xi
t corresponding to each source

point is obtained. In the test phase, considering the consistency of neighboring source
points NX(Xi

t) and flow field, Ŷ should be as close as possible to NY(Xi
t), where NY

(
Xi

t)
is a neighborhood of Xi

t in Yt+∆t. The initial scene flow F is refined, and the final scene
flow F∗ is obtained.

Taking into account the computational cost of scene flow and the impact on classifica-
tion performance, two representations of the scene flow f will be used. One representation
is the initial scene flow F learned during the train phase, and the other representation is the
optimized scene flow F∗ during the test phase. The computational cost of F∗ is higher than
F, but F∗ is a refinement of F.

Finally, according to the different methods of target point cloud construction and the
different ways of describing scene flow, four scene flow datasets are obtained, as shown in
Table 1. The scene flow datasets, which characterize the fine-grained dynamic features of
gestures, can be fused with coarse-grained dynamic features.

Table 1. Scene flow dataset. ∆t is the frame time between the source point cloud and target point cloud.
F and F∗ are two ways of describing scene flow. F is the initial scene flow learned during the train
phase. F∗ is the optimized scene flow during the test phase.

Scene Flow Dataset ∆t Representation of Scene Flow

SHRECsft 1 F
SHRECsfe 1 F∗

SHRECsfe2 k F∗

SHRECsfe3 2k F∗

3.2. Fusing Skeleton-Based Scene Flow for Point Cloud-Based Gesture Recognition

In this section, the goal is to input the scene flow of gestures and a point cloud
sequence based on depth images, and output gesture categories. This paper uses Kinet as
the backbone. It inputs the point cloud sequence into a mature static network for extracting
the spatial features, and then utilizes the static spatial features to learn normal vectors at
each point. However, the local neighborhood of a center point lies on the same ST-surface
orthogonal to the normal vector. This work aims to combine the learned scene flow with
the coarse-grained normal vector seamlessly. And, two architectures (multi-stream FSS-GR,
two-stream FSS-GR) are proposed.

3.2.1. Multi-Stream FSS-GR (M-FSS-GR)

The multi-stream FSS-GR consists of three parts, as shown in Figure 3 :

• Static branch (blue) captures spatial features;
• Dynamic branch (gray): the dynamic feature is extracted by using the static feature

learned by the static branch. And, it is the normal vector of the ST-surface and is
coarse-grained;

• Scene flow branch (orange): The scene flow dataset generated in Section 3.1 is used as
input to the deep learning network, which is designed to predict gesture classes using
fine-grained motion features.

The scene flow is represented by Equation (11).

F = { f t
i |i = 1, 2, . . . N.t = 1, 2, . . . , T}, f t

i = ( f t
xi

, f t
yi

, f t
zi
). (11)

As shown in Figure 3, module SA takes the 3D scene flow F/F∗ of each gesture as
input and outputs a d1-dimensional feature vector representing the fine-grained features
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of that gesture. In detail, group N points a gesture into a group, then sets (0, 0, 0) as the
search point, and the flow field of the N points becomes the feature space of the gesture.
Then, the 3D scene flow is fed into the network to obtain the high-dimensional features
and obtains one feature vector fsa ∈ Rd1 of the entire dynamic gesture. We formulate the
mechanism as Equation (12):

∼
F = g(F), fsa = maxpool

(∼
F
)

. (12)

This work denotes the operation of training the 1 × 1 convolution, BN (batch nor-
malization), and ReLU (activation function, linear rectification function) twice as function
g. To further obtain high-level dynamic features fc ∈ Rd3 and reduce the dimension of
the feature vector from d3 to 24 (number of gesture classes), the M-FSS-GR mechanism is
designed as Equation (13). In Equation (13), g( fsa) ∈ Rd2 . The mechanism of M-FSS-GR’ is
designed as Equation (14).

fc = g( g( fsa ) ), fs f = FC( fc ). (13)

fc = g( fsa ), fs f = FC( fc ). (14)

The final fine-grained feature fs f of scene flow branch is obtained, as shown in Figure 3.
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Figure 3. Multi-stream FSS-GR framework. In terms of input modality, the input for static and dy-
namic branches are depth images, and the initial input modality for scene flow is skeleton. The input
of this branch is the scene flow dataset in Section 3.1. CNN is a 1 × 1 convolution. FC is the fully
connected layer.

