
Academic Editors: Xiaodong Yu,

Shaoyi Huang and Zhen Xie

Received: 2 December 2024

Revised: 20 January 2025

Accepted: 30 January 2025

Published: 1 February 2025

Citation: Silva, B.; Lopes, L.G.;

Mendonça, F. Multithreaded and

GPU-Based Implementations of a

Modified Particle Swarm

Optimization Algorithm with

Application to Solving Large-Scale

Systems of Nonlinear Equations.

Electronics 2025, 14, 584.

https://doi.org/10.3390/

electronics14030584

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Multithreaded and GPU-Based Implementations of a Modified
Particle Swarm Optimization Algorithm with Application to
Solving Large-Scale Systems of Nonlinear Equations
Bruno Silva 1,2,3 , Luiz Guerreiro Lopes 3,4,* and Fábio Mendonça 4,5

1 Doctoral Program in Informatics Engineering, University of Madeira, 9020-105 Funchal, Portugal;
bruno.silva@madeira.gov.pt

2 Regional Secretariat for Education, Science and Technology, Regional Government of Madeira,
9004-527 Funchal, Portugal

3 NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), 2829-516 Caparica, Portugal
4 Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal;

fabioruben@staff.uma.pt
5 Interactive Technologies Institute (ITI/LARSyS) and ARDITI, 9020-105 Funchal, Portugal
* Correspondence: lopes@uma.pt; Tel.: +351-291-705-200

Abstract: This paper presents a novel Graphics Processing Unit (GPU) accelerated imple-
mentation of a modified Particle Swarm Optimization (PSO) algorithm specifically designed
to solve large-scale Systems of Nonlinear Equations (SNEs). The proposed GPU-based
parallel version of the PSO algorithm uses the inherent parallelism of modern hardware
architectures. Its performance is compared against both sequential and multithreaded
Central Processing Unit (CPU) implementations. The primary objective is to evaluate the
efficiency and scalability of PSO across different hardware platforms with a focus on solving
large-scale SNEs involving thousands of equations and variables. The GPU-parallelized
and multithreaded versions of the algorithm were implemented in the Julia programming
language. Performance analyses were conducted on an NVIDIA A100 GPU and an AMD
EPYC 7643 CPU. The tests utilized a set of challenging, scalable SNEs with dimensions
ranging from 1000 to 5000. Results demonstrate that the GPU accelerated modified PSO
substantially outperforms its CPU counterparts, achieving substantial speedups and con-
sistently surpassing the highly optimized multithreaded CPU implementation in terms of
computation time and scalability as the problem size increases. Therefore, this work evalu-
ates the trade-offs between different hardware platforms and underscores the potential of
GPU-based parallelism for accelerating SNE solvers.

Keywords: metaheuristic optimization; swarm-based algorithms; parallel GPU algorithms;
nonlinear equations systems

1. Introduction
Particle Swarm Optimization (PSO) [1] is among the most prominent metaheuristic

algorithms in the literature [2] alongside genetic algorithms [3], differential evolution [4,5],
and ant colony optimization [6]. PSO has garnered substantial attention across various
research fields due to its simplicity, accelerated convergence, and robust effectiveness in
optimizing a wide range of real-world problems [7]. Consequently, numerous PSO variants
have been proposed to enhance its optimization performance and address the limitations
of the standard PSO in specific contexts. An example of these variants is the algorithm
proposed by Jaberipour et al. [8], which modifies the PSO approach to tackle Systems of
Nonlinear Equations (SNEs) more efficiently.

Electronics 2025, 14, 584 https://doi.org/10.3390/electronics14030584

https://doi.org/10.3390/electronics14030584
https://doi.org/10.3390/electronics14030584
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6032-2317
https://orcid.org/0000-0002-6145-8520
https://orcid.org/0000-0002-5107-3248
https://doi.org/10.3390/electronics14030584
https://www.mdpi.com/article/10.3390/electronics14030584?type=check_update&version=1

Electronics 2025, 14, 584 2 of 36

Addressing these SNEs is one of the most complex challenges in numerical analysis,
particularly for large-scale systems. These difficulties stem from the inherent complexity of
nonlinear relationships, potential non-convexities, and the significant computational cost
required to obtain accurate solutions. Furthermore, in large-scale SNEs, increased dimen-
sionality imposes a substantial burden, resulting in a notable rise in computational cost.

Iterative numerical techniques, such as Newton’s method and its variants, are among
the most widely used solvers for SNEs [9]. However, the effectiveness of these methods
can be considerably dependent on the initial approximation of the solution [10,11], which
can lead to suboptimal solutions, nonconvergence [12], or an estimation process that is
excessively time consuming [13]. Additionally, as the dimensionality of SNEs increases,
the computational burden grows rapidly, considerably raising both time and resource
requirements. In large-scale SNEs, this dimensional growth amplifies the challenge of
finding optimal or near-optimal solutions within a feasible timeframe. Consequently, the
development of more efficient computational approaches is crucial and encompasses the
use of both enhanced solvers and more effective implementations.

Metaheuristic algorithms, such as PSO, have gained increasing attention for their
effectiveness in addressing complex numerical challenges, including their successful ap-
plication to solving SNEs (see, e.g., [14–19]). Furthermore, such approaches offer several
advantages over traditional methods. Metaheuristic algorithms can efficiently handle
large, high-dimensional problems, yield near-optimal solutions in a timely manner, and
do not rely on accurate initial approximations for success. Instead, they perform global
searches using randomly generated starting points. While metaheuristic algorithms cannot
guarantee exact solutions, they are typically less computationally demanding, making
them more efficient solvers.

However, using these approaches alone is not enough to considerably reduce the time
needed to solve large-scale problems with thousands of equations and variables. To achieve
substantial reductions in computational time, more efficient implementation strategies
are required, particularly through the use of high-performance computing techniques,
such as heterogeneous architectures. This combination enables the study of more complex
problems that would otherwise be impractical with traditional approaches.

This work proposes a novel enhanced Graphics Processing Unit (GPU)-based paral-
lelization of a variant of the PSO algorithm optimized for solving SNEs, called PPSO [8],
which is capable of handling large-scale problems effectively. The proposed GPU paralleliza-
tion methodology accelerates computation while preserving the core operating mechanisms
of the standard approach. In addition, a performance-optimized multithreaded version of
the algorithm is proposed, which also retains the fundamental operating principles of the
standard algorithm. This alignment ensures that both the GPU-based and multithreaded
implementations maintain the theoretical consistency of the original, including its conver-
gence properties. As a result, the comparison of computation times across the different
implementations becomes more robust and meaningful, as the underlying mechanisms
remain unchanged, enabling a fairer evaluation of performance improvements in efficiency,
scalability, and execution speed. The effectiveness of these approaches is assessed by
comparing the GPU parallel implementation of the PSO variant with the sequential and
multithreaded versions, evaluating overall computation time and speedup across different
hardware architectures and problem sizes (i.e., the number of equations and variables in
each system).

To solve SNEs using metaheuristic algorithms, they must first be transformed into an
optimization problem. Consider an SNE consisting of n nonlinear equations with n un-
knowns, represented in its general vector form as f (x) = 0, where the equations that make
up the system are expressed as fi(x1, . . . , xn) = 0, i = 1, . . . , n. A common approach to

Electronics 2025, 14, 584 3 of 36

solving such a system involves reformulating the SNE into an n-dimensional nonlinear min-
imization problem. In this paper, the objective function is defined as ∑n

i=1| fi(x1, . . . , xn)|,
which represents the sum of the absolute values of the residuals. By minimizing this objec-
tive function, the goal is to find a solution where the residuals, and thus the components of
f (x), are driven as close to zero as possible. This approach facilitates the use of optimization
techniques to solve SNEs, providing a systematic framework for addressing such systems
in diverse contexts.

This article is organized as follows: Section 2.3 provides a review of previous research
and methodologies related to PSO and its applications in optimization, focusing particularly
on advancements in parallel and multithreaded implementations. Section 3 provides a
detailed overview of the PSO algorithm and the proposed multithreaded and parallel
approaches. The principles and mechanics of the PSO algorithm, including its variant
for solving SNEs, are discussed in Section 2.1, while the proposed multithreaded and
GPU-based parallelizations are presented in detail in Sections 3.2 and 3.3, respectively.
Section 4 outlines the computational experiments conducted to evaluate the performance
of the different implementations, detailing the specifications of the experimental setup
(Section 4.2) and the characteristics of the selected test problems (Section 4.2). Section 5
presents the results of the computational experiments and provides a detailed discussion
of the findings. Finally, Section 6 summarizes the key findings of the article, including
potential areas for further research.

2. Background and Related Work
PSO is a well-established optimization algorithm known for its simplicity and ef-

ficiency in solving complex problems. This section provides an overview of the PSO
algorithm and explores its application to SNEs through a variant known as PPSO. Addi-
tionally, the related work in the field is reviewed with a focus on parallelization approaches
developed to enhance performance.

2.1. Particle Swarm Optimization Algorithm

The PSO algorithm is an optimization technique inspired by natural social behaviors,
such as bird flocking or fish schooling. Introduced in 1995 by James Kennedy and Russell
Eberhart [1], PSO is a computational method that solves optimization problems by mim-
icking the collective behavior of particles moving through a search space. The algorithm
exploits the collective dynamics of the swarm to navigate the solution space, converging
toward the optimal solution. Through the exchange of information derived from their
individual experiences, the particles can enable the swarm to effectively identify global
optima even in complex, high-dimensional problem spaces.

In PSO, each solution is represented by a particle, which has both a position and a
velocity. The position corresponds to a candidate solution, while the velocity dictates how
the particle moves through the solution space. As particles navigate through the search
space, they explore potential solutions, adjusting their positions based on their individual
experiences as well as the collective knowledge of the swarm.

The velocity of each particle is updated based on two primary influences. The cognitive
component c1 drives the particle toward its own best-known position (referred to as its
personal best or pBest), and the social component c2, which attracts the particle to the best
position found by any particle in the swarm (the global best gBest).

Given a design variable index v ∈ {1, . . . , numVars}, where numVars is the number
of decision variables, a population index p ∈ {1, . . . , popSize}, where popSize is the popu-

Electronics 2025, 14, 584 4 of 36

lation size, and an iteration index i ∈ {1, . . . , maxIters}, where maxIters is the maximum
number of iterations, the velocity update Vi+1

p,v is determined using the following equation:

Vi+1
p,v = ωVi

p,v + c1ri
1,v(pBesti

p,v − Xi
p,v) + c2ri

2,v(gBesti
v − Xi

p,v), (1)

where ω is the inertia weight, ri
1,v and ri

2,v are random values between 0 and 1, and Xi
p,v is

the current position of particle p at dimension v.
The inertia weight parameter regulates the contribution of the previous velocity to the

current velocity update, balancing the exploration and exploitation abilities of the swarm.
A high inertia weight enables particles to explore the search space more freely, promoting
a broader search and helping avoid becoming trapped in local optima. In contrast, a low
inertia weight leads to smaller adjustments in the particles’ velocity, resulting in faster
convergence to the best solution found.

After updating the velocity, the particle’s updated position Xi+1
p,v is obtained in the

following way:
Xi+1

p,v = Xi
p,v + Vi+1

p,v . (2)

The pseudocode outlining the main steps of the PSO algorithm is depicted in
Algorithm 1, which includes the initialization phase, the main loop with updates to veloci-
ties, positions, personal bests, and global best along with the termination condition.

Algorithm 1 Pseudocode for standard PSO

1: /* Initialization */
2: Initialize numVars, popSize and maxIters;
3: Initialize particles X and velocity vectors V;
4: Evaluate fitness values f (X);
5: Initialize pBest;
6: Determine gBest;
7: i← 1;
8: /* Main loop */
9: while i ≤ maxIters do

10: for p← 1, popSize do
11: for v← 1, numVars do
12: Update velocity Vi

p,v using Equation (1);
13: Apply velocity constraints Vi

p,v;
14: Update position Xi

p,v using Equation (2);
15: Apply boundary constraints Xi

p,v;
16: end for
17: Evaluate fitness value f (Xi

p,v);
18: if f (Xi

p,v) < f (pBesti
p,v) then ▷ Update pBest

19: pBesti
p,v ← Xi

p,v;
20: end if
21: end for
22: for p← 1, popSize do
23: if f (pBesti

p,v) < f (gBesti
v) then ▷ Update gBest

24: gBesti
v ← pBesti

p,v;
25: end if
26: end for
27: i← i + 1;
28: end while
29: Output the best solution found and terminate.

The velocity and boundary constraint actions, as indicated in lines 13 and 15 of Al-
gorithm 1, are implemented to control the behavior of particles during the optimization

Electronics 2025, 14, 584 5 of 36

process by constraining their positions to specified ranges. These functions ensure ef-
fective exploration of the search space by preventing particles from moving too quickly,
which might cause them to overshoot optimal solutions, or from exceeding the defined
search domain.

2.2. PSO for Solving SNEs

Jaberipour et al. [8] proposed a modified version of the PSO algorithm aimed at
enhancing its effectiveness in solving complex SNEs. This new variant, referred to as PPSO,
improves upon the update mechanism of the original PSO to address some of its limitations,
such as rapid convergence during the initial search phase followed by slower progress and
an increased risk of getting trapped in local minima. The authors successfully compared the
results obtained using the PPSO algorithm with those produced by standard SNE solvers,
including the Newton method, and demonstrated the efficiency of PPSO.

In PPSO, the cognitive and social components are more dynamic, introducing greater
randomness and flexibility compared to the fixed scaling factors in the original PSO. These
modifications aim to help the particles escape local minima and improve the overall
convergence by allowing particles to receive more flexible influence from pBest and gBest.

