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Abstract: Sorting in sequential data mining is significantly improved through hardware
acceleration, which becomes essential as data volume and complexity increase. This paper
presents a scalable hybrid sorting network that maintains or improves performance while
reducing computational load and hardware requirements. The network is composed of
the pre-comparison odd–even sorting network (P-OESN) and the bidirectional insertion
sorting network (BISN). A pre-comparison layer is introduced to the original OESN. This
layer aims to place larger values in the first half of the input sequence and smaller values
in the latter half. The number of iterations is reduced when the P-OESN transitions from
fully parallel execution to iterative execution. A novel pipelined BISN architecture is
proposed, which leads to enhanced operating frequency and throughput. The experimental
results show that the pre-comparison layer reduces the number of iterations by 6% to 50%.
Throughput is improved by more than four times, and operating frequency is increased
by more than two times due to the pipelined BISN. The proposed hybrid sorting network
reduces sorting time or resource usage, while enabling the sorting of large-scale data sets
that other methods cannot support.

Keywords: field programmable gate array (FPGA); hybrid sorting network; scalable
architecture; bidirectional processing; pre-comparison; pipeline technology

1. Introduction
Data mining, regarded as a vital decision support process, is used to apply machine

learning [1], pattern recognition [2,3], statistics, databases [4], and visualization technolo-
gies [5]. This allows patterns to be extracted from large datasets, supporting informed
decision-making. A significant branch of this field is sequential data mining, which focuses
on detecting evolutionary patterns in sequential data. Such data include electromagnetic
signals [6], radar navigation [7], communication streams [8], video sequences [9], robotic
perception [10], and energy data [11]. This area of research is considered crucial for enhanc-
ing situational awareness in both military and civilian contexts.

Sorting data, a fundamental task in sequential data mining [12], can be substantially
improved through hardware acceleration. As the volume and complexity of sequential data
grow, rapid and resource-efficient hardware acceleration becomes essential for improving
the efficiency of sequential data mining. In hardware-based sorting methods, including
bitonic sorting networks (BSNs) [13–16], odd–even sorting networks (OESNs) [17,18],
and insertion sorting networks (ISNs) [14,19–21], an exponential relationship is observed
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between the resources required and the size of the data [22]. Although high sorting speeds
are achieved, the exponential increase in resource utilization lowers efficiency.

To address this challenge, researchers are developing methods that reduce compu-
tational load and hardware needs while maintaining or enhancing performance. Key
contributions from recent research include the following:

1. In [23], a novel scalable hardware sorting architecture is introduced. This architec-
ture is designed to address the challenges of high-performance sorting in resource-
constrained systems. A dual-layer design is employed, consisting of the one-way
linear insertion sorter (OLIS) and the cyclic bitonic merge tetwork (CBMN). The OLIS
is based on insertion sort and is optimized for bandwidth. The properties of bitonic
sequences are utilized by CBMN to efficiently merge the sequences sorted by the
OLIS. It is demonstrated that hybrid sorting networks, compared to single networks,
significantly reduce hardware resource usage while maintaining sorting efficiency.
The scalability in [23] enables the sorting network to balance speed and resource
consumption effectively. A scalable sorting network can convert parallel sorting units
into iterative operations. As data size increases, the required number of sorting units
also grows. By iteratively reusing certain sorting units rather than simply adding
more, the network scale is reduced. Although a smaller scale may reduce throughput,
a higher clock frequency can be achieved, allowing the overall speed to remain largely
unaffected. Moreover, in resource-constrained environments, the scalability ensures
that the architecture remains feasible.

2. In [24], a hybrid pipeline sorting architecture is introduced. This architecture consists
of a bitonic sorter and cascaded insertion sorting units, forming an efficient hybrid
sorting network. The bitonic sorter generates partially ordered sequences, while the
cascaded units identify the maximum values and output fully sorted sequences in
ascending order. This network achieves the same performance as [23], but with fewer
resources. However, there is still room for optimization. The architecture incorporates
a BSN that lacks scalable characteristics, meaning it does not support the scalability.

3. Inspired by previous works [24,25], Chen et al. introduced a sorting architecture that
incorporates bidirectional processing into the cascade of insertion sorting units [26].
A novel bidirectional insertion sorting unit (BISU) is designed based on this concept.
When a segment-sorted subsequence is received by the BISU, the maximum and
minimum values are recorded. If these recorded values are updated, the original
maximum and minimum values are inserted into the sorted subsequence simultane-
ously. This ensures that the order of the subsequence is preserved. Once all segment
subsequences have passed through the cascading BISU, a fully sorted sequence is
produced. The cascading BISU units form a bidirectional insertion sorting network
(BISN), characterized by its scalability [27]. Resource consumption can be significantly
reduced by decreasing the degree of BISU parallelism. Specifically, the number of
BISUs is decreased, and a smaller number of BISUs is reused iteratively to complete
the sorting task. Although some throughput is sacrificed, a substantial reduction in
resource usage is achieved. Compared to conventional cascaded insertion sorting,
the BISU offers higher efficiency and lower resource consumption, making it a more
optimal choice.

