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Abstract: Convolutional Neural Networks (CNNs) have demonstrated high accuracy
in applications such as object detection, classification, and image processing. However,
convolutional layers account for the majority of computations within CNNs. Typically,
these layers are executed on GPUs, resulting in higher-power consumption and hindering
lightweight deployment. This paper presents a design that deploys convolutional layers on
FPGAs with adjustable parameters. In this FPGA deployment, a 4 × 4 3D sliding window
is used to traverse the data, reducing bandwidth requirements and facilitating seamless
integration with subsequent processing stages. A three-dimensional plane buffer design is
proposed, which implements data reuse. Compared to directly inputting the feature map
and performing the computation, it reduces the on-chip memory bandwidth requirement
by 75%. Additionally, a new addressing strategy is introduced to map 3D feature maps
to RAM addresses, eliminating addressing time. Due to the resource-intensive nature of
high-level synthesis (HLS) technology, HDL design is used for the convolutional layers.
This design achieves an inference speed of 121.36 GOPS at a 16-bit width, providing a
39.10 times increase in performance compared to CPU implementations.

Keywords: FPGA; CNN optimization; 3D sliding window; data reuse; data feeder;
bandwidth reduction

1. Introduction
With the rapid advancement of deep learning technologies, Convolutional Neural

Networks (CNNs) have demonstrated exceptional performance in fields such as image
recognition and item classification. However, the high computational complexity and vast
number of parameters in CNNs have limited their application in resource-constrained
environments. This issue is particularly critical in real-time processing scenarios, where ef-
ficiently executing CNNs has become an urgent challenge. Addressing this challenge, field-
programmable gate arrays (FPGAs) have recently emerged as a popular research focus for
CNN acceleration due to their programmability and parallel computing capabilities [1–3].

Currently, methods for accelerating convolution on FPGAs can be mainly categorized
into algorithm-based acceleration (e.g., Winograd, FFT, FFA) [4] and memory-based con-
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volution acceleration. The mainstream memory-based convolution acceleration methods
primarily include General Matrix Multiplication (GEMM) and sliding windows. Refer-
ences [5,6] utilize the GEMM approach, yet this method is often accompanied by complex
memory access patterns that require software platforms to manage, resulting in significant
delays [5].

The sliding window method is adopted in [7–9], and it is mainly divided into 3 × 3
and 4 × 4 traversal modes. Both [8,9] employed a 3 × 3 sliding window. In [8], due
to the inability to utilize the adder tree, the processing elements (PEs) are inefficient
during computation. Conversely, ref. [9] uses the Winograd algorithm, achieving more
efficient computation, though the specialized nature of the algorithm reduces its portability.
Additionally, the Winograd method often results in the higher utilization of DSPs and look-
up tables [10]. Kim et al. [7] employed a 4 × 4 traversal MAC array as the computational
unit, effectively combining convolution and max-pooling. However, because it is deployed
on a small FPGA board with its specific optimizations, and it employs an 8-bit quantization
strategy, its precision is lower than the widely used 16-bit standard [11–13]. Consequently,
it lacks an advantage in large-scale convolution computations.

Due to the convenience and ease of development offered by High-Level Synthesis
(HLS) tools in the implementation of convolutional layers, many works have used HLS
for this purpose [8,9,14]. However, HLS tools often consume additional resources during
synthesis [15]. For instance, Ma et al. [16] demonstrate that, by transitioning from HLS to
HDL development, a performance improvement of over two times was achieved while
utilizing a comparable amount of resources. Additionally, HLS does not facilitate a deep
understanding of the underlying resource scheduling of convolutions. Therefore, this work
adopts the HDL approach for development.

Kim et al. [7] summarized methods for feature map reuse and weight reuse, and
discusses strategies for their application with different feature map sizes and depths,
effectively hiding loading times. Nguyen et al. [10] proposed a row-based weight reuse
strategy, which requires all weights to be stored in on-chip SRAM. This approach demands
significant on-chip buffer resources and is therefore not suitable for computations involving
large-depth feature map blocks.