The velocity update equation for PPSO is as follows:

Vi+1
p,v = (2ri

1,v− 0.5)Vi
p,v + (2ri

2,v− 0.5)(pBesti
p,v−Xi

p,v) + (2ri
3,v− 0.5)(gBesti

v−Xi
p,v), (3)

where ri
1,v, ri

2,v, and ri
3,v are random values between 0 and 1.

To enhance the adaptability of the PPSO algorithm and achieve a more dynamic
balance between exploration and exploitation during the search, the inertia weight is
updated dynamically (instead of being constant or linearly decreasing), as indicated by the
following equation:

ωi+1 = (2ri
4,v − 0.5)(gBesti

v − pBesti
p,v) + (2ri

5,v − 0.5)(gBesti
v − Xi

p,v), (4)

where ri
4,v and ri

5,v are random values between 0 and 1.
Rather than relying solely on the current position of the particle and its updated

velocity, the position update in PPSO is modified by incorporating additional random
factors in a more complex formula. This formula includes a modification factor applied to
both the velocity and the inertia weight (which was moved from the velocity equation in
the original PSO), as

Xi+1
p = pBesti

p,v + (2ri
6,v − 0.5)Vt+1

p + (2ri
7,v − 0.5)ωi+1, (5)

where ri
6,v and ri

7,v represent random values uniformly distributed between 0 and 1.
One of the novel aspects of PPSO is the handling of the worst pBest position, which

is referred to as pWorst. In this approach, a randomly chosen component l of pWorst is
updated using the following equation:

pWorstnew
l = pWorsti

l + (2ri
8,v − 0.5)

f (pWorsti + elϵ)− f (pWorsti − elϵ)

2ϵ(UBl − LBl)
, (6)

where ri
8,v is a random value between 0 and 1, el is the l-th unit vector, ϵ is set to 10−8, UBl

is the upper bound of the l-th variable, and LBl is the lower bound.
The pseudocode outlining the step-by-step procedure of the PPSO algorithm is pre-

sented in Algorithm 2.

Electronics 2025, 14, 584 6 of 36

Algorithm 2 Pseudocode for PPSO

1: /* Initialization */
2: Initialize numVars, popSize, and maxIters;
3: Initialize particles X and velocity vectors V;
4: Evaluate fitness values f (X);
5: Initialize pBest;
6: Determine gBest;
7: i← 1;
8: /* Main loop */
9: while i ≤ maxIters do

10: for p← 1, popSize do
11: for v← 1, numVars do
12: Update velocity Vi

p,v using Equation (3);
13: Apply velocity constraints Vi

p,v;
14: Update position Xi

p,v using Equation (5);
15: Apply boundary constraints Xi

p,v;
16: end for
17: Evaluate fitness value f (Xi

p,v);
18: if f (Xi

p,v) < f (pBesti
p,v) then ▷ Update pBest

19: pBesti
p,v ← Xi

p,v;
20: end if
21: end for
22: for p← 1, popSize do
23: if f (pBesti

p,v) < f (gBesti
v) then ▷ Update gBest

24: gBesti
v ← pBesti

p,v;
25: end if
26: if f (pBesti

p,v) > f (pWorsti) then ▷ Determine pWorst
27: pWorsti ← pBesti

p,v;
28: end if
29: end for
30: l ← rand(1, numVars); ▷ Select random component of pWorst
31: Determine pWorstnew

l using Equation (6);
32: Apply boundary constraints pWorstnew

l ;
33: if f (pWorstnew) < f (pWorsti) then ▷ Update pWorst
34: pWorsti ← pWorstnew;
35: if f (pWorsti) < f (gBesti

v) then ▷ Update gBest
36: gBesti

v ← pWorsti;
37: end if
38: end if
39: i← i + 1;
40: end while
41: Output the best solution found and terminate.

2.3. Related Work

According to Lalwani et al. [20], aside from distributed parallel computing, most
efforts to parallelize PSO and its variants primarily focus on leveraging GPUs, which is
followed by CPU-based parallelization. These parallelization techniques aim to accelerate
the optimization process by distributing computational tasks across multiple processing
units, thereby reducing execution times, especially for large-scale or computationally
intensive problems.

Hussain and Fujimoto [21] proposed a GPU-based parallel Multi-Objective Particle
Swarm Optimization (MOPSO) approach for large swarms and high-dimensional prob-
lems, using a master–slave model. In this GPU MOPSO implementation, the CPU serves
as the master, controlling the GPU threads, which function as the slaves, distributing

Electronics 2025, 14, 584 7 of 36

the computational workload across multiple processing units to accelerate the evaluation
of particles. The GPU computation employs multiple kernels, each handling different
aspects of the optimization process in parallel. The paper compares the GPU-based algo-
rithm to a sequential implementation, which was also optimized for large swarms and
high-dimensional problems. The GPU-based MOPSO achieved a maximum speedup of
157× over the sequential algorithm at a problem dimension of 1024 with 40,000 particles
and 1500 iterations. The algorithms were implemented in CUDA using C++, and tests were
performed using a 4-core Intel Xeon E3-1220 v5 CPU with 16 GB of RAM and an NVIDIA
Titan V GPU with 5120 cores and 12 GB of VRAM.

cuPSO [22] is a queue-based GPU parallelization for PSO algorithms that aims to ad-
dress the reduction-based method, which is commonly used for handling data aggregation
and parallel updates in PSO. The reduction strategy involves efficiently aggregating or
reducing data across many threads in a GPU. In cuPSO, this strategy is optimized using a
queue algorithm with atomic locks, which, according to the authors, is 2.2× faster compared
to the parallel reduction-based method. The algorithms used CUDA and were programmed
in C++, and tests were conducted using double-precision floating-point operations in low
and high-dimensional search spaces of 1 dimension and 120 dimensions, respectively. Us-
ing an Intel Xeon CPU E3-1275 v5 and an NVIDIA GTX 1080 Ti, the GPU-based algorithm
achieved a maximum improvement ratio of 217.78× at a problem dimension of 120 with
131,072 particles and 800 iterations.

A GPU-accelerated version of the Improved Comprehensive Learning Particle Swarm
Optimization (ICL-PSO) algorithm was proposed by Wang et al. [23] to identify heat
transfer coefficients in continuous casting. The implementation uses a two-layer parallel
processing structure, consisting of the parallel heat transfer model and the parallel ICL-
PSO, to reduce computing time. However, the GPU parallelization relies on multiple data
transfers between the CPU and GPU, which is not an efficient approach. As a result, the
maximum achieved speedup was 37×, using test parameters that included 60 iterations,
36 particles, and 2.884× 106 mesh points. This CUDA-based algorithm was implemented
in C++, and the performance evaluation used an Intel Core i7-12700F CPU with 8 GB of
RAM and an NVIDIA Tesla V100 with 32 GB VRAM.

A new implementation to reduce the execution time of PSO using OpenCL was
proposed by Chraibi et al. [24]. OpenCL is a data-parallel, high-performance framework
designed for heterogeneous computing, supporting multiple devices such as GPUs, CPUs,
and Field Programmable Gate Arrays (FPGAs). This makes OpenCL both a cross-platform
and hardware-agnostic framework. The implementation relies on kernel functions to
execute code, similarly to CUDA, and the algorithm written in Java parallelizes only the
particle updates and fitness calculations. Tests were performed using two CPUs, the Intel
Core i7-6500U and Intel Xeon E5-2603 v4, and two GPUs, the Intel HD Graphics 520 and
GeForce 920M. The authors report a maximum speedup of 9× for the parallel algorithm
over the sequential version, which was achieved with the Core i7-6500U CPU using the
Sphere function at a dimension of 100,000 with 100 iterations and a swarm size of 100.

Kumar et al. [25] proposed a parallel implementation of PSO to enhance perfor-
mance on general-purpose computer architectures, as many researchers lack access to
high-performance computing resources. The parallel tasks in this implementation include
particle initialization, particle updates, fitness evaluation, and pBest updates, diverging
from the conventional approach of only parallelizing fitness function evaluations. Tests
were conducted using several optimization benchmark functions and multiple combina-
tions of parameters, including population size (40, 80, and 100), maximum iterations (10
and 30), and problem dimensionality (ranging from 10 to 4000). The algorithm was pro-
grammed using MATLAB, and performance evaluation was carried out using three distinct

Electronics 2025, 14, 584 8 of 36

CPUs: the Intel Core i3 6006U, Intel Core i5-8500, and Intel Xeon E5-2650 v3. The maximum
overall speedup achieved was 5.23× using the Intel Xeon E5-2650 v3 with a population size
of 80, 10 iterations and a dimensionality of 4000.

A multi-core parallel PSO (MPPSO) algorithm [26] was developed to improve com-
putational efficiency for the long-term optimal operation of hydropower systems. In this
approach, a fork/join framework utilizing a divide-and-conquer strategy is used to allocate
multiple populations across different CPU cores for parallel processing. This setup intro-
duces a slight modification to the traditional PSO operating principle, as the search space is
divided into several sub-populations, each of which runs a separate instance of the PSO
algorithm. Instead of having a single population explore the entire solution space, each sub-
population focuses on different regions of the space. These independent sub-populations
collaborate by sharing and combining their results, thus enhancing the overall convergence
and accuracy of the algorithm. This modification allows for more targeted exploration of
the solution space while maintaining the core principles of PSO. The approach achieved a
maximum speedup of 6.49×using an Intel Xeon 3.00 GHz processor with eight physical
cores, running 16 sub-populations with a population size of 200, problem dimension of 16,
1000 iterations, and 10 independent runs.

Building upon previous research, the objective of this paper is to propose an enhanced
GPU-based parallelization of a PSO variant called PPSO, which was designed specifically
for solving SNEs. The proposed GPU parallelization preserves the core operating mech-
anisms of the PPSO algorithm, maintaining its theoretical properties and convergence
characteristics, while delivering high performance for large-scale problems. Additionally, a
performance-optimized multithreaded version of the algorithm is developed, enabling par-
allel computation across multiple CPU cores. Since both the GPU-based and multithreaded
implementations are aligned with the standard PPSO, a fair comparison of computation
times and speedup improvements is ensured, effectively assessing the quality of the par-
allelization strategies. The effectiveness of these techniques is evaluated by comparing
the performance of the GPU-based version against the sequential and multithreaded im-
plementations across various test problems and problem sizes. By comparing the GPU
and CPU parallelizations directly, rather than comparing only the GPU version with the
sequential implementation, the GPU performance is more effectively assessed in terms of
efficiency improvements, scalability, and overall execution speed.

3. Algorithm Implementations
The various implementations of the PPSO algorithm, ranging from a straightforward

sequential version to multithreaded and GPU-based parallelizations, are presented in
this section. Each implementation builds on the previous one, facilitating performance
comparisons in terms of computational time, efficiency, and scalability.

In all approaches, the initial velocity of the particles was set to 0, as this is considered
one of the most effective strategies for initializing particles in PSO, which is in accordance
with a study by Andries Engelbrecht [27].

3.1. Sequential Algorithm

The implementation of the sequential PPSO algorithm plays a crucial role in evaluating
the performance of its parallel counterparts, as it serves as the baseline for comparison.
Source-level optimization of the sequential algorithm is essential to ensure maximum per-
formance, establishing a solid benchmark. Moreover, the sequential algorithm also served
as the foundation for the multithreaded design, further underscoring the importance of
its implementation quality for the performance of the parallel version. A well-optimized
sequential version ensures that observed performance improvements in the parallel algo-

Electronics 2025, 14, 584 9 of 36

rithms are due to parallelization advantages and not inefficiencies in the baseline execution.
For large-scale optimization problems, even minor algorithmic improvements can substan-
tially reduce computation time.

In the non-parallel version of PPSO, all particles in the swarm are processed sequen-
tially, with each particle’s position and velocity updated individually, followed by the
evaluation of the fitness function for each particle, i.e., iterating through the steps outlined
in Algorithm 2. As such, the tuning aspects of the sequential PPSO primarily focus on
optimizing key aspects of computational efficiency, such as minimizing redundant calcula-
tions and improving memory management. Of these aspects, memory management offers
the most marked optimization potential, as large-scale optimization problems inherently
require extensive memory usage and frequent memory accesses.

Aspects of the nature of the algorithm, such as the need for dynamic population sizes
or hierarchical problem structures, are crucial when determining the appropriate memory
structure for data storage. Since arrays and matrices (i.e., multidimensional arrays) are
commonly used in optimization algorithms and are well suited for implementing PPSO, the
performance analysis focused on evaluating implementations using these data structures.

Code optimizations play a key role in reducing unnecessary memory operations by
reusing memory where possible. In the Julia programming language, in-place operations
can be performed to avoid the overhead associated with frequent memory allocation and
deallocation. For example, arrays or matrices can be updated without allocating new
memory. Additionally, Julia offers the option to create views of subarrays and submatrices,
which are references to segments of data that avoid copying the underlying structure. This
ensures that memory is allocated efficiently to avoid memory fragmentation and reduce
the time spent on memory management.

Performance evaluation also incorporated dot notation as an optimization, enabling
the fusion of vectorized operations for more efficient execution. This allows element-wise
operations on entire arrays or matrices to be performed in a single step rather than iterating
through elements with explicit loops. By minimizing intermediate allocations and reducing
computational overhead, these operations combine multiple tasks into a single pass over
the data, improving memory access efficiency and resulting in faster execution.

The way matrices are stored in memory can greatly impact performance. Julia stores
arrays and matrices in column-major order, where elements of each column are stored
contiguously. As a result, column-wise operations benefit from contiguity, improving cache
efficiency, reducing cache misses, and enabling faster data access. Conversely, operations
that traverse rows may experience slower performance due to accessing non-contiguous
memory locations.