In conclusion, the efficiency of hybrid networks compared to single networks, as well
as the scalability in maintaining speed while reducing resource consumption, is demon-
strated in [23]. In [24], a more efficient hybrid sorting network is proposed. Nonetheless,
due to the use of a basic BSN, this approach lacks scalable characteristics. In [26], the BISN
is introduced. This network could replace the unidirectional insertion network in [24],
thereby improving sorting speed and reducing resource usage.
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Based on previous research, a scalable hybrid sorting network has been proposed.
This network is composed of a pre-comparison OESN (P-OESN) and BISN, both of which
exhibit scalability. The scalability of the P-OESN and BISN imparts a scalable characteristic
to the proposed network. The scalability of these networks is attributed to the identical
nature of each comparison step, which allows for the iterative reuse of the same circuit
components during the process. The sorting speed is determined by a combination of
throughput and clock frequency. As data size increases, reusing specific circuit components
may slightly reduce throughput. However, higher clock frequencies can still be achieved,
meaning the sorting speed remains largely unaffected while resource usage is significantly
reduced. In contrast to the network introduced in [28], the P-OESN is utilized in place of
the BSN while maintaining the same time and resource complexity. To reduce the number
of iterations required for scaled-down odd–even sorting, pre-comparisons are performed
on the values in the first and second halves of the sequence. Additionally, the BISN is
employed instead of a simple unidirectional insertion sorting network. This change further
enhances the efficiency of the sorting network.

Specifically, the dataset to be sorted is first divided into several equal-length smaller
datasets. These smaller datasets are then sequentially fed into the P-OESN for sorting. The
BISN subsequently processes the partially ordered subsequences generated by the OESN,
recording the maximum and minimum values of each subsequence. Once all subsequences
have passed through the cascaded bidirectional insertion sorting units, a fully sorted
dataset is obtained. This method simplifies the large-scale data sorting task into a series of
smaller-scale sorting tasks.

To maintain a largely unaffected sorting speed and reduce resource consumption, the
scalability of the sorting network is used to control its size. Parallel operations involving
multiple identical computing units are replaced by iterative processing using fewer com-
puting units. In the P-OESN, each stage is composed of a fixed number of comparison and
exchange units, with each unit responsible for comparing and swapping adjacent elements.
In the most resource-constrained case, the entire sorting task can be completed with a
single stage of comparison-exchange units through iterative processing, greatly reducing
the hardware resource requirements. In the BISN, each stage consists of identical BISUs.
By reusing the BISU in multiple iterations, the size of the network is effectively reduced.
Although throughput may decrease with iterative processing, an optimal balance between
resource usage and clock frequency can be achieved through careful trade-offs.

Furthermore, pipeline technology [29] was applied to optimize the architecture of
the BISU, increasing its throughput. This optimization raised its operating frequency and
improved throughput. In the proposed BISU architecture, operations are completed in five
CLKs, unlike the original design, which completed all operations in two CLKs. The entire
operation is divided into four pipeline stages, and the third stage is duplicated. The other
stages are completed in one CLK, while the third stage requires two CLKs. Duplication
of the third stage was implemented to meet the two-CLK requirement, allowing parallel
processing. As a result, one set of outputs can be received by the third pipeline stage per
CLK, eliminating delays caused by resource contention.

In summary, the main contributions of this paper are as follows:

1. A scalable hybrid sorting network, composed of a P-OESN and BISN, has been
proposed to efficiently reduce resource utilization while maintaining performance.

2. Building on [24], the BSN is replaced with the P-OESN in the proposed network to
achieve greater scalability, and pre-comparisons are incorporated to reduce iteration.

3. Based on [24], the unidirectional cascade insertion sorting network is replaced with
the BISN. Meanwhile, pipeline technology is applied to the BISU architecture, where
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throughput is increased by dividing operations into four stages and duplicating the
third stage.

The remainder of this paper is organized as follows. Relevant studies are reviewed
in Section 2. The proposed sorting methodology and hardware architecture are described
in Section 3. In Section 4, the experimental results are presented and discussed, and
comparisons are made between the performance of the proposed architecture and existing
sorting designs. Finally, the conclusion of this paper is provided in Section 5.