Traditional row-based caching methods are widely used to align rows and columns
during convolution, and have been employed in the development of 2D filters in some
earlier works. However, for multi-channel convolutions in deep learning algorithms, the
2D row cache strategy is no longer suitable. This paper proposes an addressing strategy
that extends the 2D row buffer to a 3D buffer, enabling traversal in 3D space.

Main contributions:

• Convolution computation architecture: A new addressing method is proposed based
on the 4 × 4 convolutional traversal scheme, leading to the development of a convolu-
tional computing architecture optimized for large-scale convolution. This architecture
is implemented on an FPGA (XC7Z035), making it suitable for deployment across
various neural networks.

• New Data Feeder Design: A novel 3D data feeder is introduced, which represents the
first extension of the traditional 2D row buffer. This design achieves a 75% reduction
in on-chip bandwidth requirements and significantly decreases address computation
latency for pointer addressing.

• Performance: Achieved a processing speed of 121.36 GOPS using minimal resources
at a clock frequency of 200 MHz, resulting in a 39.10 times increase in performance
compared to CPU computations.
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2. Related Work
2.1. Sliding Window

The sliding window is a widely used data acquisition pattern. For instance, with a
3 × 3 convolution kernel, it manifests as a 3 × 3 × D window sliding over the feature map
with a stride of 1. On a feature map of size W × H × Cin with padding P, the total number
of iterations required would be:

(W + P − 1)× (H + P − 1)× ⌈Cin
D

⌉ × Cout (1)

Due to the irregular nature of data access in the sliding window pattern, more pointers are
required for data fetching, leading to increased resource consumption. Additionally, this
irregular address access mode results in computational delays. When implemented on the
ZYNQ platform, the processing speed of the ARM core may become a bottleneck [17].

2.2. GEMM Acceleration and im2col Method

The GEMM convolution acceleration method uses the im2col technique to store each
window corresponding to a convolution kernel into RAM, thereby transforming the convo-
lution operation into a matrix multiplication [18]. Figure 1 is a simple schematic diagram.
This matrix multiplication is then processed using methods such as pulsed arrays (e.g.,
GOOGLE TPU) [19].

This method requires converting the weights and feature map blocks into matrix
forms, an operation that is mostly performed in software and involves complex memory
access patterns. Consequently, when implemented on heterogeneous platforms, the storage
and retrieval of data can become a bottleneck. Additionally, the GEMM method lacks data
reuse, meaning that during convolution acceleration using the GEMM method, central data
is stored nine times, leading to inefficient memory utilization.
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Figure 1. GEMM computation and im2col storage strategy.

2.3. Row Buffer Strategy for 2D Convolution

When performing convolution operations, if the kernel size is K × K, it is necessary
to ensure that K × K data points can be fed into the convolver within one cycle. However,
the bandwidth between memory and the computing structure might not be sufficient to
meet this requirement. Therefore, 2D convolution relies on FIFO to achieve data reuse,
which reduces the bandwidth demand between the storage structure and the computing
structure [20,21], enabling multiplication to be performed in one cycle. Using this method as
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the data feeding structure also reduces the need for address pointer calls and computations,
facilitating image traversal in a simple manner.

Take 3 × 3 convolution as an example. As depicted in Figure 2, on a 2D plane, the
specific approach is to store the data from the first two rows into a buffer while inputting
one data point at a time. Then, when the data for the third row are input, three data
points are fetched from two buffers and one RAM input, and then stored in registers. After
two buffer cycles, a 3 × 3 window can be obtained when the third data point is input.
Additionally, each data point is subsequently transferred to the buffer of the previous row
upon input, which is easily implemented when RAM is configured in FIFO mode.

delay_line1 in traversal row1

(discard in traversal row2)
1 W

delay-line2 in traversal row1

(delay-line1 in in traversal row2)
1 W

fifo_data_input in traversal row1

(delay-line1 in in traversal row2)
W

2 3 4

2 3 4

1 2 3 4

Processing

Array

W1 2 3 4 fifo_data_input in traversal row2

…

Cycle 1+W-2 to Cycle 2*(W-2)

3×3 input feature map

Traversal row 1

Traversal row 2

Cycle 1+(H-3)*(W-2) to Cycle (H-2)*(W-2)
Traversal row H-2

Cycle 1 to Cycle W-2

Figure 2. Line buffer strategy, used to reduce on-chip bandwidth.