In the test phase, category predictions from static, dynamic, and scene flow streams
are fused in different proportions. M-FSS-GR optimizes the three branches through cross-
entropy loss. The total loss is defined as Equation (15). The ratio of the three branches—
scene flow, static branch, and dynamic branch—is denoted as rs f , rs, and rn.

Ltotal = rs f Ls f + rsLs + rnLn. (15)
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3.2.2. Two-Stream FSS-GR (T-FSS-GR)

In contrast to the new scene flow stream of multi-stream FSS-GR, two-stream FSS-GR
fuses scene flow to supplement the learning of fine-grained motion features in dynamic
stream. In other words, we use early fusion in T-FSS-GR.

The architecture of T-FSS-GR is shown in Figure 4. The static feature is a coordinate
vector that represents static space based on the depth images. The normal vector is a
multi-dimensional vector that represents local motion features based on the static feature,
so it is essentially a feature learned from the depth images. In order to take into account
skeletons and depth images with complementary information, the scene flow (orange) is
fused with a static feature and normal vector.

First, two different features are concatenated in the direction of the point:

fss = concat(F, fs), ns = concat
(

F′, n
)
, (16)

which doubles the number of feature points in each frame. Next, we fuse 2N points into N
feature points. In order to further capture the time information, f ′ss/n′

s is connected with
time. The learning mechanism is formulated as Equation (17).

fsst = concat(t, g( fss)) = concat( t, f
′
ss ), nst = concat(t, g(ns)) = concat( t, n

′
s ). (17)

After the dimension alignment with another g, the static and dynamic features
( f ′sst and n′

st) which learn scene flow are obtained. Eventually, f ′sst and n′
st are forwarded to

SA and FC, followed by the last aggregation of static and dynamic results. In T-FSS-GR,
the total loss is defined as Equation (18). The ratio of two branches (dynamic and static
branch) is denoted as rd and rs.

L( 2 )
total = rdLd + rsLs. (18)
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4. Experiment
To evaluate the performance of FSS-GR, comprehensive experiments are conducted on

the dynamic gesture recognition dataset SHREC’17 and DHG. And, FSS-GR is compared
with the state-of-the-art works on dynamic gesture recognition from the perspective of
recognition performance and cost. An ablation study is also performed to verify the
effectiveness of each module in FSS-GR.

4.1. Experimental Setup
4.1.1. Datasets

SHREC’17 [10]: SHREC’17 is a public dynamic gesture dataset that not only provides
the coordinates of 22 hand joints in the 3D world, but also provides depth images. It
contains 2800 videos composed of 28 types of gestures, including 1960 videos (70%) in the
training set and 840 videos (30%) in the test set.

SHRECsft, SHRECsfe, SHRECsfe2, and SHRECsfe3 are four datasets about the scene
flow of dynamic gestures. These datasets are generated based on the Skeletons_world
provided by SHREC’17. The 3D coordinates of 22 joints per frame for each dynamic gesture
are provided in Skeletons_world. In this paper, the skeletal information is processed into
32 pairs of point clouds, each of which contains a source point cloud and a target point
cloud. However, the ground truth flow corresponding to the source point cloud is not
provided in Skeletons_world. Therefore, a self-supervised scene flow estimator is used to
extract the scene flow for each joint. Each scene flow dataset consists of a 3D scene flow of
joints for 2800 videos. There are two aspects of differences between the four datasets: time
interval and the metrics of scene flow, as detailed in Table 1.