2. Related Work
2.1. Odd–Even Sorting Network

An OESN is a type of parallel sorting network that efficiently sorts a sequence of
values through a series of comparison and exchange operations, as shown in Figure 1. The
architecture consists of a series of comparators that operate in a specific sequence. Each
comparator compares two adjacent elements and swaps them if they are out of order.

Figure 1. The architecture of the OESN from [30] for five input data elements.

The structure of an OESN is defined recursively. For n inputs, the network operates
in two phases: the odd phase and the even phase. During the odd phase, comparisons
are made between pairs of elements at odd and even indices (e.g., comparing elements
at indices 1 and 2, 3, and 4, etc.). In the even phase, comparisons occur between pairs at
even indices (e.g., indices 0 and 1, 2 and 3, etc.). This alternating pattern continues until
the entire sequence is sorted. The overall number of comparators required for sorting n
elements is approximately n(n − 1)/2, and the time complexity for sorting is O(nlogn).
This network is particularly efficient for parallel architectures, where multiple comparisons
can occur simultaneously.

The regularity of the OESN is a key feature that enables its scalability. This regularity
arises from the repetitive structure of the network, where the same sequence of operations is
applied uniformly across the elements being sorted. In practical terms, this means that each
comparator operates under the same rules, and the design can be systematically extended to
accommodate larger input sizes without fundamentally altering the underlying structure.

2.2. Bidirectional Insertion Sorting Network

The BISN operates in two phases, the recording phase and the insertion phase, as
show in Figure 2. This design uses two storage arrays: the Smaller-Value Array (SVA) and
the Larger-Value Array (LVA). Each array has a length of N/2 and a bit width matching the
input data bit width K. In the recording phase, the system compares and swaps the mini-
mum and maximum values of the segmented input subsequence with the corresponding
values in the SVA and LVA arrays. After the recording phase is completed, the insertion
phase begins. During this phase, if the minimum and maximum values from the input
subsequence are swapped with the SVA and LVA values, the data are inserted into their
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correct position within the sorted subsequence to maintain subsequence order. The archi-
tecture is organized into N/2 stages. Each stage first performs the recording phase and
then, the insertion phase. After all stages are processed, the SVA and LVA arrays store the
data in ascending and descending order, respectively. The values in SVA are guaranteed to
be smaller than those in LVA.

Figure 2. The architecture of the BISN from [26] for 15 input data elements.

The BISU serves as a fundamental component of the BISN. As illustrated in Figure 3,
the BISU consists of two registers, Min and Max, and two components, OCM and BISL. The
Min and Max registers belong to the SVA and LVA categories. They are utilized to record
the maximum and minimum values of each ordered subsequence. The OCM functions
as the controller for the BISU. It manages this unit through three signals: ENin, Vin, and
INIT. The ENin signal acts as the enable signal. The sorting units remain inactive unless
this signal is at a high level. Vin represents the Vout signal outputted from the preceding
BISU, with Vout indicating the validity of the output data. The Min and Max registers are
initialized to the maximum and minimum values that the registers can represent. During
normal operation of the BISU, the value of Min will not exceed that of Max. Only during
system initialization will the value of Min be greater than that of Max. This condition
indicates that the values within both registers are invalid. When the INIT signal is high, it
indicates the system initialization state. The OCM controls the BISU initialization based on
the INIT signal. The initialization process involves writing the minimum and maximum
values of the input subsequence into the Min and Max registers, respectively. The original
values from the Min and Max registers are then transferred into the intermediate portion of
the input subsequence.

The bidirectional insertion sorting logic (BISL) serves as the core functional unit of
the BISU. It is responsible for recording the maximum and minimum values from the
subsequence in the Max and Min registers, respectively. The BISL also manages the
insertion of replaced data back into the subsequence while maintaining its ordered state.
When determining whether to replace the data in the Min and Max registers, comparisons
are made only with the first and last values of the subsequence. This approach is possible
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because the subsequence is inherently ordered. The data being replaced are inserted
back into the subsequence according to the procedure outlined in Equation (1). In this
equation, DI represents the input subsequence, DO denotes the output subsequence, RIMIN

corresponds to the data in the Min register, RImax refers to the data in the Max register, and
P signifies the length of the subsequence.