Previous studies have implemented convolution operations on a 2D plane. This paper
proposes an addressing strategy that extends this method to feature maps with a depth
dimension. This reduces data bandwidth and avoids complex pointer calculations during
the execution of depthwise convolutions.

3. Design
This section introduces a hardware design that employs a 4 × 4 sliding window strat-

egy for traversal. It proposes a new surface buffer strategy and describes a corresponding
address calculation method.

3.1. The 4 × 4 Sliding Window

The 4 × 4 sliding window structure was proposed in 2023 by reference [7]. In this
structure, a 4 × 4 × D window is used as the traversal unit when performing 3 × 3 con-
volution operations. Each feature map window executes four convolution operations,
effectively performing a stride-1 traversal with a stride-2 execution. This approach reduces
the required traversal steps in both the height and width dimensions by 50%, allowing the
traversal of the entire feature map block in just a quarter of the time.

As depicted in Figure 3, in this traversal mode, the 3 × 3 × D weights are replicated
four times to align with the 4 × 4 × D feature map blocks. The central four data points are
reused four times, while the peripheral (non-corner) data points are reused twice, reducing
the bandwidth requirement by 55.56% (calculated as 1 − 4×4

3×3×4 ). Additionally, this strategy
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can seamlessly integrate with 2 × 2 pooling layers, facilitating a high-level integration of
processing elements (PEs). The 4 × 4 sliding window feeds four times the data into the
multiplication array in each cycle, resulting in higher DSP resource utilization.

layer = D

traversal stride = 2

calc stride = 1

……

Figure 3. Design and processing sequence of a 4 × 4 convolution window.

We have modified the PE in our method by replacing the LEAKYRELU activation unit
with RELU. This change leverages the properties of two’s complement, making activation
calculations more convenient. Additionally, tour design adopts a 16-bit architecture and em-
ploys the LSQ (learned step size quantization) strategy to achieve higher precision [22,23].
The quantization parameters used by the LSQ method are derived from training.

As illustrated in Figure 4, the overall design of the computational units is similar to [7].
We declare 3 × 3 × D DSP multipliers to form a MAC array and then replicate this array
four times to align with each 3 × 3 structure within the 4 × 4 window. In this work, we set
D to 16, as most convolutional neural network depths are common multiples of 16. Each
MAC array contains 144 DSPs, with each DSP multiplying 16-bit weights and feature pixels.
In total, 576 DSPs are generated during synthesis. Given our ample on-chip DSP resources,
there is no need to use LUT resources for fitting and mapping.

∑

DATA_IN
4×4×D

WEIGHT 3×3×D

RELU

Processing Element

MAXPOOL
(selectable)

DATA_OUT

× ⊕

2×2×D

last cycle

else

Figure 4. The adopted PE structure.
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After each MAC multiplication array, an adder tree is connected to sum the computed
data. Subsequently, an activation and quantization module is employed, leveraging the
properties of two’s complement to quantize and activate the data. After convolution, a
4 × 4 window is transformed into a 2 × 2 matrix, which can then be directly fed into the
max pooling module for pooling operations.

3.2. Plane Buffer Strategy

Before introducing the surface buffer strategy for a 4 × 4 window, we first present the
classical plane buffer strategy for a 3 × 3 window convolution. In the 3 × 3 × D buffering
strategy, we introduce two W × 1 × D buffers and define six registers. Using 1 × 1 × D as a
data unit, we input one data unit at a time.

At the start of the convolution, 1 × 1 × D data units are sequentially extracted from
RAM and input into the buffer. After the data input for the second row is complete, the
data of size W × 2× D is stored in the plane buffer. When the third row of data is input, the
corresponding data from the first two buffers is extracted and stored into registers. When
traversing to the third row and third column, the six data points in the registers, the two
data points in the FIFO, and the one data point from RAM are combined into a 3 × 3 × D
data block and fed into the convolver.