These optimizations were applied to three different sequential algorithm codebases,
which were named codebase A, B, and C. All codebases utilize matrices as the main data
structures with arrays used for secondary data support and in-place operation optimiza-
tions employed when possible. The matrix layout for codebases A and B consists of rows
representing candidate solutions (particles) and columns containing the corresponding
variables. Codebase C uses an inverted arrangement, i.e., rows for variables and columns
for candidate solutions, to better leverage the advantages of column-major order when
looping through the population. Codebases B and C also benefit from the Julia data slicing
optimization known as views.

The results of the performance testing of these codebases, including the impact of these
optimizations, are presented in Section 5.1. This subsection provides a detailed comparison
of the memory usage and execution times, highlighting how these enhancements improve
computational performance.

Electronics 2025, 14, 584 10 of 36

3.2. Multithreaded Design

Multithreaded algorithm design is a technique aimed at accelerating computation
by dividing the workload into smaller tasks that can be processed concurrently, thereby
improving execution time. This approach leverages the parallel processing capabilities of
multi-core architectures to achieve significant performance gains, particularly for large-scale
and computationally intensive problems.

Key factors that contribute to effective parallelism include the following: concurrency,
which enables multiple tasks to be executed simultaneously across different processing
units; load balancing, which ensures tasks are evenly distributed across processing units,
preventing bottlenecks and optimizing performance; coordination, which manages synchro-
nization and interaction between processing units, preventing conflicts or race conditions
and ensuring proper data sharing and updates throughout the system; and data locality,
which involves placing data close to the processing units that require it to minimize latency
and memory access time.

The objective of the proposed multithreaded algorithm is to utilize multi-core Central
Processing Units (CPUs) to reduce execution time without compromising the accuracy
and convergence characteristics of the PPSO algorithm, maintaining its core structure and
operational principles. This ensures that the parallelized algorithm maintains the same
stopping criteria and convergence behavior as the sequential version. The pseudocode for
the proposed multithreaded PPSO is presented in Algorithm 3.

Considering the proposed implementation, not all segments of the PPSO algorithm
are set to run concurrently. While some parts of the algorithm are well suited for parallel
processing, others require sequential execution due to inherent dependencies. Moreover,
although multithreading can accelerate computation, it also introduces overheads related
to thread management, synchronization, and communication. These overheads can some-
times reduce the expected performance gains, making it more efficient to execute certain
tasks sequentially, especially for smaller workloads. To illustrate this, Figure 1 presents a
flowchart outlining the execution pipeline of the multithreaded CPU implementation of
the PPSO algorithm.

During the initial phase of PPSO, the task with the highest computational cost is
particle initialization. Consequently, this task was designed to run in parallel, and its
multithreaded pseudocode is shown in Algorithm 4.

In this task, each thread is responsible for initializing a candidate solution and sub-
sequently evaluating its fitness value. Since the initialization and fitness evaluation of
individual candidate solutions do not depend on other particles, they can be performed
in parallel without interdependencies. This particle independence allows each thread to
operate autonomously on a separate solution, enabling efficient parallelization. Although
the particle initialization task is executed only once per algorithm run, the performance
gains from parallel execution remain significant. This is particularly important in large-
scale problems, where particle initialization can substantially impact the overall runtime
and contribute to a more efficient algorithm.

Following particle initialization, the gBest is determined as an isolated task. The
identification of the global best particle has low computational complexity, as it essentially
involves looping through the fitness array. Consequently, the overhead associated with
managing threads for this simple task would negate any potential performance gains from
parallel execution.

Electronics 2025, 14, 584 11 of 36

Algorithm 3 Pseudocode for multithreaded PPSO

1: /* Initialization */
2: Initialize numVars, popSize, and maxIters;
3: PARALLEL_INITIALIZE_PARTICLES(X, V); ▷ Multithreaded particles initialization
4: Determine gBest;
5: i← 1;
6: /* Main loop */
7: while i ≤ maxIters do
8: parallel for p← 1, popSize do ▷ Multithreaded computation
9: for v← 1, numVars do ▷ Parallel particle update

10: Update velocity Vi
p,v using Equation (3);

11: Apply velocity constraints Vi
p,v;

12: Update position Xi
p,v using Equation (5);

13: Apply boundary constraints Xi
p,v;

14: end for
15: Evaluate fitness value f (Xi

p,v); ▷ Parallel objective function evaluation
16: if f (Xi

p,v) < f (pBesti
p,v) then ▷ Parallel pBest update

17: pBesti
p,v ← Xi

p,v;
18: end if
19: end parallel for
20: for p← 1, popSize do
21: if f (pBesti

p,v) < f (gBesti
v) then ▷ Update gBest

22: gBesti
v ← pBesti

p,v;
23: end if
24: if f (pBesti

p,v) > f (pWorsti) then ▷ Determine pWorst
25: pWorsti ← pBesti

p,v;
26: end if
27: end for
28: l ← rand(1, numVars); ▷ Select a random component of pWorst
29: Determine pWorstnew

l using Equation (6);
30: Apply boundary constraints pWorstnew

l ;
31: if f (pWorstnew) < f (pWorsti) then ▷ Update pWorst
32: pWorsti ← pWorstnew;
33: if f (pWorsti) < f (gBesti

v) then ▷ Update gBest
34: gBesti

v ← pWorsti;
35: end if
36: end if
37: i← i + 1;
38: end while
39: Output the best solution found and terminate.

Algorithm 4 Multithreaded particles initialization

1: function PARALLEL_INITIALIZE_PARTICLES(X, V)
2: parallel for p← 1, popSize do ▷ Multithreaded computation
3: for v← 1, numVars do ▷ Parallel particles initialization
4: Xp,v ← LBv + rand()× (UBv − LBv);
5: Vp,v ← 0;
6: pBestp,v ← Xp,v;
7: end for
8: Evaluate fitness value f (Xp); ▷ Parallel objective function evaluation
9: end parallel for

10: end function

Electronics 2025, 14, 584 12 of 36

Figure 1. Execution pipeline of the multithreaded CPU implementation of the PPSO algorithm.

Nevertheless, the parallel execution of tasks within the PPSO main loop provides the
most significant performance benefits, as improvements are compounded across iterations.
In this section of the algorithm, the most computationally intensive tasks are multithreaded,
namely particle updates and fitness evaluations. Since these tasks are well suited for
parallel processing, the multithreaded PPSO launches a thread for each candidate solution,
with each thread individually handling the update of a single particle (including velocity
and position updates), followed by the evaluation of its fitness value, along with the
corresponding pBest update (Algorithm 3, lines 8 to 19). Although the pBest update has
a low computational cost, similar to the gBest determination, there are no performance
penalties associated with the parallel execution of this lightweight task. This is because the
pBest update is executed within an already active thread, thereby avoiding the overhead
costs associated with additional thread management.

Following line 19 of Algorithm 3, the remaining tasks do not benefit from multi-
threaded execution due to their sequential nature or low computational complexity. In
this section, performance improvements are achieved through computational efficiency
enhancements designed to mitigate bottlenecks. For instance, in the loop at line 20, both
the gBest update and the determination of pWorst are handled within the same iteration.
This adjustment moves the gBest update earlier rather than placing it at the end of the main
loop. Since pWorstnew can potentially become a candidate for gBest, an additional gBest
update is included at line 33 but only if pWorstnew is found to be better than the previous
pWorst. This approach enhances execution flow by eliminating redundancies and reducing
unnecessary iterations, thereby contributing to improved performance.

Electronics 2025, 14, 584 13 of 36

3.3. GPU Parallelization

In recent years, GPUs have emerged as powerful accelerators for high-performance
computing tasks, particularly for algorithms that exhibit a high degree of parallelism.

While CPUs follow a sequential or parallel computing model with a limited number of
cores, each capable of running multiple threads simultaneously, GPUs consist of thousands
of smaller, simpler cores that can execute many threads in parallel, performing the same
operation on multiple data points concurrently. CPUs typically rely on thread-level paral-
lelism, prioritizing moderate parallelism, complex control flow, and high per-thread per-
formance. In contrast, GPUs are optimized for data-level parallelism, harnessing massive
parallelism to process data-parallel tasks. This makes them more effective for workloads
involving simple operations on large data sets. As a result, the parallel architecture of GPUs
allows them to outperform CPUs in tasks that can fully exploit this parallelism.

3.3.1. CUDA Programming Fundamentals

To enable general-purpose computing on GPUs, NVIDIA developed the Compute
Unified Device Architecture (CUDA) framework, which allows programmers to offload
computationally intensive tasks to the GPU. CUDA provides several key abstractions
for managing parallelism, enabling both the CPU (host) and GPU (device) to collaborate
effectively in a heterogeneous computing environment. The host manages overall execution,
controls the flow of data, and performs sequential tasks, while the device handles the
parallel computations.

Kernel functions are specialized routines designed to execute parallel tasks on the
GPU. These functions decompose workloads into smaller, independent tasks that can be
processed concurrently. In other words, the same code operates on different pieces of data
and is executed by many threads simultaneously.

The foundational structures for organizing parallel execution on the GPU in CUDA
are threads, blocks, and grids. Threads are the smallest units of execution, which are
each responsible for processing a single data element. These threads are grouped into
blocks, which are collections of threads that execute the same kernel instructions and can
communicate and synchronize via shared memory. Multiple blocks are further organized
into a grid, enabling the GPU to scale parallel execution across a large number of threads.
The grid can be structured in one, two, or three dimensions, depending on the specific
problem being solved. Together, these structures maximize hardware utilization and
facilitate efficient data processing.

Another important aspect of GPU computation is its memory hierarchy, which plays a
crucial role in determining the performance of parallel algorithms. In CUDA, memory is
organized into several levels each with different characteristics in terms of size, latency, and
access patterns. The main types of memory include global memory, which is large but has
high latency; shared memory, which is much faster but limited in size and shared among
threads within the same block; and local memory, which is private to individual threads.
The efficient utilization of this hierarchy, by minimizing costly accesses to global memory
and maximizing the use of shared memory, is essential for optimizing performance in
GPU applications.

CUDA requires explicit memory management, as memory must be allocated and
transferred between the host and device due to the heterogeneous nature of its architecture.
However, data transfers between the host and device can become a bottleneck because of
the relatively slow speed of the bus. To achieve optimal performance, it is necessary to
minimize these transfers and keep as much data as possible on the device during execution.
This strategy aligns with the principle of data locality, where data are placed closer to the
processor that needs it. Additionally, designing kernels and organizing data to facilitate

Electronics 2025, 14, 584 14 of 36

contiguous memory access is essential for performance. This approach enables memory
coalescing, where the GPU combines multiple memory accesses into a single transaction,
reducing latency and improving bandwidth efficiency, which ultimately translates into
additional performance gains.

3.3.2. GPU-Based PPSO

The parallelization strategy adopted for the new GPU-based PPSO was designed to
preserve the method of deriving solutions and maintain the core operating logic of the orig-
inal PPSO algorithm. This ensures that any performance improvements, compared to the
sequential or multithreaded implementations, are attributable solely to the applied paral-
lelization technique rather than changes in the algorithmic approach while also preserving
the same convergence characteristics and solution quality. The fundamental structure of
the GPU-based PPSO is presented in Algorithm 5.

Algorithm 5 Pseudocode for GPU-based PPSO

1: /* Initialization */
2: Initialize numVars, popSize and maxIters;
3: INITIALIZE_PARTICLES_KERNEL(X, V);
4: EVALUATE_FITNESS_VALUES_KERNEL(X);
5: Determine gBest;
6: i← 1; ▷ Host
7: /* Main loop */
8: while i ≤ maxIters do ▷ Host
9: SWARM_UPDATE_KERNEL(Xi, Vi);

10: EVALUATE_FITNESS_VALUES_KERNEL(Xi);
11: UPDATE_PBEST_KERNEL(pBesti, Xi);
12: pWorsti ← worst(pBesti);
13: l ← rand(1, numVars); ▷ Host
14: f1_pWorsti ← f (pWorsti + el × 10−8);
15: f2_pWorsti ← f (pWorsti − el × 10−8);
16: DETERMINE_PWORST_NEW_KERNEL(pWorsti, l, f1_pWorsti, f2_pWorsti);
17: f _pWorstnew ← f (pWorstnew)
18: UPDATE_PWORST_KERNEL(pWorstnew, f _pWorstnew);
19: Determine gBesti;
20: i← i + 1; ▷ Host
21: end while
22: Output the best solution found and terminate. ▷ Host and device

The GPU-based PPSO follows the heterogeneous CUDA model, where the host man-
ages higher-level tasks, such as overseeing the computational flow, managing the structure,
and launching and controlling CUDA kernels. Instances where the host is explicitly in-
volved in the algorithm are identified with the comment host. These include controlling
the main iteration loop (including initialization, termination criteria, and incrementing
the loop counter, as indicated in lines 6, 8 and 20), selecting the random component of
pWorst (line 13), and reporting the best solution found (line 22). This is because the main
iteration loop is inherently serial, serves as the computational control of the algorithm, and
cannot be parallelized, making it suitable for execution on the host. Additionally, while the
best solution is determined on the device, it is reported by the host, which serves as the
intermediary between the device and the rest of the system. In contrast, the selection of
the random component of pWorst was set to be deliberately handled by the host, as the
overhead of launching a kernel for such a small task would exceed the time required for the
host to generate a single random number, thus negating any potential performance benefits.
Figure 2 provides an overview of the execution pipeline for the GPU-based PPSO algorithm.