DO[i] =



RImin DI[i] < RImin, DI[i + 1] > RImin

DI[i − 1] DI[i] > RImax, DI[i − 1] > RImax

DI[i] RImin < DI[i] < RImin

DI[i + 1] DI[i] < RImin, DI[i + 1] < RImin

RImax DI[i] > RImax, DI[i − 1] < RImax

i = 1, 2, 3, · · · , P (1)

Figure 3. The architecture of the BISU.

3. Methodology and Architecture
In the proposed method, the sequence S of length m is divided into n subsequences

SSi of length l = m/n, where i ranges from 1 to n, as illustrated in Figure 4. The parameter
l is constrained to an odd number, as required by the original definition of the odd–even
sorter. After division, all subsequences are processed by the P-OESN and BISN. The sorted
subsequences OSSi are output by the P-OESN. In the fully parallel configuration, the
P-OESN includes l sorting layers along with one layer dedicated to pre-comparison. The
BISN then receives OSSi, and the SVA and LVA arrays are produced. When m is even, m/2
valid data points are stored in each of the SVA and LVA arrays. When m is odd, m/2 valid
data points are stored in the SVA and LVA, respectively. By reversing the LVA to obtain
L̂VA and concatenating it with the SVA, the sequence S is arranged in ascending order as
S̄ = SVA,L̂VA. By reversing the SVA to obtain ŜVA and concatenating it with the LVA, the
sequence S is arranged in descending order as S̄ = LVA, ŜVA.
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Figure 4. The architecture of the proposed sorting network in a fully parallel configuration.

3.1. Pre-Comparison Odd–Even Sorting Network

In the proposed method, a pre-comparison mechanism is introduced in the initial
phase of OESN. In this mechanism, elements in the input subsequences SSi,j, i ∈ [1, n] and
j ∈ [1, l], are first compared and swapped. Specifically, SSi,t and t ∈ [1, n/2] are compared
and swapped with SSi,l−t . This step ensures that, in a sequence intended to be sorted in
descending order, the relatively larger values are placed in the upper half and the relatively
smaller values are placed in the lower half of the sequence. In a sequence intended to be
sorted in ascending order, the reverse is achieved. The worst-case scenario, where the input
sequence is in the opposite order of the desired target order, is completely avoided by the
pre-comparison mechanism. By rearranging the values within each subsequence before
proceeding with further sorting operations, it helps avoid highly unbalanced distributions
of data that would cause other sorting algorithms to degrade into their worst-case time
complexities. As a result, the method ensures a more consistent performance, even in
challenging input scenarios, effectively preventing the pitfalls of worst-case behavior and
enhancing overall efficiency.

In a fully parallel OESN, the pre-comparison mechanism does not reduce resource
requirements. Instead, an additional layer is required to implement this mechanism. The
pre-comparison layer becomes a burden under fully parallel conditions. However, in
scalable configurations, converting the fully parallel OESN to an iterative OESN allows the
pre-comparison mechanism to effectively reduce the number of iterations. This reduction is
achieved with a relatively low resource cost. As shown in Figure 5, the OESN is a scalable
network. Its scalability allows the network to be reduced and to perform sorting iteratively.

For large-scale sorting tasks, significant data transfer bandwidth is often required.
Bandwidths can reach 128 units of 32-bit data or even more. In a fully parallel OESN,
the number of layers must match the number of data items sorted in one pass. Such a
large-scale sorting network would consume extensive resources. This demand makes
implementation impractical. In these cases, the network scalability is utilized to convert it
from a fully parallel to an iterative operation.
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Figure 5. A five-input P-OESN transitions from a fully parallel configuration to an iterative configu-
ration.

In the OESN, the pre-comparison layer is retained. The subsequent layers are then
reduced to even-numbered layers. This reduction is based on OESN sorting operations.
Sorting operations involve comparison and swapping at odd positions and at even positions.
Although both parts use identical operations in equal quantities, they differ in position. To
minimize control logic and improve the operating frequency, operations at odd positions
are not interchanged with those at even positions. Thus, the reduced sorting network
retains an equal number of odd-position and even-position comparison and swapping
layers. These two parts alternate during operation.

For sorting 129 of 32 bits data, a fully parallel OESN would require 129 layers. Each
layer would contain 64 compare-and-swap units, totaling 1,677,032 bits registers and 8256
compare-and-swap units. By using an iterative approach, sorting can be achieved with only
a pre-sorting layer and two additional OESN layers. This approach requires only 516,32
bits registers and 130 compare-and-swap units. As a result, resource usage is significantly
reduced, making the design feasible.