With each data input, the 1 × 1 × D data unit fetched from RAM is written into the
rear plane buffer, the data from the rear buffer is written into the front buffer, and the data
from the front buffer is discarded. The buffer operates using a FIFO structure, making it
easy to handle data insertion and deletion. During the traversal from the third row onward
(including the third row), the total data in the buffers remain constant. After traversing
each W × H × D sized feature map, the next W × H × D sized feature map is processed,
requiring a total of ⌈Cin

D ⌉ such operations.
Next, we introduce the traversal strategy for the 4 × 4 window. As shown in Figure 5,

to implement the sliding window for a 4 × 4 structure while reducing the bandwidth
requirements between memory and computational structures, a row buffer is declared to
cache the W × 2 × D space. For the 4 × 4 × D structure, we use 2 × 2 × D as a data unit
and feed it into the FIFO buffer. Two registers are declared to temporarily cache data from
the previous cycle.

Similarly to the 3 × 3 case, at the start of the convolution, the 2 × 2 × D data units
are sequentially extracted from RAM and input into the buffer. Once the traversal of the
W × 2 × D space is complete, the data from the next two rows are input as 2 × 2 × D units.
Meanwhile, the corresponding column data in the buffer are extracted, aligned, and stored
in the registers. This operation is repeated in the next cycle, producing 2 × 2 × 4 × D data,
which are then concatenated into 4× 4× D data. The 4× 4 data are split into four 3× 3× D
blocks and fed into four MAC arrays for convolution. The traversal mode can be referenced
in Figure 6.

Each time a 2 × 2 × D data unit is output, it is also written into the buffer. Thus, after
completing each W × 2 × D traversal, the subsequent two rows of data can be processed
seamlessly. After traversing each W × H × D feature map, the next W × H × D feature map
is processed, requiring a total of ⌈Cin

D ⌉ such operations. Therefore, the step size for reading
data to the right and downward is 2, while the computational step size is 1, reducing the
traversal time by 75% compared to the 3 × 3 mode.
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IFM BLOCK

D

DATA UNIT
2×2×D

Width
PLANE BUFFER

Width

Height

D

Figure 5. Buffer design of the data unit and plane Buffer.

Store on the FIFO

2×2×D

Figure 6. Implementation of the frame buffer.

3.3. Addressing and Storage Strategy

When processing data, the output order for the weight reuse strategy [10] is from
width to height to depth, which is inconsistent with our data extraction sequence. Using
address pointers during data extraction would result in a significant amount of computation,
causing pipeline stalls. To enable burst data extraction and avoid the excessive usage of
pointers during reads, we implement an addressing strategy where the pixel addresses are
calculated and assigned at the end of computation. By rectifying the addresses as data are
input, we can avoid address computation during data extraction, thereby enhancing the
efficiency of the sliding window.

The specific address calculation strategy is as follows:
The following are given in the direction of increasing addresses:

• Loop 1: Increase within the same pixel up to the D-th channel.
• Loop 2: Traverse a 2 × 2 plane in a left-to-right, top-to-bottom order for 1 × 1 × D.
• Loop 3: Traverse a W × H × D block for 2 × 2 × D.
• Loop 4: Traverse a W × H × Cin block for W × H × D

As illustrated in the Figure 7:
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Width

Height

Loop1

Loop2

Loop3

Loop4

D

DATA UNIT
2×2×D

D

Channel input

Figure 7. Addressing and storage strategy.

For different padding sizes, simply leave varying numbers of address spaces around
the feature map block. The calculation mode remains the same as described.

3.4. Buffer Structure Design

To ensure the design is free from bubble cycles and pipeline stalls, the following buffer
structures are necessary.

3.4.1. DDR Weight Buffer

To enable the extensive reuse of weights, feature map blocks are stored in on-chip
SRAM, while weights are fetched from DDR. To feed K × K × D weights in a single cycle,
a buffer is declared to store and concatenate DDR weights, allowing simultaneous DDR
weight fetching during computation. This approach ensures that weights are ready by the
time that computations are performed, particularly when the feature map size exceeds a
certain threshold.

The feature map size that can be hidden must satisfy the following inequality:

⌈W
2
⌉ × ⌈H

2
⌉ ⩾ 3 × 3 × D × N

Vdata
(2)

where Vdata represents the interaction rate between DDR and on-chip storage, measured in
bits/CLK, N represents the number of bits, i.e., the precision, in the computation process.
Under this condition, the computation time exceeds the weight fetching time, enabling
the DDR fetching time to be effectively hidden. For D set to 16 channels and Vdata at
32 bits/CLK, the minimum feature map size that can be hidden is 17 × 17.