Electronics 2025, 14, 584 15 of 36

Figure 2. Execution pipeline for the GPU-based implementation of the PPSO algorithm.

Similar to the CPU-based multithreaded design of PPSO, particle initialization in the
GPU-based algorithm was also parallelized. However, in this case, the impact extends
beyond improving the performance of the initialization phase. As discussed in Section 3.3.1,
data locality plays a crucial role in performance optimization. By generating all data related
to the PPSO algorithm directly on the device, the data remain close to the computational
units, thereby avoiding costly transfers between host memory and the device during
computation. Algorithm 6 demonstrates the operation of the particle initialization kernel.

Electronics 2025, 14, 584 16 of 36

Algorithm 6 Kernel for particle initialization

1: function INITIALIZE_PARTICLES_KERNEL(X, V)
2: /* Device code */
3: Determine p using x dimension of blockDim, blockIdx, and threadIdx;
4: if p ≤ popSize then
5: for v← 1, numVars do
6: Xp,v ← LBv + rand()× (UBv − LBv);
7: Vp,v ← 0;
8: pBestp,v ← Xp,v;
9: end for

10: end if
11: end function

This kernel operates with a one-dimensional grid of blocks where each block contains
multiple threads arranged in rows. The total number of threads required for the kernel
is equal to or greater than the population size. Each thread is responsible for initializing
an individual particle, meaning each thread processes a separate candidate solution. This
design helps prevent non-deterministic behavior, such as race conditions, which occur when
multiple threads attempt to modify the same memory location simultaneously. Without
proper management, such conditions can lead to unpredictable results. An additional
benefit is that by assigning each thread to update a different candidate solution, the threads
access contiguous memory elements, which optimizes memory coalescing and enhances
memory access efficiency.

The implementation of the step EVALUATE_FITNESS_VALUES_KERNEL (lines 4 and
10 of Algorithm 5) depends on the specific SNE being addressed. In the proposed GPU
parallelization, this kernel uses a structure and grid arrangement similar to that employed
in the particle initialization kernel (Algorithm 6). Since determining the fitness value
requires iterating over the decision variables to calculate the fitness cumulatively, this
kernel uses a local variable to accumulate the sums, which minimizes accesses to global
memory and improves performance.

The kernel implementation for updating the swarm (as shown in Algorithm 7) follows
a design aimed at maximizing performance by utilizing CUDA’s capability to parallelize
computations across thousands of threads. This is achieved through a two-dimensional grid
arrangement, which enables a more efficient distribution of threads, thereby maximizing
the parallel processing capabilities of the device.

The use of two dimensions (particles and decision variables) for thread indexing
ensures an efficient mapping between the problem structure and the hardware, facilitating
better scalability as the problem size increases (i.e., more particles and variables can be
handled by larger grids). By distributing the work evenly across all available threads, each
thread is assigned a clearly defined task, updating a single variable of a particle. This
design requires the kernel to allocate a number of threads equal to the product of the
number of particles and the number of variables. Therefore, this approach minimizes idle
time for threads in the device and enables the entire swarm to be updated concurrently,
considerably speeding up execution time. Since each thread operates independently on its
respective particle–variable pair, race conditions and shared memory conflicts are avoided.
Additionally, this design supports memory coalescing and eliminates the need for costly
synchronization barriers, which would otherwise negatively impact performance.

The kernel described in Algorithm 8 is responsible for updating the pBest values of
the particles. Each pBest update is handled independently by a separate thread using 1D
thread indexing, requiring at least as many threads as the size of the particle population.

Electronics 2025, 14, 584 17 of 36

Algorithm 7 Kernel for swarm updating

1: function SWARM_UPDATE_KERNEL(X, V)
2: /* Device code */
3: Determine p using x dimension of blockDim, blockIdx, and threadIdx;
4: Determine v using y dimension of blockDim, blockIdx, and threadIdx;
5: if p ≤ popSize and v ≤ numVar then
6: Vnew

p,v ← (2× rand()− 0.5)×Vp,v + (2× rand()− 0.5)×
(pBestp,v − Xp,v) + (2× rand()− 0.5)× (gBestv − Xp,v); ▷ Equation (3)

7: VELOCITY_CONSTRAINT(Vnew
p,v);

8: ω ← (2× rand()− 0.5)× (gBestv − pBestp,v) + (2× rand()− 0.5)×
(gBestv − Xp,v); ▷ Equation (4)

9: Xnew
p,v ← pBestp,v + (2× rand()− 0.5)×Vnew

p,v + (2× rand()− 0.5)×ω; ▷ Equation (5)
10: BOUNDARY_CONSTRAINT(Xnew

p,v);
11: /* Update particle */
12: Xp,v ← Xnew

p,v ;
13: Vp,v ← Vnew

p,v ;
14: end if
15: end function

Algorithm 8 Kernel for updating pBest

1: function UPDATE_PBEST_KERNEL(pBest, X)
2: /* Device code */
3: Determine p using x dimension of blockDim, blockIdx, and threadIdx;
4: if p ≤ popSize then
5: if f (Xp) < f (pBestp) then
6: for v← 1, numVars do
7: pBestp,v ← Xp,v;
8: end for
9: end if

10: end if
11: end function

This kernel requires the precomputation of the fitness values, meaning that the ker-
nel only needs to compare these precomputed fitness values, which is a much simpler
operation. This approach eliminates potential sources of branch divergence, which occur
when threads follow different execution paths based on the fitness evaluation, leading to
inefficient execution. As a result, the kernel focuses solely on comparing fitness values and
updating the pBest values, ensuring that all threads follow the same execution path and
thus improving overall efficiency.

To determine pWorst (line 12 of Algorithm 5), the particle with the highest value of
f (pBestp) must be identified. Since the fitness values have already been evaluated in a
previous step (line 10 of Algorithm 5), this process becomes computationally lightweight.
It only involves identifying the index corresponding to the maximum value in the fitness
array, as there is a one-to-one correspondence between fitness values and particles. The
identified index then references the pWorst particle within the swarm.

The computational procedures for the determination of pWorstnew and updating the
pWorst in the swarm (lines 16 and 18 of Algorithm 5) exhibit inherent sequential character-
istics, as these operations involve modifying a single array index, specifically the previously
determined random component (index l) of pWorst. Due to these structural constraints, the
core functions involved are inherently unsuitable for parallel execution. As a result, the ker-
nels DETERMINE_PWORST_NEW_KERNEL Algorithm 9) and UPDATE_PWORST_KERNEL

Algorithm 10) are configured for sequential execution, using a grid dimension of 1 block
and 1 thread. Despite their inherently serial nature, performing these computations on the

Electronics 2025, 14, 584 18 of 36

GPU provides performance benefits. Specifically, this process benefits from improved data
locality because the necessary data remain resident on the device. This setup minimizes the
need for costly device-to-host and host-to-device memory transfers, which would otherwise
introduce latency and degrade performance.

Algorithm 9 Kernel for determining pWorstnew

1: function DETERMINE_PWORST_NEW_KERNEL(pWorst, l, f1_pWorst, f2_pWorst)
2: /* Device code */
3: pWorstnew

l ← pWorstl + (2× rand()− 0.5)× f1_pWorst− f2_pWorst
2×10−8×(UBl−LBl)

▷ Equation (6)
4: BOUNDARY_CONSTRAINT(pWorstnew

l);
5: end function

Algorithm 10 Kernel for updating pWorst

1: function UPDATE_PWORST_KERNEL(pWorstnew, f _pWorstnew)
2: /* Device code */
3: if f _pWorstnew < f (pWorst) then
4: pWorstl ← pWorstnew

l ;
5: end if
6: end function

It is important to note that both of these kernels rely on prior evaluations of the
components f1_pWorsti, f2_pWorsti, and fpWorstnew, which are performed in parallel.
Additionally, in Algorithm 10, although the fitness of the initial (unmodified) pWorst is
represented as a function for clarity and ease of understanding, its value already resides in
device memory, having been computed during the parallel fitness evaluation of the entire
swarm (line 10 of Algorithm 5), making recalculation unnecessary.

4. Computational Experiments
This section outlines the experimental setup, including the hardware and software

configurations used for benchmarking the algorithms and the test parameters. It also
presents the scalable SNE test problems employed to evaluate performance.

4.1. Experimental Setup

The proposed implementations were developed using the Julia programming lan-
guage [28], version 1.11.0 (released on 7 October 2024), which was selected for its high-
performance capabilities and user-friendly syntax, particularly in scientific computing. Its
Just-In-Time (JIT) compilation ensures execution speeds comparable to those of low-level
languages [29], while its syntax is especially well suited for mathematical and optimization
tasks. As an open-source alternative to proprietary tools like MATLAB, Julia offers flexibil-
ity and accessibility for research and development. GPU acceleration was achieved using
CUDA.jl [30] version 5.5.2, using CUDA runtime version 12.6. Julia’s built-in support for
both multithreading and GPU computing enables efficient parallel execution on modern
hardware architectures, making it a suitable platform for implementing both multithreaded
CPU and GPU-accelerated algorithms.

The computational setup used for testing includes an AMD EPYC 7643 CPU, featuring
48 cores and 96 threads, along with 32 GB of DDR4 RAM and an NVIDIA A100 PCIe
GPU, featuring 6912 CUDA cores and 80 GB of HBM2e VRAM. This server-grade hardware
configuration enables a comprehensive evaluation of both the multithreaded CPU and GPU-
based implementations of the algorithm. Therefore, the benchmarking results accurately
reflect the performance of modern hardware platforms and facilitate a thorough analysis of
scalability and efficiency across the different parallelization strategies.

Electronics 2025, 14, 584 19 of 36

The performance of the algorithms was evaluated using test parameters that reflect a
range of problem sizes. The problem dimensions varied from 1000 to 5000 in increments
of 1000, and the population size was set to 10 times the problem dimension, ensuring a
sufficiently large search space for the optimization process. The stopping criterion for
all experiments was set at 1000 iterations, providing a fixed benchmark for performance
comparisons. To evaluate the reliability and robustness of the algorithms, 31 independent
runs were performed for each test configuration, ensuring that the results account for
variability and are statistically significant.

Since Julia relies on a JIT compilation process, this often results in longer execution
times during the program’s first run. To ensure the integrity of the computational analysis,
an additional warm-up run was introduced to absorb the delay caused by the JIT compiler,
allowing subsequent runs to provide more reliable performance metrics.

The computations for both the CPU multithreaded and GPU-based implementations
were conducted using double-precision floating-point arithmetic to ensure high accuracy
in the results. However, in the GPU testing, additional tests with single-precision floating-
point arithmetic were also conducted to explore the trade-offs between computational
speed and precision.

All the computational times reported in this work encompass the entire execution
of the algorithm, including all phases from initialization to the final reporting of the best
solution found. This comprehensive measurement is critical for assessing performance in
both CPU multithreading and GPU-based implementations, as it captures the full range
of computational costs associated with the algorithm. This methodology ensures that the
true performance improvements or trade-offs are fully captured, allowing for a fair and
meaningful comparison between the sequential and parallelized approaches.

In this study, the boundary constraint technique applied to the update of particle
positions in PPSO was value clamping, which utilizes the upper and lower bounds of the
search space to ensure that candidate solutions remain within the defined domain. This
technique effectively prevents particles from exploring regions outside the search space.
Additionally, a similar constraint was applied to the particle velocities with the maximum
velocity for each design variable set to 10% of the range of the search space.

4.2. Test Problems

Ten scalable SNEs were used to evaluate the performance of the proposed algorithms.
These test problems were selected from the existing literature due to their complexity
and their ability to scale with problem dimensions, ensuring a robust assessment of the
algorithms across different levels of complexity. The mathematical expressions for the
benchmark functions are presented below, along with the corresponding domain and
specific values for the variables involved in these functions, providing a detailed description
of the problem setup.

Problem 1. (Broyden tridiagonal function [31], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = (3− 2x1)x1 − 2x2 + 1,
fn(x) = (3− 2xn)xn − xn−1 + 1,
fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, . . . , n− 1,
D = ([−1, 1], . . . , [−1, 1])T .

Problem 2. (Discrete boundary value function [31], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = 2x1 − x2 + h2(x1 + h + 1)3/2,
fn(x) = 2xn − xn−1 + h2(xn + nh + 1)3/2,
fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2, i = 2, . . . , n− 1,
where h = 1

n+1 and ti = ih,

Electronics 2025, 14, 584 20 of 36

D = ([0, 5], . . . , [0, 5])T .

Problem 3. (Extended Powell singular function [31], n = 1000, 2000, 3000, 4000, 5000)
f4i−3(x) = x4i−3 + 10x4i−2,
f4i−2(x) =

√
5(x4i−1 − x4i),

f4i−1(x) = (x4i−2 − 2x4i−1)
2,

f4i(x) =
√

10(x4i−3 − x4i)
2, i = 1, . . . , 5,

D = ([−100, 100], . . . , [−100, 100])T .

Problem 4. (Modified Rosenbrock function [32], n = 1000, 2000, 3000, 4000, 5000)

f2i−1(x) =
1

1 + exp(−x2i−1)
− 0.73,

f2i(x) = 10(x2i − x2
2i−1), i = 1, . . . , n

2 ,
D = ([−10, 10], . . . , [−10, 10])T .

Problem 5. (Powell badly scaled function [32], n = 1000, 2000, 3000, 4000, 5000)
f2i−1(x) = 104x2i−1x2i − 1,
f2i(x) = exp(−x2i−1) + exp(−x2i)− 1.0001, i = 1, . . . , n

2 ,
D = ([0, 100], . . . , [0, 100])T .