3.2. Pipeline-Based Bidirectional Insertion Sorting Unit Architecture

The BISN is structured by connecting multiple BISUs in series. The architecture of a
BISU is presented in Figure 6. When the selection signal is 1, the 2-to-1 multiplexer selects
the signal from the upper path. When the selection signal is 0, the signal from the lower
path is enabled. A four-stage pipeline is employed. In the first pipeline stage, Min and
Max values are compared and updated with OSSi,1 and OSSi,l . Due to the ascending order
of the OSSi sequence, this process establishes the minimum and maximum values. In
the second pipeline stage, a 1-bit counter (Counter) is initialized to 1b0. When Counter
is 1b0, data from the second stage are directed to the upper bidirectional insertion unit
(BIU) in the third pipeline stage. When Counter is 1b1, data flow to the lower BIU unit
in the third stage. Control signals are generated by comparing Counter with 1b0 and 1b1.
These signals enable the write functions of the inter-stage registers, thereby regulating data
flow. Since each BIU requires two clock cycles for processing, duplication of the BIU unit is
implemented. This duplication prevents pipeline blocking and resolves structural hazards.
Additional pipeline stages are included. The second and fourth stages are responsible for
data distribution and merging, respectively. The third pipeline stage contains two BIU
units, each of which receives data from the second stage during each clock cycle. In the
fourth pipeline stage, a 1-bit counter (Counter), initialized to 1b1, controls data forwarding.
When Counter is 1b1, the output from the upper BIU in the third stage is directed to the
output register. When Counter is 1b0, the output from the lower BIU is sent to the output
register.
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Figure 6. The architecture of the proposed BISU implemented using pipelining technology.

The hardware structure of the BIU is depicted in Figure 7. In this configuration, the
l inter-stage pipeline registers, PRi where i ∈ 1 − l, from the preceding stage are used as
inputs. After two clock cycles, outputs are directed to the next stage l inter-stage pipeline
registers, ARi where i ∈ 1 − l. The BIU is constructed from l − 4 BILs and four sets of
fixed logic. Following the first pipeline stage, the sequence stored in the current inter-stage
registers no longer retains order. Comparisons occur between the first register and the Min
register, as well as between the last register and the Max register, resulting in potential
data exchanges. The BIU then reorders the sequence of length l by inserting the values
at both ends into the central section, which remains ordered with a length of l − 2. This
insertion is effectively a selection process, where values are chosen from PR1, PRi−1, PRi,
PRi+1, and PRl , ensuring that only values smaller than the two highest and larger than the
two lowest are retained. For boundary registers PR1, PR2, PRl−1, and PRl , the complete
set of five values is unavailable. Comparisons and exchanges are, therefore, performed as
follows. PR1 is compared with PR2, yielding AR1 upon exchange. PR2 is compared with
PR1, PR3, and PRl , yielding AR2 upon exchange. PRl−1 is compared with PR1, PRl−2,
and PRl , yielding ARl−1 upon exchange. PRl is compared with PRl−1, yielding ARl upon
exchange. Insertion operations for intermediate positions are managed by the BIL units.
Each BIL selects an appropriate value from PR1, PRi−1, PRi, PRi+1, and PRl for output as
ARi.

The BIL functions to select a value LO from five inputs, ensuring that LO is greater
than two of these inputs and less than the remaining two. It is assumed that inputs LI2,
LI3, and LI4 are arranged in sequential order, with LI1 less than LI5. The conditions are
structured as follows: For LI1, it is required that LI1 be greater than LI3 and less than LI4.
For LI2, the condition is met when LI2 is greater than LI5. For LI3, the requirements are
fulfilled if LI2 is greater than LI1 and LI4 is less than LI5. For LI4, compliance is achieved
if LI4 is less than LI1. For LI5, the condition is satisfied when LI5 is greater than LI2 and
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less than LI3. In accordance with this logic, the circuit displayed in Figure 8 is designed,
incorporating only comparators and two-way selectors.

Figure 7. The architecture of the BIU.

Figure 8. The architecture of the BIL.

As illustrated in Figure 9, the fully parallel BISN is converted to an iterative BISN.
This conversion effectively reduces the number of BISUs required, ensuring the feasibility
for large-scale data applications. For a sequence of length m, a fully parallel configuration
requires ⌈m/2⌉ BISU. However, in a scalable configuration, the same task can be completed
using between 1 and ⌈m/2⌉ BISU. When g BISU are used to sort a sequence of length m,
resource usage is reduced to g/m of the original requirement. Throughput is also decreased
to g/m of the original. This scalable approach, thus, reduces resource consumption at the
expense of throughput.
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Figure 9. A BISN transitions from a fully parallel configuration to an iterative configuration.