DHG [14]: This dataset includes 2800 dynamic gesture sequences. There are 28 types of
dynamic gesture that were conducted by 20 subjects using the whole hand. The modalities
of the sequences are skeletons and depth images. The skeletons are the coordinates of
22 hand joints in the 3D world. Because there is no official division between the training
set and test set, this work follows the common means of evaluation, which is leave-one-
subject-out cross-validation.

4.1.2. Experimental Configuration

Experiments about scene flow estimation are conducted on GPU equipped with V100-
32G. The manufacturer of V100-32G is NVIDIA, whose headquarters is located in Santa
Clara, California, United States. We equip the GPU with a GPU Cloud service provider
named Gpushare Cloud. Gpushare Cloud is located in Shanghai, China.To obtain the same
key frames, when processing the initial skeletons and depth images, we uniformly sample
along the timeline of each dynamic gesture, following common practice. The quantity of
key frames for each gesture, denoted as T, is set to 32, which aligns with the prevalent
number of key frames utilized in recent works. Before the fusion of scene flow and coarse-
grained features, the number of feature points in each frame, denoted as N, is set to 16.
During the learning of coarse-grained features, the greater the time interval ∆tc, the larger
the search radius. For example, in the first layer, the search radius is an arithmetic sequence
ranging from 0.5 to 0.6. The search radius in the second layer is twice that of the first layer.
The number of samples for adjacent points is 64. Regarding the dynamic characteristics of
source points in the source point cloud X, adjacent points have similar features. The size
of the neighborhood for each source point is denoted as K f . In other words, each source
point has similar motion features with adjacent K f points. In our work, K f is set to 12.
For the dimensions of points and the hyperparameters of losses in the feature space, this
paper retains the settings of the original work [23]. In the training of the flow estimator
SCOOP [23], the batch size is set to 16 and the epoch is set to 100. In the training of the
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FSS-GR, the batch size is set to 8, the epoch is set to 250, the learning rate is 0.001, the decay
step is 200,000, and the decay rate is 0.7.

Concerning the number of channels for MLP in M-FSS-GR, d1 is set to 128 and d3 is
set to 1024. In M-FSS-GR, d2 is 256.

FSS-GR is implemented in TensorFlow. All experiments are conducted on GPU
equipped with V100-16G. To make a fair comparison, a static branch is trained first and
followed by freezing, and finally, mainly a dynamic branch and a scene flow branch are
trained. For other hyper-parameters such as learning rate and decay step, our work keeps
the same settings of the original work [1]. Classification accuracy is selected for the perfor-
mance evaluation index as in the previous works. FLOPs (floating-point operations) and
Params (the number of parameters) are the evaluation indicators of the time complexity
and spatial complexity of model.

4.2. Performance
4.2.1. Comparison with the State-Of-The-Art (SOTA)

FSS-GR is compared with recent advanced methods. We replicate approaches [1–3,6]
on point clouds on the same GPU equipped with V100-16G.

As shown in Table 2, FSS-GR achieves the best performance with 95.2% accuracy
on SHREC’17, with gains of 1.4% and 0.8% compared to advanced works Kinet [1] and
SOGTNet [6]. As shown in Table 3, FSS-GR achieves the best performance with accuracy
of 93.5% in DHG, with gains of 0.9% and 0.3% compared to the advanced works using
SOGTNet [6] and Shen’s annotation framework [8]. This results from the fusion of fine-
grained scene flow and coarse-grained dynamic features on point clouds. Moreover,
as shown in Table 4, the proposed method, M-FSS-GR, achieves gains of 0. 5% and 0. 8% in
both static and dynamic branches compared to the method using point clouds in depth
images. The difference between M-FSS-GR and M-FSS-GR’ is the number of channels for
MLP (multi-layer perceptron). In M-FSS-GR, by fusing heterogeneous information through
more branches, we can completely extract features from different granularities, so the
accuracy can be improved.

As shown in Table 5, we compare FSS-GR with advanced GCN-based approaches in
recent years. From the perspective of modality, FSS-GR not only converts the depth images
into point clouds, but also converts the raw skeleton data into point clouds. To our knowledge,
in dynamic gesture recognition, FSS-GR is the only model to convert skeletons into point
clouds. And, it has the highest accuracy on two datasets. This shows that the conversion of
bones into point clouds is helpful to improve the accuracy of gesture recognition.