Problem 6. (Schubert–Broyden function [33], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = (3− x1)x1 + 1− 2x2,
fn(x) = (3− xn)xn + 1− xn−1,
fi(x) = (3− xi)xi + 1− xi−1 − 2xi+1, i = 2, . . . , n− 1,
D = ([−100, 100], . . . , [−100, 100])T .

Problem 7. (Martínez function [34], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = (3− 0.1x1)x1 + 1− 2x2 + x1,
fn(x) = (3− 0.1xn)xn + 1− 2xn−1 + xn,
fi(x) = (3− 0.1xi)xi + 1− xi−1 − 2xi+1 + x1, i = 2, . . . , n− 1,
D = ([−100, 100], . . . , [−100, 100])T .

Problem 8. (Extended Rosenbrock function [31], n = 1000, 2000, 3000, 4000, 5000)
f2i−1(x) = 10(x2i − x2

2i−1),
f2i(x) = 1− x2i−1, i = 1, . . . , n

2 ,
D = ([−100, 100], . . . , [−100, 100])T .

Problem 9. (Bratu’s problem [35], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = −2x1 + x2 + αh2 exp(x1),
fn(x) = xn−1 − 2xn + αh2 exp(xn),
fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,
where h = 1

n+1 and α ≥ 0 is a parameter; here α = 3.5,
D = ([−100, 100], . . . , [−100, 100])T .

Problem 10. (The beam problem [35], n = 1000, 2000, 3000, 4000, 5000)
f1(x) = −2x1 + x2 + αh2 sin(x1),
fn(x) = xn−1 − 2xn + αh2 sin(xn),
fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,
where h = 1

n+1 and α ≥ 0 is a parameter; here α = 11,
D = ([−100, 100], . . . , [−100, 100])T .

Electronics 2025, 14, 584 21 of 36

5. Results and Discussion
In this section, a detailed analysis of the performance and behavior of the proposed

PPSO implementations is presented. The results are evaluated against both sequential and
multithreaded CPU implementations, focusing on assessing computational efficiency and
scalability across various problem dimensions. To provide a comprehensive understand-
ing of the performance improvements achieved through parallelization, the discussion
is divided into four key areas: an evaluation of the optimization of sequential algorithm
codebases (Section 5.1); a comparison between the sequential and multithreaded CPU
implementations (Section 5.2); an analysis of the performance benefits from GPU paral-
lelization (Section 5.3); and an evaluation of the impact of parallelization on the quality of
solutions obtained (Section 5.4).

Each of these subsections delves into specific aspects of the performance metrics,
including computation time, speedup factors, and the overall effectiveness of different
hardware architectures. The speedup (S) metric used to quantify performance improvement
is defined as the ratio of the time taken to complete a task in a reference scenario, typically
that of sequential computation (Tsequential), to the time taken to complete the same task via
parallel execution (Tparallel). Mathematically, this relationship is expressed as

S =
Tsequential

Tparallel
. (7)

5.1. Sequential Codebase Evaluation

The three sequential algorithm codebases, referred to as codebases A, B, and C, were
described earlier in Section 3.1. Their performance evaluation results are presented in
Table 1. The test parameters include a warm-up run, followed by the mean of three test
runs, with algorithm execution limited to 100 iterations, a population size set to 10 times
the problem dimension, and the use of the same random seed in all tests.

Table 1. Performance testing of the sequential algorithm codebases (computation time in seconds;
estimated total memory allocation in gibibytes, GiB).

Dim.

Codebase A Codebase B Codebase C

Time Mem. Alloc. Time Mem. Alloc. Time Mem. Alloc.

1000 39.40 91.31 25.97 23.17 15.53 23.17
2000 190.71 362.25 131.21 91.93 60.42 91.93
3000 591.18 812.32 388.96 206.29 165.73 206.29
4000 1046.19 1442.42 646.16 366.24 282.66 366.24
5000 1860.78 2252.52 1123.96 571.80 451.98 571.80

Empirical testing shows that code optimization in codebase B reduced the mean
memory footprint of codebase A by approximately 74.6%, which was a reduction also
achieved by codebase C. Although the column-major order optimization in codebase C
improves cache locality, it did not result in any further enhancement of memory allocation
efficiency. Overall, these improvements led to substantial reductions in computational time:
codebase B achieved an approximate 35.5% mean computational time reduction compared
to codebase A, while codebase C nearly doubled the performance improvement, achieving
an approximate 69.9% reduction in mean computational time compared to codebase A.
These findings underscore the importance of memory-efficient techniques in both memory
management and algorithmic optimizations, highlighting their critical role in achieving
substantial performance improvements, particularly in large-scale computational problems.

Electronics 2025, 14, 584 22 of 36

Based on these results, codebase C was selected for sequential testing and served as
a well-optimized foundation for the multithreaded implementation due to its superior
performance in comparison to the other codebases.

5.2. Multithreaded Speedup Analysis

Tables 2 and 3 provide detailed performance overviews of the proposed PPSO imple-
mentations on the CPU, from sequential execution to multithreaded execution using 2 to
512 threads, across various test scenarios. These tables present the mean computation times
from 31 independent runs for each test scenario alongside the corresponding improvement
ratios relative to the sequential execution.

The results demonstrate that employing multiple threads to run the algorithm leads to
a significant reduction in total computation time. The rate of improvement, however, varies
based on both the number of threads used and the specific test parameters. Specifically,
the speedup factors observed ranged from a modest improvement of 1.48×with 2 threads,
for test problem number 1 with a dimension of 4000, to a more substantial 18.33×with 128
threads for test problem number 6 with a dimension of 5000.

When analyzing the mean computational times, a general decrease is observed with
the use of additional processing threads with a more pronounced reduction occurring
during the initial multithreaded tests. This is consistent with the expected benefits of
parallelization, where distributing the computation across multiple threads allows for more
efficient execution and reduced processing time. This trend is clearly illustrated in Figure 3,
where the mean computational times are presented for each problem dimension along with
the corresponding mean speedup achieved in each multithreading configuration.

For SNEs with a dimension of 1000, the results shown in Figure 3a reveal that the
mean computational times reach a plateau with 64 threads. At this configuration, the
maximum mean speedup of 9.15× is achieved for this problem dimension, suggesting that
the multithreaded implementation is highly parallelizable, effectively using the additional
threads to maximize the utilization of available processing resources. However, beyond 128
threads, diminishing returns in speedup are observed, indicating that the algorithm is no
longer able to efficiently utilize the additional processing resources. Based on this test setup,
the use of 64 threads is recommended, as it offers the optimal processing performance.

Upon increasing the problem dimension to 2000 (Figure 3b), the performance analysis
reveals a generally similar trend, although the peak mean speedup shifts to 128 threads
with a slightly higher ratio of 9.82× achieved. This result indicates that increasing the
computational workload by doubling the problem dimension (and the population size)
allows the algorithm to continue benefiting from additional threads, resulting in further
performance gains up to a higher thread count threshold. This shift in the optimal thread
count suggests that larger problem dimensions require greater parallel processing capacity
to achieve maximum efficiency.

Beyond 128 threads, the speedup gains taper off, indicating that further increases
in thread count fail to produce significant performance improvements even with in-
creased workloads.

Electronics 2025, 14, 584 23 of 36

Table 2. PPSO CPU performance metrics from sequential execution up to 16 threads (computation
time in seconds; speedup values normalized to sequential execution).

Dim.
(Pop.)

Prob.
No.

Sequential 2 Threads 4 Threads 8 Threads 16 Threads

Time Time Speedup Time Speedup Time Speedup Time Speedup

1000
(10,000)

1 201.41 120.91 1.67 90.15 2.23 51.74 3.89 33.66 5.98
2 216.32 115.79 1.87 76.07 2.84 45.38 4.77 38.49 5.62
3 234.27 140.83 1.66 89.69 2.61 56.81 4.12 40.35 5.81
4 249.61 150.81 1.66 129.61 1.93 64.23 3.89 38.86 6.42
5 261.86 159.72 1.64 92.97 2.82 64.18 4.08 40.66 6.44
6 260.06 147.47 1.76 99.19 2.62 62.88 4.14 41.28 6.30
7 212.39 117.39 1.81 76.26 2.79 60.18 3.53 41.37 5.13
8 198.72 116.87 1.70 64.44 3.08 56.80 3.50 35.67 5.57
9 201.59 120.13 1.68 80.06 2.52 57.38 3.51 41.26 4.89

10 208.11 127.47 1.63 89.40 2.33 61.94 3.36 33.94 6.13

2000
(20,000)

1 767.34 460.99 1.66 320.42 2.39 202.56 3.79 147.12 5.22
2 790.30 457.53 1.73 373.53 2.12 230.84 3.42 144.54 5.47
3 922.04 511.71 1.80 386.10 2.39 241.97 3.81 159.45 5.78
4 984.43 543.32 1.81 374.24 2.63 226.54 4.35 175.02 5.62
5 1029.65 558.05 1.85 417.97 2.46 209.94 4.90 179.61 5.73
6 1032.13 535.42 1.93 381.07 2.71 247.36 4.17 178.52 5.78
7 776.92 477.41 1.63 361.04 2.15 189.00 4.11 159.37 4.87
8 784.83 460.56 1.70 297.90 2.63 199.57 3.93 155.47 5.05
9 801.32 504.44 1.59 330.48 2.42 218.60 3.67 157.27 5.10

10 785.91 445.81 1.76 312.49 2.52 192.38 4.09 172.37 4.56

3000
(30,000)

1 1748.95 1111.85 1.57 620.75 2.82 361.14 4.84 371.09 4.71
2 1814.80 1170.25 1.55 702.31 2.58 428.42 4.24 322.14 5.63
3 2135.45 1253.57 1.70 766.84 2.78 491.18 4.35 305.04 7.00
4 2296.83 1323.15 1.74 706.72 3.25 509.21 4.51 323.22 7.11
5 2400.22 1328.41 1.81 629.89 3.81 470.68 5.10 399.22 6.01
6 2286.73 1354.65 1.69 706.57 3.24 441.18 5.18 341.90 6.69
7 1762.67 1068.86 1.65 655.59 2.69 392.28 4.49 352.98 4.99
8 1786.70 1139.72 1.57 553.59 3.23 460.88 3.88 347.58 5.14
9 1825.84 1091.53 1.67 723.73 2.52 484.34 3.77 348.35 5.24

10 1771.69 1029.75 1.72 648.64 2.73 434.49 4.08 371.13 4.77

4000
(40,000)

1 3155.91 2138.04 1.48 1050.57 3.00 625.43 5.05 428.97 7.36
2 3271.58 2026.97 1.61 1100.51 2.97 631.93 5.18 511.64 6.39
3 3730.62 2444.81 1.53 1206.68 3.09 646.50 5.77 618.50 6.03
4 4046.10 2322.71 1.74 1239.92 3.26 683.88 5.92 593.46 6.82
5 4081.88 2317.78 1.76 1248.15 3.27 715.32 5.71 483.43 8.44
6 4246.33 2329.60 1.82 1399.72 3.03 648.33 6.55 546.88 7.76
7 3349.56 1831.52 1.83 996.56 3.36 620.19 5.40 562.44 5.96
8 3184.82 1856.79 1.72 1151.81 2.77 628.52 5.07 448.32 7.10
9 3234.49 1932.52 1.67 1025.79 3.15 606.86 5.33 544.59 5.94

10 3164.82 1918.81 1.65 1050.31 3.01 616.30 5.14 603.06 5.25

5000
(50,000)

1 5021.38 2844.10 1.77 1904.56 2.64 1325.81 3.79 949.56 5.29
2 5299.68 3060.97 1.73 2006.01 2.64 1312.41 4.04 823.62 6.43
3 5863.39 3258.24 1.80 2197.87 2.67 1331.35 4.40 877.68 6.68
4 6378.36 3632.83 1.76 2276.32 2.80 1307.49 4.88 970.52 6.57
5 7109.06 3727.13 1.91 2206.63 3.22 1434.24 4.96 854.76 8.32
6 6593.87 3920.42 1.68 2195.36 3.00 1278.81 5.16 906.08 7.28
7 5055.14 3143.65 1.61 2070.81 2.44 1331.02 3.80 967.73 5.22
8 4975.48 3074.87 1.62 1941.05 2.56 1316.31 3.78 915.10 5.44
9 5334.54 3236.17 1.65 2023.51 2.64 1312.60 4.06 926.00 5.76

10 5242.86 2899.70 1.81 1940.35 2.70 1325.12 3.96 869.98 6.03

Electronics 2025, 14, 584 24 of 36

Table 3. PPSO CPU performance metrics across 32 to 512 threads (computation time in seconds;
speedup values normalized to sequential execution).

Dim.
(Pop.)

Prob.
No.