Considering that larger feature maps in most convolutional neural networks require
more operations, this method becomes increasingly suitable as the feature map size grows.

3.4.2. Concatenation Transfer Buffer

In our design, using 2× 2× D as an input corresponds to 3× 3× D weights. To handle
this, we utilize LUTRAM to buffer and combine two data units stored on registers, one
FIFO data unit, and one RAM data unit. For each pixel in a 4 × 4 × D block, we define
a D × 16 bit register, allowing access to 16 pixels. These pixels can then be fed into four
MAC arrays.
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3.5. Overall Structural Framework

In this design (Figure 8), a ping-pong operation RAM is used to perform data read
and write operations. Feature maps are stored in on-chip read RAM to enable extensive
weight reuse. The address calculation module computes the addresses for output data in
real-time and stores the read-out data into write RAM. FIFO and registers are used for plane
buffering to implement a sliding window. On the PS side, DDR reads out weights while
convolution computations are performed and stores them in the weight buffer. The ARM
core transmits control signals via AXI-lite at the start of computation to control parameters,
such as the size of the feature map, whether to perform pooling layers, and padding size.
The computation module PE consists of four MACs, an activation module, and a max
pooling module. After each MAC array, an adder tree is connected to reduce the instability
caused by high fan-out.

DDR

RAM MAC
3×3×16

MAC
3×3×16

MAC
3×3×16

MAC
3×3×16

ADDR_SHIFT

Quantization 
& Activation

MAXPOOL

Calculation 
Module

PLANE 
BUFFER

REG

DDR 
BUFFER

4×4 
Alignment

Buffer 
Module

Process 
Module

ADDER 
TREE

ADDER 
TREE

ADDER 
TREE

ADDER 
TREE

Figure 8. Overall structural framework.

It is worth noting that, if the feature map size is large, we prefer to store it in DDR.
Even in this scenario, our approach can still reduce the bit-width communication between
DDR and the computing structure by 75%.

4. Evaluation and Experiments
4.1. Evaluation

Firstly, we employed a 4 × 4 traversal mode to compute 27 pixel locations while
transmitting 16 pixel locations. Compared to the traditional 3 × 3 traversal mode, this
approach reduces the on-chip bandwidth requirement by 55.56%. Next, by utilizing plane
buffers for data reuse, we decomposed the 4 × 4 × D window into a 2 × 2 × D × 4 pattern,
further reducing the bandwidth requirement by 75%. Figure 9 presents a comparison of
the attributes of different traversal modes.

By avoiding traversal operations with the ARM core, we eliminated the read delay
caused by the ARM core’s address pointer traversal. Our approach achieves extensive
data reuse through the 4 × 4 window size transmission and line buffer scheme. Com-
pared to the im2col operation in GEMM, our method reduces storage space usage by
approximately 88.89%.
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Figure 9. Evaluation.

4.2. Performance and Resource Utilization

We deployed our design on the ZYNQ 7035 FPGA board. Using the second layer of
the YOLOv3-tiny model (104 × 104 × 16) as an example, we achieved an inference speed
of 121.36 GOPS with a 16-bit width. The resource utilization is shown in the Table 1.

Table 1. Resource utilization.

Resource Estimation Available Utilization %

LUT 9653 171,900 5.62
LUTRAM 1024 70,400 1.45

FF 15,823 343,800 4.60
BRAM 214.50 500 42.90

DSP 576 900 64.00
BUFG 3 32 9.38

MMCM 1 8 12.50

4.3. Comparison with CPU and GPU Platforms

We also computed the second layer of the YOLOv3-tiny model on both CPU and GPU
platforms to evaluate their computational efficiency. To account for the startup latency
typically observed in GPU and CPU computations, we replicated the test data ten times
and used the stable middle results as our computation time for a fairer comparison. The
result is shown in the Table 2.

Table 2. Comparison with CPU and GPU platforms.