From the perspective of different modules of each model, FSS-GR and other GCN-
based approaches have similar motivations. The fine-grained features of dynamic gestures
are extracted from the scene flow branch of FSS-GR. The improved DGCNN in SOGTNet
and FPPR-PD captures local features. The accuracy of the scene flow branch is low, but the
accuracy of FSS-GR is the highest after integrating different types of features. This shows
that the fusion of scene flow and coarse-grained features is effective.

These results indicate the following two aspects:

• Compared to SOTA works, FSS-GR performs more accurate gesture recognition by
capturing the scene-flow-assisted 3D static features and motion features;

• FSS-GR characterizes the 3D motion of dynamic gestures more completely from
skeletons and depth images, due to an automatic converter and fusion between
different data granularities.



Electronics 2025, 14, 567 14 of 22

Table 2. Performance comparison (%) on SHREC’17 dataset. The results of 28 gestures are reported,
where pc is the abbreviation for point cloud; and di is the abbreviation for depth image.

Method Modality Accuracy (%)

Key frames [10] di 71.9

SoCJ+HoHD+HoWR [14] skeleton 81.9
Res-TCN [15] skeleton 87.3
STA-Res-TCN [15] skeleton 90.7
ST-GCN [16] skeleton 87.7
MAE [7] skeleton 90.0
DG-STA [4] skeleton 90.7
Shen’s Annotation Framework [8] skeleton 92.6

ST-SGCN [5] RGB → skeleton 92.9

PointLSTM [2] di → pc 93.4
FPPR-PCD [3] di → pc 93.8
SOGTNet [6] di → pc 94.4
Kinet [1] di → pc 93.8

FSS-GR (ours) di+skeleton → pc 95.2

Table 3. Performance comparison (%) on DHG dataset. The results of 28 gestures are reported, where
pc is the abbreviation for point cloud; and di is the abbreviation for depth image.

Method Modality Accuracy (%)

SoCJ+HoHD+HoWR [14] skeleton 80.0
CNN+LSTM [17] skeleton 81.1
Res-TCN [15] skeleton 83.6
STA-Res-TCN [15] skeleton 85.0
ST-GCN [16] skeleton 87.1
HPEV [50] skeleton 88.9
DG-STA [4] skeleton 88.0
MS-ISTGCN [51] skeleton 91.2
TD-GCN [52] skeleton 91.4
SBI-DHGR [53] skeleton 91.8
Shen’s Annotation Framework [8] skeleton 93.2

FPPR-PCD [3] di → pc 91.7
SOGTNet [6] di → pc 92.6

FSS-GR (ours) di+skeleton → pc 93.5

Table 4. Performance comparison (%) at different branches. The inputs of FSS-GR are skeletons and
depth images. If the modality is used in methods, we mark it with a tick (✓). Otherwise, we use an ’✗’
to mark it.

Modality: Point Clouds Accuracy (%) on SHREC’17

Method Skeleton Depth Image Total Static Dynamic Scene Flow

PointLSTM [2] ✗ ✓ 93.4 - - -
FPPR-PCD [3] ✗ ✓ 93.8 - - -
SOGTNet [6] ✗ ✓ 94.4 - - -
Kinet [1] ✗ ✓ 93.8 87.6 91.7 -

M-FSS-GR (ours) ✓ ✓ 95.2 88.1 92.5 3.0
M-FSS-GR’ (ours) ✓ ✓ 95.1 88.1 92.3 3.0
T-FSS-GR (ours) ✓ ✓ 94.5 88.1 88.3 -
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Table 5. Comparison with GCN-based approaches. The accuracy (%) of 28 gestures are reported,
where pc is the abbreviation for point cloud; di is the abbreviation for depth image.; d-coarse denotes
the dynamic coarse-grained feature; d-fine; denotes the dynamic fine-grained feature; and FSS-GR-
static denotes the static branch of FSS-GR.