32 Threads 64 Threads 128 Threads 256 Threads 512 Threads

Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

1000
(10,000)

1 27.92 7.21 22.78 8.84 23.91 8.42 26.94 7.48 33.40 6.03
2 28.03 7.72 22.93 9.44 23.97 9.02 27.40 7.89 33.59 6.44
3 30.25 7.74 27.78 8.43 24.53 9.55 27.92 8.39 34.95 6.70
4 28.44 8.78 24.34 10.25 25.25 9.89 28.95 8.62 35.45 7.04
5 29.43 8.90 25.94 10.09 25.68 10.20 29.35 8.92 35.78 7.32
6 36.90 7.05 24.75 10.51 25.88 10.05 29.05 8.95 35.16 7.40
7 31.79 6.68 26.96 7.88 24.01 8.85 27.02 7.86 33.03 6.43
8 31.05 6.40 23.08 8.61 24.18 8.22 27.18 7.31 33.14 6.00
9 28.53 7.07 22.56 8.94 23.97 8.41 26.80 7.52 33.75 5.97
10 30.69 6.78 24.44 8.52 24.02 8.66 26.85 7.75 33.05 6.30

2000
(20,000)

1 129.92 5.91 93.91 8.17 87.30 8.79 115.24 6.66 103.14 7.44
2 118.60 6.66 102.17 7.74 86.04 9.19 113.60 6.96 101.68 7.77
3 125.61 7.34 82.16 11.22 88.47 10.42 112.39 8.20 107.80 8.55
4 120.85 8.15 109.58 8.98 89.55 10.99 107.42 9.16 111.42 8.84
5 120.09 8.57 93.49 11.01 91.00 11.32 108.69 9.47 111.83 9.21
6 136.40 7.57 97.54 10.58 89.24 11.57 107.76 9.58 111.47 9.26
7 117.39 6.62 94.47 8.22 86.84 8.95 104.51 7.43 104.26 7.45
8 104.04 7.54 87.01 9.02 87.24 9.00 109.28 7.18 101.79 7.71
9 131.42 6.10 90.95 8.81 86.58 9.26 109.85 7.29 103.70 7.73
10 114.04 6.89 104.57 7.52 90.16 8.72 113.84 6.90 106.12 7.41

3000
(30,000)

1 167.15 10.46 220.41 7.93 157.03 11.14 182.99 9.56 258.71 6.76
2 183.91 9.87 243.53 7.45 147.74 12.28 183.46 9.89 226.33 8.02
3 169.17 12.62 240.12 8.89 164.02 13.02 186.65 11.44 253.86 8.41
4 190.38 12.06 224.11 10.25 169.21 13.57 189.96 12.09 264.32 8.69
5 183.40 13.09 208.84 11.49 168.15 14.27 188.92 12.70 257.03 9.34
6 192.63 11.87 230.44 9.92 166.35 13.75 186.48 12.26 258.85 8.83
7 173.75 10.14 220.78 7.98 157.87 11.17 181.32 9.72 250.56 7.03
8 178.76 10.00 226.44 7.89 161.30 11.08 182.41 9.79 250.76 7.13
9 187.34 9.75 159.95 11.41 161.41 11.31 181.39 10.07 265.72 6.87
10 168.93 10.49 238.39 7.43 162.53 10.90 181.93 9.74 259.03 6.84

4000
(40,000)

1 381.39 8.27 242.53 13.01 260.82 12.10 290.97 10.85 366.04 8.62
2 378.23 8.65 238.70 13.71 261.82 12.50 289.19 11.31 358.13 9.14
3 357.62 10.43 254.85 14.64 264.31 14.11 293.43 12.71 364.70 10.23
4 409.03 9.89 244.19 16.57 275.37 14.69 302.41 13.38 381.04 10.62
5 350.41 11.65 383.72 10.64 275.99 14.79 298.89 13.66 371.79 10.98
6 462.64 9.18 250.30 16.96 274.12 15.49 300.29 14.14 367.62 11.55
7 374.81 8.94 232.30 14.42 261.46 12.81 291.79 11.48 358.15 9.35
8 414.10 7.69 223.61 14.24 261.54 12.18 289.36 11.01 373.34 8.53
9 384.84 8.40 243.35 13.29 260.32 12.43 290.12 11.15 381.78 8.47
10 449.09 7.05 221.43 14.29 261.20 12.12 286.27 11.06 364.99 8.67

5000
(50,000)

1 688.06 7.30 620.70 8.09 378.51 13.27 416.26 12.06 543.04 9.25
2 679.29 7.80 689.92 7.68 382.58 13.85 418.82 12.65 525.77 10.08
3 687.51 8.53 706.20 8.30 390.09 15.03 423.05 13.86 554.37 10.58
4 745.23 8.56 459.96 13.87 408.44 15.62 431.74 14.77 573.91 11.11
5 802.39 8.86 711.26 10.00 401.30 17.71 435.18 16.34 561.62 12.66
6 731.70 9.01 671.43 9.82 359.64 18.33 429.11 15.37 533.68 12.36
7 594.42 8.50 672.33 7.52 383.46 13.18 415.23 12.17 545.24 9.27
8 712.45 6.98 687.94 7.23 376.80 13.20 417.81 11.91 555.96 8.95
9 664.33 8.03 402.47 13.25 384.21 13.88 421.06 12.67 522.12 10.22
10 811.77 6.46 671.32 7.81 380.80 13.77 415.60 12.62 546.21 9.60

Electronics 2025, 14, 584 25 of 36

(a) (b)

(c) (d)

(e)

Figure 3. Multithreaded performance analysis by problem dimension: (a) 1000, (b) 2000, (c) 3000,
(d) 4000, (e) 5000. Mean processing time and speedup ratio as functions of the number of threads
(1 thread corresponds to sequential execution).

Figure 3c, illustrating problem dimension 3000, demonstrates a notable surge in
the mean speedup ratio when increasing the thread count from 16 to 32, resulting in a
performance improvement of approximately 92.6%. This improvement can be attributed to
factors such as enhanced load balancing, which ensures a more even distribution of the
workload and reduces idle times, as well as improved cache efficiency and better utilization
of the CPU’s memory hierarchy. However, when the thread count is increased further,
from 32 to 64, a decrease of 21.7% in the mean speedup is observed, indicating diminishing
returns for this particular workload and thread combination. This reduction in performance
may be attributed to overhead from thread synchronization or memory access contention.
Nonetheless, a subsequent improvement of 35.1% in speedup is attained when moving
to 128 threads, resulting in the optimal configuration for this workload with a maximum
mean speedup of 12.25×. This suggests that while the algorithm may continue to benefit
from additional threads in certain scenarios, it is ultimately constrained by the system’s
hardware and architecture.

Electronics 2025, 14, 584 26 of 36

The mean speedup of 14.18×was achieved when processing SNEs with 4000 variables
using 64 threads, as shown in Figure 3d. Notably, despite the increased computational
workload compared to the previous problem dimension of 3000, the peak speedup was
achieved at a lower thread count. This suggests that for this specific problem dimension, the
algorithm makes more efficient use of processing resources up to 64 threads, beyond which
additional threads result in diminishing returns, limiting further scaling of the computation.
Additionally, there was a substantial increase of approximately 57.3% in speedup when
moving from 32 threads to 64 threads, indicating that a larger parallelizable portion of the
problem remained that could be better exploited. When averaging the multithreaded results
per problem dimension (see the last column of Table 4), the 4000-dimensional problem
demonstrates the highest mean speedup overall. This indicates that for the computational
experiments conducted, the proposed multithreaded implementation achieves a balance
between computational workload and processing efficiency at this dimensionality.

The highest mean speedup of 14.79× across all test scenarios was achieved when
processing SNEs with 5000 variables using 128 threads, as shown in Figure 3e. At this
dimensionality, the computational peak shifts back to 128 threads compared to 64 threads
in the previous problem size. Additionally, the most significant increase in speedup with
increasing thread count now occurs when transitioning from 64 to 128 threads, rather than
the previous jump from 32 to 64 threads, although with a comparable improvement of
approximately 58%. This observation suggests that the increased computational workload
benefits from a greater number of threads, enabling more effective parallelization through
a more balanced distribution of the workload across the available threads.

An analysis of the mean results by problem dimension revealed no consistent pattern
in the number of threads required to achieve maximum speedup with the optimal number
alternating between 64 and 128 threads. This variation can be attributed to the scaling
characteristics of the algorithm for different problem sizes as well as the strengths and
limitations of the system’s hardware. While smaller problem sizes generally benefit from
fewer threads and larger problems require additional threads to fully exploit parallelism,
other factors, such as the nature of the problem and its potential for parallelization, influence
thread scalability efficiency as well.

A more detailed compilation of the aggregate mean speedup ratios is provided in
Table 4, which aids in determining the optimal thread configuration for these particular
experiments and test setup. Considering the overall means across all assessed dimensions,
the data indicate that the multithreaded implementation of PPSO achieves its highest mean
speedup of 11.86× at 128 threads, suggesting this configuration represents the optimal
balance between parallel workload and system overhead for the presented use case. Over-
all, the results demonstrate an increasing efficiency of the parallelized algorithm from 2
to 128 threads with the mean speedup consistently rising as more threads are utilized.
However, further increases in thread count fail to yield additional improvements, as evi-
denced by diminishing returns observed at 256 and 512 threads. This suggests that factors
such as memory or I/O constraints may begin to limit performance as the number of
threads increases.

Figure 4 further contextualizes the mean aggregated speedups by comparing them
to the theoretical speedup predictions based on Amdahl’s law [36] for varying degrees
of parallelism (85%, 90%, and 95%). Amdahl’s law models the potential speedup of a
parallelized application based on the proportion of code that can be parallelized and the
number of threads utilized. It assumes that a portion of the code is inherently serial and
cannot benefit from parallelization, thereby limiting the overall achievable speedup.

Electronics 2025, 14, 584 27 of 36

Table 4. Multithreaded mean speedup for each problem dimension. The final row shows the mean
speedup across all assessed dimensions, and the last column displays the mean speedup across all
multithreaded tests.

Dim. 2 T 4 T 8 T 16 T 32 T 64 T 128 T 256 T 512 T Mean

1000 1.71 2.58 3.88 5.83 7.43 9.15 9.13 8.07 6.56 6.04
2000 1.75 2.44 4.02 5.32 7.13 9.13 9.82 7.88 8.14 6.18
3000 1.67 2.97 4.44 5.73 11.03 9.07 12.25 10.73 7.79 7.30
4000 1.68 3.09 5.51 6.71 9.02 14.18 13.32 12.07 9.62 8.35
5000 1.73 2.73 4.28 6.30 8.00 9.36 14.79 13.44 10.41 7.89

Mean 1.71 2.76 4.43 5.98 8.52 10.18 11.86 10.44 8.50

Figure 4. Mean aggregated speedups and Amdahl’s law theoretical predictions.

When comparing the mean measured speedup across different thread counts to the
theoretical predictions, the results show that the multithreaded implementation of PPSO
closely follows the speedup curve for 90% parallelizable code up to 16 threads. From 32 to
256 threads, the measured speedup exceeds the 90% parallelization prediction, indicating
that in the lower range of thread counts, the implementation is more notably affected by
the serial portion of the algorithm. This outcome aligns with the implementation strategy
of the multithreaded PPSO (Algorithm 3), where the most computationally intensive parts
of the algorithm were designed to run in parallel, incorporating the structural and memory
management enhancements introduced by the codebase optimization.

As the number of threads increases, the parallel portion of the work becomes more
prominent, resulting in a higher parallelization factor. This result indicates that the algo-
rithm is highly parallelizable and continues to benefit from increased thread counts. The
highest observed speedup occurs at 128 threads, indicating that this is the optimal thread
count for the given implementation and workload. At this point, the balance between
the parallel workload and overhead is optimal, maximizing efficiency while minimizing
bottlenecks such as memory contention or synchronization delays.

Although at 256 threads the speedup results still exceed the 90% parallelization pre-
diction, the improvements begin to regress, becoming closer to the results obtained at
64 threads. As the number of threads increases further to 512, the speedup declines further,
falling below the theoretical speedup predicted by Amdahl’s Law for 90%-parallelizable
code. This performance drop reflects the diminishing returns typically associated with
high thread counts, where the overhead of managing a large number of threads becomes
significant. Contributing factors likely include increased thread synchronization overhead,
cache contention, memory bandwidth saturation, and inefficiencies in thread management.
These factors can negate the benefits of adding more threads, resulting in suboptimal
scaling at higher thread counts.

Electronics 2025, 14, 584 28 of 36

5.3. GPU Parallelization

An overview of the mean performance metrics for the proposed GPU parallelization
of PPSO, derived from individual runs and tested using both single-precision (FP32) and
double-precision (FP64) arithmetic, are provided in Table 5. In the context of GPU speedup
assessment, the inclusion of both floating-point precision formats is particularly relevant, as
the performance characteristics of GPU computation can vary substantially between FP32
and FP64. This approach facilitates a more comprehensive evaluation of GPU efficiency
across different workloads while assessing the trade-off between computational speed and
numerical accuracy. Additionally, the improvement ratios were calculated relative to both
the sequential execution and the best-performing multithreaded execution, providing a
more thorough assessment of the performance gains achieved through GPU parallelization.

Table 5. GPU-parallelized PPSO performance metrics using single and double-precision arithmetic.
Computation time is reported in seconds, and speedup values are normalized with respect to both
sequential and 128-threaded (i.e., best-performing multithreaded) executions.

Dim.
(Pop.)

Prob.
No.