Device Intel Core i5 10s Nvidia Tesla P100 This Work

Platform type CPU GPU FPGA

Precision (bit) double (64) double (64) uint16 (16)

Clock frequency 2.0/3.8 GHz 1328 MHz 200 MHz

Latency 67.80 ms 0.45 ms 1.73 ms

Total clock cycles 135.6 M 597.6 K 346.8 K

GOPS 3.10 GOPS 467.64 GOPS 121.36 GOPS

According to [5], power consumption actually depends on the selected platform, mak-
ing power consumption comparisons less meaningful. Our data show that our accelerator
achieves a 39.10 times speedup over the CPU. While it does not outperform the Tesla P100
in terms of performance, our design operates at a clock frequency of 200 MHz, significantly
lower than the P100’s 1328 MHz, and occupies considerably fewer computational resources
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than Tesla P100. Since lower precision does not lead to noticeable degradation [24], we
quantize data to unsigned 16-bit integers for on-chip transfer, enhancing on-chip cache
resource utilization efficiency compared to both CPU and GPU.

4.4. Comparison with Other Accelerators

To demonstrate the performance of our approach in convolution acceleration, we
compared it with recent convolution accelerators, evaluating both performance and
resource utilization.

Table 3 outlines the performance of various FPGA accelerators under different resource
usage conditions. Since our design is structurally optimized for classic convolution (CONV),
acceleration methods based on algorithms like Winograd and FFT are not included in the
comparison. Refs. [5,6] employed the GEMM method. Adiono et al. [5] used compressed
matrix storage for data, which results in higher memory usage and longer data processing
times. Additionally, the DDR read time is not adequately hidden, causing pipeline stalls.
Ahmad et al. [8] used a 3× 3 sliding window to traverse the data, and employed a pipelined
architecture to eliminate issues related to offloading data to a soft core. However, this
architecture requires 2304 DSPs, making it unsuitable for deployment on smaller FPGA
boards. Compared to [7], our data traversal model reduces the processing time on the
soft core, achieving a 27.66% performance improvement. This design processes data layer
by layer, resulting in lower LUT and FF usage compared to the implementation of an
entire accelerator. This layer-by-layer approach allows the convolution layer to be invoked
multiple times across different neural networks.

Table 3. Comparison with other accelerators.

Article [1] [3] [4] [2] Ours

Year 2019 2020 2021 2023 2024

Platform XC7Z020 VC707 Ultra96 V2 A7-100T XC7Z035

CNN model MNIST YOLOv3-Tiny YOLOv3-Tiny YOLOv3-Tiny YOLOv3-Tiny-Layer2

Clock (MHz) N/A 200 200 100 200

LUTs 9.4 K 48.6 K 27.3 K 50.2 K 9.6 K

FFs 35.1 K 93.2 K 38.5 K 58.1 K 15.86 K

BRAMs 9 141 (18 K) 248 185 214.50

DSPs 168 2304 242 240 576

It is worth noting that our work primarily focuses on optimization at the resource
scheduling level. Therefore, performance improvements are mainly derived from prevent-
ing data read times from becoming a computational bottleneck, without using additional
LUTs and DSPs. Compared to GEMM-based convolution accelerators, our architecture is
more advantageous for storing larger and deeper feature map tiles directly in on-chip RAM,
without excessive resource consumption. This makes it more suitable for implementing
small-to-medium-sized convolutional networks.

5. Conclusions
In this paper, we first made several improvements based on a 4 × 4 sliding window

architecture, including enhancing the precision to 16 bits and utilizing the properties of
two’s complement for activation. We proposed a new plane buffer structure, expanding the
original 2D filter into the depthwise convolution direction, achieving a 75% performance
improvement. To accommodate the new buffer structure, we designed a new address
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computation method for the 4 × 4 window mode, allowing address computation and
data storage to be performed in parallel to avoid performance bottlenecks during data
loading. This work was tested on YOLOv3-Tiny-Layer2, achieving a peak processing speed
of 121.36 GOPS at a clock frequency of 200 MHz. Future work can leverage the proposed
method to change the feature map storage from RAM to DDR, enabling the extension
to larger feature maps or higher-dimensional convolutions. In this case, the method can
effectively reduce the DDR read/write bandwidth requirements as well.
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