Method Modality Feature SHREC(%) DHG(%)

FSS-GR-static di → pc static 88.1 86.3
FSS-GR-dynamic di → pc d-coarse 92.5 90.5
FSS-GR-scene flow skeleton → pc d-fine 3.0 3.3
FSS-GR di+skeleton → pc 95.2 93.5

SOGTNet-SA di → pc global 70.7 68.1
SOGTNet-PointNet++ di → pc global 74.8 71.4
SOGTNet-OA di → pc local 72.7 69.3
SOGTNet-DGCNN di → pc local 74.0 72.1
SOGTNet [6] di → pc 94.4 92.6

ST-SGCN [5] RGB → skeleton 92.9 -

FPPR-PCD-DenseNet di → pc global 86.0 -
FPPR-PCD-DGCNN di → pc local 91.6 -
FPPR-PCD [3] di → pc 93.8 91.7

4.2.2. Comparison at Different Branches with Different Weights

It is also observed from Table 4 that there are differences between the results of
the static, dynamic, and scene flow branches of the same method. By comparing the
overall accuracy after the aggregation of different branches, the four following points
are concluded.

• The accuracy of aggregation is 6.4% to 7.1% higher than that of the static branch.
The gain obtained by M-FSS-GR is 7.1%, which is 0.9% higher than the gain from
Kinet [1];

• The accuracy of the two methods of multi-stream FSS-GR is 4% higher on dynamic
branches than on static branches. In this case, the gain obtained by M-FSS-GR on
dynamic branches is 4.4%, which is 0.3% higher than the gain from Kinet [1];

• The overall accuracy of M-FSS-GR is up to 2.7% higher than that of dynamic branches,
and the gain is 0.6% higher than the gain from work [1];

• The accuracy of the scene flow branch of T-FSS-GR is about 3.0%.

The first three observations further validate that the proposed method is better than
previous methods due to the improvement in the ability to learn spatial information and
capture temporal information. However, as described in the last observation, it is inefficient
to use scene flow alone in classification. This work attributes this inefficiency to the fact
that tracking the movements of each hand joint over very short time intervals allows the
weighting of small motions to be increased, and these small motions have less correlation
with the type of gesture. However, these tiny motions can be complemented with normal
vectors that focus on the coarse-grained motion features, allowing the network to capture
3D motion more completely. Based on the above analysis, this work suspects that the
learning of dynamic features should take into account both coarse-grained motion features
and fine-grained motion features, and fine-grained motion features should take up a small
proportion in gesture recognition.

In order to verify the impacts of the proportion of scene flow branches on the recogni-
tion accuracy during aggregation, first the proportion of scene flow branches is set from 0.1
to 0.5 during aggregation, and the spatial branch proportions are 0.5, 0.4, and 0.3. Then,
the accuracy of M-FSS-GR and M-FSS-GR’ is compared with different proportions, and the
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results are shown in Figure 5 and Table 6. The two following points can be observed from
Figure 5.

• When the static ratio is 0.3, the performance of M-FSS-GR and M-FSS-GR’ is better;
• When the scene flow branch ratio is set to 0.1, 0.2, or 0.3, the model performance is

improved. When the static ratio is 0.3, the scene flow branch ratio is 0.3, and when the
dynamic ratio is 0.4, the performances of M-FSS-GR and M-FSS-GR’ reach their best.

The above results demonstrate that FSS-GR is effective in combining different fine-
grained dynamic features.
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Figure 5. Performance comparison (%) of multi-stream FSS-GR under different scene flow branch
ratio on SHREC’17: (a) M-FSS-GR; and (b) M-FSS-GR’. The x axis is the ratio of scene flow branch,
while y axis is the total accuracy (%).

Table 6. Accuracy (%) of multi-stream FSS-GR under different scene flow branch ratio on SHREC’17.