4. Experiment and Discussion
The experiments are divided into three main components: the proposed P-OESN, the

pipeline-based BISN architecture, and the scalable hybrid sorting network. In the P-OESN
section, experiments will verify if the pre-comparison functionality significantly reduces
the required iterations in odd–even sorting. In the pipeline-based BISN architecture section,
experiments will validate whether the pipelined BISU achieves higher operating frequencies
and throughput compared to the original BISU. In the scalable hybrid sorting network
section, this network will be applied in various typical scenarios, with data provided on
resource utilization, throughput, and operating frequency. Two settings, input parallelism
and the length of the data to be sorted, are considered for the typical scenarios. Common
input parallelism configurations include processing one, two, four, eight, or 16 data items
at a time. The lengths of the data to be sorted include smaller datasets of 1K items and
larger datasets of 1M items.

The experimental data are generated as random values using the random module
in a Python 3.6 environment. Data types in electromagnetic signals, radar navigation,
communication streams, and video sequences are typically represented as floating-point
numbers. Therefore, floating-point numbers were selected for the experiment. To assess
the influence of data types on system performance, metrics such as operating frequency,
resource utilization, and throughput are measured for 64-bit double, 32-bit single, and
16-bit half floating-point numbers [31].

The sorting network was implemented on the Xilinx ZC706 evaluation board [32].
The FPGA used is the Zynq-7000 XC7Z045-2FFG900C SoC, featuring two ARM Cortex-A9
MPCore processors, 218,600 LUTs, 437,200 FFs, and 19.16 Mb of BRAM.

4.1. Pre-Compare Function

To verify the effectiveness of the pre-comparison function in reducing the number of
iterations required in odd–even sorting, a comparative experiment was conducted. The
experiment compared the number of iterations needed for odd–even sorting without the
pre-comparison function against the iterations needed when the pre-comparison function
was applied. In this experiment, data were sorted using only a single odd–even sorting unit.
This sorting unit is the smallest unit capable of sorting once in odd-numbered positions and
once in even-numbered positions. Since the P-OESN is designed to sort subsequences that
are typically equal to or a multiple of the bandwidth, sequence lengths from 8 to 4096 were
selected. The sequence length began at 8 and increased in increments of 8 until reaching
4096. For each sequence length, experiments were repeated 100 times. The averages were
then calculated to eliminate the influence of random effects.
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The results of the experiment are presented in Figure 10. In Figure 10a, the x-axis
represents the sequence length, while the y-axis indicates the number of iterations required
to sort the sequence with a single odd–even sorting unit. The blue line represents the case
without the pre-comparison function, and the red line represents the case with the pre-
comparison function. As shown, fewer iterations were required when the pre-comparison
function was applied.

Figure 10b shows the number of iterations saved when the pre-comparison function
was applied, across varying sequence lengths. The x-axis represents the sequence length,
while the y-axis shows the difference in iterations needed between cases without and with
the pre-comparison function. The results show that, for a sequence length of 3920, the
most significant reduction of 104 iterations was achieved. Overall, as the sequence length
increased, the number of saved iterations also increased, despite some fluctuations in the
data.

Figure 10c presents the acceleration achieved by applying the pre-comparison function
across different sequence lengths. Here, the x-axis represents the sequence length, and the
y-axis shows the ratio of iterations between cases without and with the pre-comparison
function. For a sequence length of 8, a maximum speedup ratio of 1.4996 was observed.
As the sequence length increased, the acceleration ratio gradually decreased, eventually
stabilizing around 1.06.

Figure 10. Comparison of the number of iterations before and after the introduction of the pre-
comparison layer. (a) The number of iterations. (b) The saved number of iterations. (c) The ratio of
the number of iterations between the two cases.

4.2. Pipeline-Based Bidirectional Insertion Sorting Unit Architecture

The BISU architecture in [26] is not a pipelined design, whereas the BISU architecture
we propose is a fully pipelined design. The acceleration effect of pipeline technology on the
BISU was evaluated by comparing the architecture in [26] with the proposed architecture.
It is often found that pipeline technology increases the operating frequency of the design,
thereby improving throughput. However, the drawback of this technology is also evident,
as more resources are required. The comparison was conducted under different data
widths, types, and input sequence lengths. Common sequence lengths of 128, 256, and 512
were included. The two architectures were compared in terms of clock frequency, resource
utilization, and throughput. For the comparison of the two architectures, standard data
formats were used, specifically, half, single, and double-precision floating-point numbers.
Different data formats result in varying resource utilization, which, in turn, affects the
operating frequency and throughput. Since the BISU performs consistently across different
data contents, only the data formats were considered, without taking the actual data content
into account. The results for half, single, and double-precision floating-point numbers are
presented in Tables 1, 2, and 3, respectively. In the resource utilization section, columns
from left to right indicate the usage of slice LUTs, Slice Registers, and F7 Muxes. Other
resources, such as block RAM and DSPs, are excluded from the tables as they were not
utilized. Since FPGA resource utilization for the architecture proposed in [26] was not
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provided, the architecture was implemented on the platform used in this study to ensure
consistency in reporting.