Single Precision (FP32) Double Precision (FP64)

Time Speedup (Seq.) Speedup (128 T) Time Speedup (Seq.) Speedup (128 T)

1000
(10,000)

1 1.21 167.12 19.84 1.46 138.20 16.41
2 1.64 131.88 14.62 1.74 124.25 13.77
3 1.66 140.76 14.74 1.89 123.69 12.95
4 1.14 218.23 22.07 1.71 145.82 14.75
5 1.01 259.87 25.49 1.47 178.71 17.53
6 0.92 283.33 28.20 1.56 166.96 16.62
7 1.05 203.06 22.95 1.18 179.77 20.32
8 1.00 197.74 24.06 1.31 151.62 18.45
9 1.09 184.21 21.90 1.16 173.94 20.68

10 1.16 179.53 20.72 1.31 158.45 18.29

2000
(20,000)

1 3.00 256.08 29.13 3.52 218.13 24.82
2 3.84 206.01 22.43 4.03 195.91 21.33
3 3.92 235.11 22.56 4.35 212.13 20.35
4 3.07 320.82 29.18 4.20 234.23 21.31
5 2.61 394.92 34.90 3.54 290.52 25.67
6 2.43 423.95 36.66 3.74 275.97 23.86
7 2.72 285.67 31.93 2.99 259.66 29.03
8 2.11 372.25 41.38 2.62 299.05 33.24
9 2.80 286.23 30.93 2.95 271.99 29.39

10 2.38 330.61 37.93 2.64 298.00 34.18

3000
(30,000)

1 5.48 319.39 28.68 6.49 269.47 24.19
2 6.73 269.50 21.94 7.23 250.92 20.43
3 5.84 365.62 28.08 6.69 319.35 24.53
4 5.84 393.45 28.99 7.86 292.37 21.54
5 5.04 476.24 33.36 6.67 360.03 25.22
6 4.78 477.99 34.77 6.91 330.76 24.06
7 4.26 414.23 37.10 4.96 355.27 31.82
8 4.30 415.28 37.49 5.30 337.17 30.44
9 5.19 351.76 31.10 5.72 319.12 28.21

10 4.71 375.97 34.49 5.31 333.39 30.58

Electronics 2025, 14, 584 29 of 36

Table 5. Cont.

Dim.
(Pop.)

Prob.
No.

Single Precision (FP32) Double Precision (FP64)

Time Speedup (Seq.) Speedup (128 T) Time Speedup (Seq.) Speedup (128 T)

4000
(40,000)

1 8.76 360.28 29.78 10.11 312.02 25.79
2 10.38 315.14 25.22 11.21 291.72 23.35
3 9.19 406.13 28.77 10.45 357.02 25.29
4 9.46 427.51 29.10 12.34 327.86 22.31
5 8.27 493.30 33.35 10.56 386.72 26.15
6 7.95 533.98 34.47 10.95 387.63 25.02
7 6.99 479.16 37.40 8.04 416.37 32.50
8 7.30 436.51 35.85 8.77 362.99 29.81
9 7.74 417.75 33.62 8.64 374.19 30.12

10 7.82 404.63 33.40 8.79 360.02 29.71

5000
(50,000)

1 12.85 390.67 29.45 14.94 336.03 25.33
2 14.85 356.81 25.76 16.17 327.77 23.66
3 13.47 435.29 28.96 15.31 382.90 25.47
4 14.09 452.57 28.98 18.26 349.28 22.37
5 12.31 577.46 32.60 15.43 460.66 26.00
6 11.92 553.32 30.18 15.93 413.86 22.57
7 10.72 471.57 35.77 12.33 409.87 31.09
8 11.12 447.59 33.90 13.20 377.03 28.55
9 10.95 487.26 35.09 12.38 430.97 31.04

10 11.75 446.12 32.40 13.23 396.30 28.78

The observations demonstrate consistent performance, indicating that the GPU par-
allelization of the PPSO algorithm leads to significant computational time reductions
compared to both sequential and multithreaded CPU implementations. Furthermore, the
speedup tends to be greater for larger dimensions, suggesting that the parallelization
strategy efficiently distributes the workload across the available resources.

The speedup normalized against the sequential CPU execution, as expected, produces
the greatest performance improvements. Specifically, in this comparison, the speedup
values for the GPU-based PPSO implementation range from 131.88× to 577.46×with a mean
of 356.60× using FP32 arithmetic and from 123.69× to 460.66×with a mean of 294.52×when
employing FP64 arithmetic.

When comparing the GPU parallelization of PPSO with the best-performing multi-
threaded algorithm execution (which, according to previous results, was achieved with
128 threads), the observed improvement ratios are more modest yet still significant. When
normalized to the 128-thread multithreaded CPU execution, the speedups achieved by the
GPU-based PPSO range from 14.62× to 41.38×with a mean of 29.63× for FP32 operations
and from 12.95× to 34.18×with a mean of 24.58× for FP64 operations.

The findings demonstrate that FP32 consistently outperforms FP64 across all mea-
surements. Specifically, based on the mean speedup results, FP32 offers an empirical
performance advantage of approximately 21% compared to FP64 in both sequential and
128-threaded speedup normalizations. Considering the A100 GPU’s 2:1 FP32-to-FP64
performance ratio, this 21% gap may seem relatively modest. However, in optimization
algorithms, performance bottlenecks often arise from memory access, synchronization
overhead, or inter-core communication rather than arithmetic unit saturation. Furthermore,
architectural aspects of the A100 GPU, which is optimized for high FP64 throughput (unlike
consumer-grade GPUs), help mitigate the performance advantage of FP32.

It is important to emphasize that the choice between FP32 and FP64 is heavily depen-
dent on the specific use case. While FP32 offers a performance benefit, this may not always

Electronics 2025, 14, 584 30 of 36

justify the potential risks associated with reduced computational precision. In applications
where fitness function evaluations are sensitive to numerical accuracy, or where the opti-
mization problem involves narrow or highly constrained optimal regions, the precision
loss from using FP32 could substantially impact the solution quality. In such cases, the
accurate representation of problem parameters and results using FP64 may override the
computational speed benefits of FP32.

Figure 5 illustrates the problem-specific behavior of the GPU-based PPSO, showcasing
the performance of the algorithm for varying problem dimensions. This representation
aids in understanding how the computational load of each problem affects speedup and
how this speedup evolves across different problem sizes.

Examining the progression of speedup relative to sequential CPU performance for
both FP32 and FP64 arithmetic (Figure 5a,b), the results reveal a positive scaling trend with
increasing problem size for most test problems. However, problem number 7 exhibited
a slight speedup regression at the 5000-dimensional problem when computed with both
floating-point precisions. This regression suggests diminishing returns, likely due to a
reduction in the computational effort required for this problem, which causes the parallel
computation to become less efficient and insufficient to offset the costs associated with
launching and managing a larger number of threads.

The problems that perform best on average for FP32 precision are problems 6 and
5 with mean speedups of 454.52× and 440.36×, respectively. For FP64, problem 5 stands
out with the highest mean result of 335.33×, which is followed by problem 7 at 324.19×.
Regarding the least efficient problems, problem 2 is the worst performer, followed by
problem 1, for both computational precisions. The mean speedups for these problems are
255.87× and 298.71× for FP32 and 238.11× and 254.77× for FP64, respectively.

(a) (b)

(c) (d)

Figure 5. GPU parallelization performance for each test problem: speedup ratios for FP32 and FP64
by problem dimension, relative to sequential and 128-threaded executions. Subfigures (a,c) show
FP32 speedup: (a) sequential, (c) 128-threaded; subfigures (b,d) show FP64 speedup: (b) sequential,
(d) 128-threaded.

Electronics 2025, 14, 584 31 of 36

The analysis of these results highlights consistent performance trends, particularly
among the least efficient problems, while revealing notable variability among the best-
performing ones. Notably, problem 5, which ranks among the top performers in both
arithmetic precisions, shifts from being the best performer in FP64 to the second-best
performer in FP32. Furthermore, the general performance profiles for the test problems
by problem dimensions remain largely consistent across FP32 and FP64, though there
are shifts in performance rankings. These shifts suggest that the computational effort
for certain problems is more influenced by arithmetic overheads than by problem size or
dimensionality alone.

The speedup results relative to 128-threaded CPU for FP32 and FP64 arithmetic, as
depicted in Figure 5c,d, exhibit fluctuating trends as the workload increases, indicating
variations in scaling behavior. Similar to the speedup results observed relative to sequential
CPU performance, the performance behavior of the test problems remains largely consistent
across varying problem dimensions for both arithmetic precisions, though some reordering
of performance rankings is observed.

As computational complexity increases to the 2000-dimensional problem, positive
scaling is observed across all test problems for both FP32 and FP64 computations. At this
point, problems 8 and 10 achieve their maximum speedup, which is followed by negative
scaling beyond this threshold. Conversely, problems 4 and 7 achieve their maximum
speedup at a higher complexity, specifically at the 4000-dimensional problem. After the
negative scaling between problem dimensions 2000 and 3000, problems 2 and 9 show
an upward trend in the remaining problem dimensions, suggesting potential for further
scaling beyond the 5000-dimensional problem. The remaining test problems either reach a
saturation point at the 2000-dimensional mark—where performance improvements plateau
and no further measurable gains are achieved—or exhibit a more fluctuating trend with
speedup oscillating between increasing and decreasing phases as computational complexity
grows. Despite the positive speedup ratios, these fluctuations suggest diminishing returns
as problem complexity continues to scale.

The general speedup trend with increasing workload for both computational preci-
sions is presented in Figure 6 where the mean GPU-based parallelization performance is
compared against single-threaded and 128-threaded CPU computations.

Figure 6. Mean GPU-based parallelization performance relative to sequential (left) and 128-threaded
(right) executions: mean speedup ratios for FP32 and FP64 as functions of problem size.

In the left plot of Figure 6, the positive scaling of speedup with increasing problem
dimension is observed. This indicates that as the problem size grows, the parallel efficiency
of the GPU implementation improves substantially, particularly in comparison to sequential
CPU execution. This suggests that the GPU-based algorithm benefits from larger workloads,
where its high degree of parallelism can be utilized more effectively, leading to more efficient
computation and higher speedups. Additionally, it is clear that the gap between FP32

Electronics 2025, 14, 584 32 of 36

and FP64 computations widens as the problem size increases. This implies that single-
precision arithmetic better exploits GPU resources at higher computational loads, achieving
greater speedups compared to double precision. This is likely because FP32 requires fewer
computational resources, such as memory bandwidth, and places a lower computational
demand on arithmetic units than FP64.

Regarding the mean speedup relative to 128-threaded CPU execution (right plot
of Figure 6), the initial trend shows a steady increase in speedup, which is followed
by a saturation point after the 2000-dimensional problem. Beyond this point, further
increases in computational complexity lead to small fluctuations in speedup, which is
characterized by an oscillating pattern. This suggests that the GPU-based algorithm is
no longer able to scale effectively and has entered a region of diminishing returns. This
behavior is likely due to the GPU reaching a performance ceiling relative to the 128-threaded
CPU. After the 2000 problem size, the GPU is unable to deliver substantial performance
improvements, which is possibly because it has already optimized the use of its available
resources. Consequently, further increases in problem size do not yield proportional gains
in GPU performance, signaling a limit to the scalability of the algorithm relative to the
128-threaded CPU. This trend is observed in both FP32 and FP64, indicating that the
diminishing returns are not necessarily due to computational limitations but rather to the
inherent constraints of the parallelization strategy and the available hardware resources at
larger problem sizes.

5.4. Parallelization Impact on Solution Quality

In some cases, parallelization techniques may impact the quality of optimization
solutions, potentially leading to suboptimal results due to issues such as synchronization
errors. Table 6 provides a detailed analysis of the impact of both multithreaded CPU
and GPU-based parallelization on the quality of the solutions obtained by the PPSO
algorithm. The table shows the percentage relative difference in the mean best solutions
found compared to the baseline mean best solutions obtained from the sequential CPU
tests. Since the multithreaded tests only utilized double-precision arithmetic, the quality
assessment of solutions found with FP32 computation using GPU-based parallelization is
omitted from the comparison. Nevertheless, the expected results should be equivalent, as
the computations in both FP32 and FP64 used the same algorithm implementation with the
only modification being the variable types corresponding to each precision.

Table 6. Impact of multithreaded and GPU-based parallelization on PPSO solution quality: percentage
relative difference in mean best solutions compared to the sequential CPU baseline.

Dim.

CPU GPU

2 T 4 T 8 T 16 T 32 T 64 T 128 T 256 T 512 T FP64

1000 1.16 −0.21 −0.21 −0.09 0.30 −3.41 2.63 4.69 −0.18 −1.03
2000 0.36 2.19 2.19 2.33 −0.61 1.17 0.10 −0.12 −0.70 1.50
3000 −0.51 −0.09 −0.09 0.57 0.73 2.13 1.24 1.12 1.46 −1.94
4000 1.98 0.58 0.58 2.30 4.09 0.82 2.17 3.34 2.32 2.50
5000 −0.11 −0.12 −0.12 −0.29 1.51 −0.97 −1.62 −0.13 2.14 −0.63

Mean 0.58 0.47 0.47 0.96 1.21 −0.05 0.90 1.78 1.01 0.08

Table 6 shows that the percentage relative difference in the mean solution ranges from
−0.09% to 4.69%, indicating a relatively small deviation from the solutions obtained with
sequential optimization. When considering the mean results across all problem dimensions,
the mean percentage relative difference further narrows to a range of −0.05% to 1.78%,
highlighting even smaller discrepancies. Comparing the results from parallel computation

Electronics 2025, 14, 584 33 of 36

using both multithreaded and GPU-based approaches, the data reveal that GPU computa-
tion did not result in a higher percentage difference in the solutions, performing among the
best in terms of solution accuracy.

Variation in the obtained solutions is to be expected when working with optimization
algorithms like PPSO. Given the stochastic nature of such algorithms, the best solutions
may vary between runs due to factors such as random initialization, their non-deterministic
behavior, and the size and complexity of the optimization problems. These factors often
lead to fluctuations in convergence patterns. Considering the challenging nature of solving
SNEs, along with the large problem dimensions tested (ranging from 1000 to 5000 vari-
ables), the percentage relative difference of the mean best solutions found falls well within
the expected range for computational experiments of this type. This suggests that the
proposed multithreaded and GPU-based parallel implementations of PPSO not only adhere
to the same operating principles and yield similar results as the sequential algorithmic
implementation but also effectively and substantially reduce the computation time.