M-FSS-GR M-FSS-GR’

Static = 0.3 Static = 0.4 Static = 0.5 Static = 0.3 Static = 0.4 Static = 0.5

flow = 0.5 94.17 87.98 93.81 88.10
flow = 0.4 94.88 93.57 91.79 94.29 93.21 91.43
flow = 0.3 95.24 94.40 92.86 95.12 94.17 92.62
flow = 0.2 95.12 95.00 94.05 94.76 94.29 93.21
flow = 0.1 95.00 95.00 94.88 94.64 95.12 94.17

4.2.3. Comparison on Different Scene Flow Datasets

When using different scene flow datasets, the performance of the same method is
shown in Table 7, and the results show the impact of time interval ∆t and scene flow metrics
on recognition accuracy.

Differences between the performance of M-FSS-GR and M-FSS-GR’:

• The accuracy of M-FSS-GR is 1% higher on SHRECsft and SHRECsfe compared to
SHRECsfe2 and SHRECsfe3;

• The accuracy of M-FSS-GR’ is nearly 0.8% higher on SHRECsfe or SHRECsfe3 com-
pared to SHRECsfe2;

• M-FSS-GR is the best performing method on SHRECsft, SHRECsfe, and SHRECsfe2.
Compared to other methods, its accuracy is improved by 0.4 to 0.6. It indicates that
the tracking motion of points in a shorter period is beneficial for the network to learn
the motion of different fine-grained sizes;

• On SHRECsfe3, M-FSS-GR’ has the highest accuracy and outperforms the other two
methods by more than 1%.
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T-FSS-GR: Compared to Kinet [1], the accuracy of T-FSS-GR is 0.7% higher in
SHRECsfe. However, its performance is degraded on the other three datasets in which scene
flow is denoted by F∗. And, its performance deteriorates as the time interval ∆t increases.

Performance degradation results from the fact that, when fusing different fine-grained
motion features, N(16) feature points not only fail to retain the fine-grained dynamic
features, but also lose the coarse-grained dynamic features. F∗ describes the movement of
joints more accurately than F, so the difference between F∗ and normal vector is greater,
which makes the new fused motion features have a greater shift. This work tries to connect
coarse-grained or fine-grained motion features after the new motion features, but the results
show that the performance was only improved to the same level as that of SOTA, but the
computational cost of the network was already higher than that of the SOTA.

Table 7. Comparison on different scene flow datasets. The results of 28 gestures are reported.

Method Scene Flow Dataset Accuracy (%)

M-FSS-GR SHRECsft 95.0
M-FSS-GR SHRECsfe 95.2
M-FSS-GR SHRECsfe2 94.0
M-FSS-GR SHRECsfe3 93.8

M-FSS-GR’ SHRECsft 94.4
M-FSS-GR’ SHRECsfe 94.8
M-FSS-GR’ SHRECsfe2 94.0
M-FSS-GR’ SHRECsfe3 95.1

T-FSS-GR SHRECsft 94.5
T-FSS-GR SHRECsfe 93.9
T-FSS-GR SHRECsfe2 93.7
T-FSS-GR SHRECsfe3 93.2

The above results show that the performance of M-FSS-GR is superior to that of T-
FSS-GR. This is because it is better to add a scene flow branch than to fuse normal vector
and scene flow to form a new motion feature. The two motion features with different
fine-grained dimensions lose less information during the training phase.

4.3. Cost Analysis

Table 8 gives the floating-point operations (FLOPs) and the number of parameters
(Params) for FSS-GR. From the perspective of Params, the number of parameters of
our model (M-FSS-GR, M-FSS-GR’, and T-FSS-GR) is kept at a low level. In particular,
the Params of T-FSS-GR is only 1.6 M. Compared with MAE and ST-SGCN, the Params of
T-FSS-GR is reduced by 89.3% and 84.6%. This shows that FSS-GR requires less memory
for training. The Kinet has the smallest number of parameters, which is 1.5 M. The Params
of T-FSS-GR is very close to that of Kinet, which means that FSS-GR has a lower risk of
overfitting and has a stronger generalization ability.