Table 1. Overall performance analysis of the pipelined BISU and the naive BISU under half-precision
floating-point conditions.

Length
Ours [26]

Frequency Resource Utilization Throughput Frequency Resource Utilization Throughput
(MHz) LUTs Reg F7 (GB/s) (MHz) LUTs Reg F7 (GB/s)

64 470 10,149 9547 1482 117 221 4595 1640 655 27.625
128 468 20,656 19,506 2528 234 220 8003 3380 1264 55
256 453 41,360 30,795 6912 453 219 15,152 6775 3568 109.5

Table 2. Overall performance analysis of the pipelined BISU and the naive BISU under single-
precision floating-point conditions.

Length
Ours [26]

Frequency Resource Utilization Throughput Frequency Resource Utilization Throughput
(MHz) LUTs Reg F7 (GB/s) (MHz) LUTs Reg F7 (GB/s)

64 416 18,298 18,972 3136 208 202 7306 3257 1760 50.5
128 409 36,886 38,099 5376 409 203 15,081 6563 2848 101.5
256 405 77,804 75,737 13,184 810 200 29,600 13,041 6752 200

Table 3. Overall performance analysis of the pipelined BISU and the naive BISU under double-
precision floating-point conditions.

Length
Ours [26]

Frequency Resource Utilization Throughput Frequency Resource Utilization Throughput
(MHz) LUTs Reg F7 (GB/s) (MHz) LUTs Reg F7 (GB/s)

64 470 10,149 9547 1482 117 221 4595 1640 655 27.625
128 468 20,656 19,506 2528 234 220 8003 3380 1264 55
256 453 41,360 30,795 6912 453 219 15,152 6775 3568 109.5

Our proposed architecture achieves a throughput that is 4.117 times higher than the
architecture presented in [26], while using 3.396 times more resources. Specifically, the
utilization of slice LUTs, Slice Registers, and F7 Muxes is 5.563 times, 5.633 times, and 1.9921
times that of [26], respectively. The experimental results show that this increase in resource
usage leads to a throughput gain of 4.117 times. This yields a resource-to-throughput ratio
of 1.212, which demonstrates the efficiency of our proposed architecture in enhancing BISU
speed. In our design, BISU is divided into five clock cycles. Operations in the BIU that
cannot be completed in a single clock cycle are handled using module replication, where two
modules alternately execute during each clock cycle. This module replication significantly
increases resource overhead but results in a substantial improvement in operating frequency.
The architecture proposed in [26] does not employ such a multi-cycle pipelined structure.
Instead, it achieves high operating frequencies primarily through hardware advantage
TSMC 90nm. The pipeline architecture in our design enables a clock frequency that is
more than twice that of the basic implementation. Furthermore, continuous data intake
is allowed by the pipeline structure, with new data received at each clock cycle without
any waiting period. In contrast, the basic implementation can only receive new data once
the current set is fully processed, allowing data intake only every two clock cycles. This
increase in the clock frequency and data reception rate allows the proposed architecture to
deliver over four times the throughput of [26]. Although resource usage is increased, the
acceleration achieved significantly exceeds the increase in resource requirements.
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4.3. Proposed Architecture

The results reported in [24] were compared in detail with the architecture we propose.
The same experimental setup as in [24] was used for the comparison. A 32-bit unsigned
integer was chosen as the experimental data type. The test data, with lengths of 1K and 1M,
were randomly generated using the random module in a Python environment. To ensure
the objectivity of the experiments, the same dataset was used to test each architecture. The
same implementation platform, Xilinx Vivado 2017.4 on a Xilinx Virtex-7 FPGA XC7VX485T
FFG1157-2 [33], was utilized. In the experiment, P represents data parallelism, which refers
to the number of data items input to the sorting unit at one time. The input sequence
lengths, L, were set to 1K and 1M. Here, 1K refers to 1024 data elements, while 1M refers
to 1024 ∗ 1024 data elements. Total latency is the time required for the architecture to
complete the sorting process. For the proposed architecture, multiple configurations were
tested. In these configurations, C represents the number of pre-comparison layers, O
represents the number of odd–even sorting layers, and B represents the number of BISUs.
The corresponding experimental results are presented in Table 4.

Table 4. Comparison of the implementation results of various sorting networks.

Architecture P L LUT Register Frequency (MHz) Total Latency

[34] 1 1K 50,176 67,582 369 5.54 µs
[35] 1 1K 59,160 32,768 0.5 4.09 ms
[36] 1 1K 50,175 65,536 364 5.69 µs
[24] 2 1K 99,376 101,442 383 4.01 µs
[24] 4 1K 197,921 166,788 358 3.58 µs
[24] 8 1K - - - -
[24] 16 1K - - - -

Proposed (C = 0 O = 3 B = 69) 3 1K 73,283 51,867 490 5.28 µs
1M 5.47 s

Proposed (C = 0 O = 3 B = 207) 3 1M 219,287 154,953 410 2.17 s

Proposed (C = 0 O = 5 B = 41) 5 1K 57,642 50,321 488 5.25 µs
1M 5.44 s

Proposed (C = 0 O = 5 B = 159) 5 1M 219,814 190,809 406 1.68 s

Proposed (C = 0 O = 9 B = 23) 9 1K 64,733 51,632 488 5.24 µs
1M 5.44 s

Proposed (C = 0 O = 9 B = 82) 9 1M 221,799 175,308 407 1.66 s

Proposed (C = 0 O = 17 B = 13) 17 1K 81,407 62,959 488 5.25 µs
1M 5.07 s

Proposed (C = 0 O = 17 B = 39) 17 1M 217,283 164,125 411 1.55 s
Proposed (C = 1 O = 6 B = 20) 33 1M 216,704 160,698 403 1.50 s

Proposed (C = 1 O = 12 B = 11) 65 1M 243,149 198,895 392 1.48 s

The experimental results show that the total latency of the proposed architecture
is 5.24 µs under optimal condition and 5.28 µs under the worst condition when L = 1K.
Compared to [34–36], the total latency of our proposed architecture increased by 0.26 µs,
4088 µs, and 0.41 µs, respectively. In contrast, compared to [24], the total latency of our
proposed architecture decreased by 1.27 µs and 1.7 µs, respectively. In terms of resource
usage, at P = 2, the LUT and Register usage of our proposed architecture is 73.74% and
51.12%, respectively, of that in [24]. At P = 4, the LUT and Register usage is 29.12%
and 30.17%, respectively, of that in [24]. As P increases, the resource utilization of our
architecture becomes increasingly lower compared to [24]. These results demonstrate that
the scalable hybrid sorting network, composed of the P-OESN and BISN, can efficiently
reduce resource utilization while largely maintaining performance. Although the total
latency of our proposed architecture is slightly higher, it can support a variety of input data
lengths. For instance, when L = 8 and L = 16, the resources used in [24] exceed the available
limits and cannot be implemented. However, our proposed architecture remains feasible at
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P = 3, 5, 9, 17, and 33. Compared to other sorting networks, not only can we sort 1K data
items, but we can also handle 1M data items with a relatively low processing time.

5. Conclusions
The proposed scalable hybrid sorting network, composed of the P-OESN and BISN,

demonstrates significant improvements in both efficiency and scalability. The experimental
results show that resource utilization is substantially reduced while maintaining through-
put. The architecture’s ability to handle large input sizes, such as 1K and 1M, highlights its
adaptability to a wide range of applications. The integration of pre-comparison mechanisms
and iterative processing enables substantial reductions in resource consumption without
sacrificing performance. Through detailed experimentation, the proposed BISU architecture
achieves up to 4.117 times the throughput of existing designs, while utilizing only 3.396
times the resources. The proposed design outperforms several existing methods in terms
of throughput and supports larger datasets, making it suitable for high-speed, large-scale
sorting applications. Its ability to sustain high clock frequencies and efficiently reuse
circuit components underscores the practical advantages of the hybrid sorting network.
The scalability of this architecture ensures its feasibility for large-scale data applications,
where traditional designs may fall short. This hybrid sorting network not only enhances
performance but also addresses real-world constraints such as resource limitations and
varying input data lengths. Its successful implementation on FPGA platforms demonstrates
its practical feasibility, and the performance improvements make it a strong candidate
for high-speed data processing applications, including radar navigation, communication
systems, and video sequences. The scalable hybrid sorting network developed in this
study represents an advancement in hardware-based sorting technologies. By efficiently
balancing resource usage and throughput, it lays the groundwork for further optimization
and customization in sequential data mining tasks. Future work could focus on extending
this architecture to handle even larger datasets and more complex sorting requirements.
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