Although FSS-GR introduces computationally expensive scene flow estimation, and
scene flow estimation is not synchronized with gesture recognition. The estimated scene
flow is used as an intermediate synthetic dataset. However, from the perspective of FLOPs,
the computational complexity of FSS-GR is high. The FLOPs of M-FSS-GR are 1.9% higher
than those of Kinet. The FLOPs of M-FSS-GR’ and T-FSS-GR decrease slightly but remain
in the same order of magnitude. This indicates that FSS-GR requires more computing
resources and time to recognize gestures.

In terms of recognition performance, the accuracies of the models M-FSS-GR, M-FSS-
GR’, and T-FSS-GR are the highest among all models. Although FLOPs are relatively high,
the Params is comparatively low. This indicates that these models control the complexity
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of the model to a certain extent while maintaining high performance. Compared to Kinet,
M-FSS-GR has an improvement in recognition accuracy, and the Params only increases by
0.8M. When comparing M-FSS-GR with other models, it demonstrates an improvement in
recognition accuracy, and the Params has decreased significantly. By comparing the FLOPs,
Params, and accuracy of different gesture recognition models, we observe that, while
maintaining a high recognition accuracy, the Params of FSS-GR is relatively low, which
validates the effectiveness of FSS-GR. In particular, the T-FSS-GR achieves a balance between
recognition accuracy and computational cost. This indicates the scalability of T-FSS-GR.

In summary, FSS-GR has a high accuracy and a low number of parameters, which is
suitable for deployment on equipment with limited resources. However, its computational
efficiency needs to be improved. In the future, we will explore lightweight architectures
to balance accuracy and FLOPs, which will be beneficial to improve the practicability
of FSS-GR.

Table 8. Comparison of FLOPs (floating-point operations) and Params (the number of parameters).

Method FLOPs Params

MAE [7] - 15 M
FPPR-PCD [3] - 4.6 M

PointLSTM-late [2] 30.6 G 2.2 M
ST-SGCN [5] - 10.4 M

Kinet [1] 255.4 G 1.5 M

M-FSS-GR 260.3 G 2.3 M
M-FSS-GR’ 259.9 G 2.2 M
T-FSS-GR 256.0 G 1.6 M

5. Conclusions
The paper proposes a novel dynamic gesture recognition method FSS-GR that fuses

fine-grained features from skeleton-based scene flow and coarse-grained dynamic features.
In the past, the point cloud generated from depth images is usually used as the input of
gesture recognition. However, some pixels have little correlation with gestures, making the
learned features redundant. And, previous methods often feed features within a spatio-
temporal neighborhood into complex networks and do not directly track point-by-point
correspondences. Scene flow is a powerful tool for extracting real 3D motion. In our paper,
the skeletons of a gesture are converted into the pairs of a point clouds to estimate the scene
flow. Depending on the time interval and the criterion for measuring the scene flow, four
scene flow datasets are generated by a new automatic converter in the preprocessing stage.
The learned scene flow and coarse-grained motion features are fused in two different ways.
Multi-stream FSS-GR adds a new scene stream branch, while T-FSS-GR fuses coarse-grained
features with scene flow in the dynamic branch. Extensive experiments demonstrate that
the scene flow estimated in the preprocessing stage is an effective complement with coarse-
grained motion features on point clouds. Interestingly, fine-grained motion features take
up a small proportion, but have some impacts on recognition accuracy improvement and
cannot be ignored. Therefore, our proposed method FSS-GR can take advantage of fine-
grained motion features from skeletons and coarse-grained features from deep images
together for the best performance gesture recognition over SOTA works. However, each
pair of point clouds that evaluates fine-grained dynamic features includes only two frames
of spatial information, which makes some of the learned scene flow almost consistent with
the static features. In the future, we will design pairs of point clouds including multi-frame
skeletons in a short time to learn complex fine-grained features. In addition, we intend to
realize the adaptation of ∆t to various gesture datasets.
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