6. Conclusions
The results of this study underscore the advantages of leveraging modern hardware

platforms, including multicore processors and high-efficiency GPUs, to accelerate the
resolution of complex optimization problems using intelligent population-based algorithms,
particularly swarm-inspired methods like PSO and its variations, including the modified
PSO algorithm considered here. These findings provide valuable insights into the practical
implications of parallel computing for solving large-scale SNEs as nonlinear optimization
problems, enabling these algorithms to address the complexity of solving such systems
effectively and efficiently.

Relatively to multithreaded parallelization, the results obtained indicate that increas-
ing the number of threads initially delivers substantial performance improvements with
processing times decreasing significantly as more threads are utilized. However, be-
yond an optimal thread count, the performance benefits diminish due to overheads from
thread management and resource contention, highlighting the trade-offs inherent in multi-
threaded computation.

The most notable finding in the multithreaded results is that the highest mean speedup
of 11.86×was achieved with 128 threads with speedups ranging from 8.42× to 18.33×. This
corresponds to the point of optimal performance, suggesting that 128 threads represent the
ideal count for the specific algorithm, the problems considered, and the CPU configuration
used in this study. At this point, the system likely achieves a balance between the benefits
of parallel execution and the overheads associated with managing higher thread counts.

As the number of threads increases further, particularly at 256 and 512 threads, the
speedup starts to decrease. At 256 threads, the mean speedup drops to 10.44×, and at
512 threads, it further declines to 8.50×. This trend reflects diminishing returns in parallel
processing, where increasing the number of threads beyond a certain point introduces
overhead that negates performance gains. Several factors may contribute to this, including
CPU core saturation, inefficient load balancing, and increased synchronization overhead

Regarding the effectiveness of the GPU parallelization, the GPU-based PPSO demon-
strated significant performance improvements compared to sequential execution. In this
analysis, the speedup ranged from 123.69× to 460.66×with a mean of 294.52×when perform-
ing double-precision arithmetic and from 131.88× to 577.46×with a mean of 356.60× for
single-precision arithmetic. This additional performance gain of nearly 21% in single-
precision computing comes with the trade-off of reduced computational precision, making
its use case-dependent for performance-critical applications. The observations also re-
vealed a correlation between increased problem size (or workload) and improved speedup,

Electronics 2025, 14, 584 34 of 36

demonstrating effective scalability. These results highlight the computational efficiency of
the GPU-based PPSO, particularly in handling large-scale optimization problems.

To provide additional context for assessing the overall efficiency of the GPU-based im-
plementation, the results were compared with the highest-performing multithreaded CPU
execution (with 128 threads). The measured speedup ranged from 12.95× to 34.18×with a
mean of 24.58×using double-precision arithmetic and from 14.62× to 41.38×with a mean
of 29.63× for single-precision. In this analysis, the speedup growth exhibited fluctuations
as the workload increased beyond the 2000-dimensional problem. This behavior is likely
caused by the GPU reaching a performance ceiling when compared to the 128-threaded
CPU, because it cannot provide significant performance gains. While the GPU-based algo-
rithm consistently outperforms the CPU, its performance shows diminishing returns for
very high-dimensional problems, which is likely because it has already utilized nearly all
of its available resources.

The impact of parallelization on solution quality was also evaluated. The mean
percentage difference in the solutions obtained through both parallelizations ranged from
−0.05% to 1.78%, on average, indicating a minimal deviation in solution quality between
the sequential and parallel approaches. This suggests that the algorithms perform similarly.
These results confirm the correctness of the parallelizations and that the core operating
principles of the original PPSO algorithm were preserved.

This research also highlights the critical importance of algorithmic efficiency and
memory optimization in computational tasks. Optimizing the sequential codebase resulted
in significant improvements, reducing the memory footprint by as much as 74.6% and
decreasing computational time by nearly 70%. By evaluating the performance of the parallel
implementations against a highly optimized sequential algorithm, the results become more
transparent, highlighting the actual speedup gains achieved through parallelization.

Author Contributions: Conceptualization, B.S. and L.G.L.; methodology, L.G.L.; investigation, soft-
ware, and writing—original draft preparation, B.S.; supervision, validation, and writing—review and
editing, L.G.L. and F.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by IntellMax–Optimization, Artificial Intelligence and
Data Science, Lda., Portugal. This work was also supported by the Interactive Technologies Institute
(ITI/LARSyS), funded by the Portuguese Foundation for Science and Technology (FCT) through the
projects 10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020.
The HPC resources used in this study were provided by the Portuguese National Distributed Com-
puting Infrastructure (INCD) through the FCT Advanced Computing Projects 2023.09611.CPCA.A1
and 2024.07086.CPCA.A1.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95–International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995
.488968.

2. Zaini, F.A.; Sulaima, M.F.; Razak, I.A.W.A.; Zulkafli, N.I.; Mokhlis, H. A review on the applications of PSO-based algorithm in
demand side management: Challenges and opportunities. IEEE Access 2023, 11, 53373–53400. https://doi.org/10.1109/ACCESS.
2023.3278261.

3. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992. https://doi.org/10.7551/mitpress/1090.001.0001.

4. Storn, R. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces; Technical
Report 11; International Computer Science Institute: Berkeley, CA, USA, 1995.

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ACCESS.2023.3278261
https://doi.org/10.1109/ACCESS.2023.3278261
https://doi.org/10.7551/mitpress/1090.001.0001

Electronics 2025, 14, 584 35 of 36

5. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim 1997, 11, 341–359. https://doi.org/10.1023/A:1008202821328.

6. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. https://doi.org/10.1109/
MCI.2006.329691.

7. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A
comprehensive survey. IEEE Access 2022, 10, 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859.

8. Jaberipour, M.; Khorram, E.; Karimi, B. Particle swarm algorithm for solving systems of nonlinear equations. Comput. Math. Appl.
2011, 62, 566–576. https://doi.org/https://doi.org/10.1016/j.camwa.2011.05.031.

9. Kotsireas, I.S.; Pardalos, P.M.; Semenov, A.; Trevena, W.T.; Vrahatis, M.N. Survey of methods for solving systems of nonlinear
equations, Part I: Root-finding approaches. arXiv 2022, https://doi.org/10.48550/arXiv.2208.08530.

10. Li, Y.; Wei, Y.; Chu, Y. Research on solving systems of nonlinear equations based on improved PSO. Math. Probl. Eng. 2015,
2015, 727218. https://doi.org/10.1155/2015/727218.

11. Choi, H.; Kim, S.D.; Shin, B.C. Choice of an initial guess for Newton’s method to solve nonlinear differential equations. Comput.
Math. Appl. 2022, 117, 69–73. https://doi.org/10.1016/j.camwa.2022.04.013.

12. Zhang, G.; Allaire, D.; Cagan, J. Taking the guess work out of the initial guess: A solution interval method for least-squares
parameter estimation in nonlinear models. J. Comput. Inf. Sci. Eng. 2020, 21, 021011. https://doi.org/10.1115/1.4048811.

13. Dattner, I. A model-based initial guess for estimating parameters in systems of ordinary differential equations. Biometrics 2015,
71, 1176–1184. https://doi.org/10.1111/biom.12348.

14. Gong, W.; Liao, Z.; Mi, X.; Wang, L.; Guo, Y. Nonlinear equations solving with intelligent optimization algorithms: A survey.
Complex Syst. Model. Simul. 2021, 1, 15–32. https://doi.org/10.23919/CSMS.2021.0002.

15. Verma, P.; Parouha, R.P. Solving systems of nonlinear equations using an innovative hybrid algorithm. Iran. J. Sci. Technol. Trans.
Electr. Eng. 2022, 46, 1005–1027. https://doi.org/10.1007/s40998-022-00527-z.

16. Tawhid, M.A.; Ibrahim, A.M. An efficient hybrid swarm intelligence optimization algorithm for solving nonlinear systems and
clustering problems. Soft Comput. 2023, 27, 8867–8895. https://doi.org/10.1007/s00500-022-07780-8.

17. Ribeiro, S.; Silva, B.; Lopes, L.G. Solving systems of nonlinear equations using Jaya and Jaya-based algorithms: A computational
comparison. In Algorithms for Intelligent Systems, Proceedings of the International Conference on Paradigms of Communication,
Computing and Data Analytics (PCCDA 2023), New Delhi, India, 22–23 April 2023; Yadav, A., Nanda, S.J., Lim, M.H., Eds.; Springer:
Singapore, 2023; pp. 119–136. https://doi.org/10.1007/978-981-99-4626-6_10.

18. Silva, B.; Lopes, L.G.; Mendonça, F. Parallel GPU-acceleration of metaphorless optimization algorithms: Application for solving
large-scale nonlinear equation systems. Appl. Sci. 2024, 14, 5349. https://doi.org/10.3390/app14125349.

19. Tiwari, P.; Mishra, V.N.; Parouha, R.P. Modified differential evolution to solve systems of nonlinear equations. OPSEARCH 2024,
61, 1968–2001. https://doi.org/10.1007/s12597-024-00763-3.

20. Lalwani, S.; Sharma, H.; Satapathy, S.C.; Deep, K.; Bansal, J.C. A survey on parallel particle swarm optimization algorithms. Arab.
J. Sci. Eng. 2019, 44, 2899–2923. https://doi.org/10.1007/s13369-018-03713-6.

21. Hussain, M.M.; Fujimoto, N. GPU-based parallel multi-objective particle swarm optimization for large swarms and high
dimensional problems. Parallel Comput. 2020, 92, 102589. https://doi.org/10.1016/j.parco.2019.102589.

22. Wang, C.C.; Ho, C.Y.; Tu, C.H.; Hung, S.H. cuPSO: GPU parallelization for particle swarm optimization algorithms. In Proceedings
of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Conference, 25–29 April 2022; ACM: New York, NY, USA,
2022; pp. 1183–1189. https://doi.org/10.1145/3477314.3507142.

23. Wang, H.; Luo, X.; Wang, Y.; Sun, J. Identification of heat transfer coefficients in continuous casting by a GPU-based improved
comprehensive learning particle swarm optimization algorithm. Int. J. Therm. Sci. 2023, 190, 108284. https://doi.org/10.1016/j.
ijthermalsci.2023.108284.

24. Chraibi, A.; Ben Alla, S.; Touhafi, A.; Ezzati, A. Run time optimization using a novel implementation of Parallel-PSO for
real-world applications. In Proceedings of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence:
Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 November 2020; pp. 1–7. https://doi.org/10.1109/
CloudTech49835.2020.9365867.

25. Kumar, L.; Pandey, M.; Ahirwal, M.K. Implementation and testing of parallel PSO to attain speedup on general purpose computer
systems. Multimed. Tools Appl. 2024, 83. https://doi.org/10.1007/s11042-024-19548-3.

26. Liao, S.; Liu, B.; Cheng, C.; Li, Z.; Wu, X. Long-term generation scheduling of hydropower system using multi-core parallelization
of particle swarm optimization. Water Resour. Manag. 2017, 31, 2791–2807. https://doi.org/10.1007/s11269-017-1662-1.

27. Engelbrecht, A. Particle swarm optimization: Velocity initialization. In Proceedings of the 2012 IEEE Congress on Evolutionary
Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. https://doi.org/10.1109/CEC.2012.6256112.

28. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.
https://doi.org/10.1137/141000671.

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/https://doi.org/10.1016/j.camwa.2011.05.031
https://doi.org/10.48550/arXiv.2208.08530
https://doi.org/10.1155/2015/727218
https://doi.org/10.1016/j.camwa.2022.04.013
https://doi.org/10.1115/1.4048811
https://doi.org/10.1111/biom.12348
https://doi.org/10.23919/CSMS.2021.0002
https://doi.org/10.1007/s40998-022-00527-z
https://doi.org/10.1007/s00500-022-07780-8
https://doi.org/10.1007/978-981-99-4626-6_10
https://doi.org/10.3390/app14125349
https://doi.org/10.1007/s12597-024-00763-3
https://doi.org/10.1007/s13369-018-03713-6
https://doi.org/10.1016/j.parco.2019.102589
https://doi.org/10.1145/3477314.3507142
https://doi.org/10.1016/j.ijthermalsci.2023.108284
https://doi.org/10.1016/j.ijthermalsci.2023.108284
https://doi.org/10.1109/CloudTech49835.2020.9365867
https://doi.org/10.1109/CloudTech49835.2020.9365867
https://doi.org/10.1007/s11042-024-19548-3
https://doi.org/10.1007/s11269-017-1662-1
https://doi.org/10.1109/CEC.2012.6256112
https://doi.org/10.1137/141000671

Electronics 2025, 14, 584 36 of 36

29. Gao, K.; Mei, G.; Piccialli, F.; Cuomo, S.; Tu, J.; Huo, Z. Julia language in machine learning: Algorithms, applications, and open
issues. Comput. Sci. Rev. 2020, 37, 100254. https://doi.org/10.1016/j.cosrev.2020.100254.

30. Besard, T.; Foket, C.; De Sutter, B. Effective extensible programming: Unleashing Julia on GPUs. IEEE Trans. Parallel Distrib. Syst.
2019, 30, 827–841. https://doi.org/10.1109/TPDS.2018.2872064.

31. Moré, J.J.; Garbow, B.S.; Hillstrom, K.E. Testing unconstrained optimization software. ACM Trans. Math. Softw. 1981, 7, 17–41.
https://doi.org/10.1145/355934.355936.

32. Friedlander, A.; Gomes-Ruggiero, M.A.; Kozakevich, D.N.; Martínez, J.M.; Santos, S.A. Solving nonlinear systems of equations by
means of quasi-Newton methods with a nonmonotone strategy. Optim. Methods Softw. 1997, 8, 25–51. https://doi.org/10.1080/
10556789708805664.

33. Bodon, E.; Del Popolo, A.; Lukšan, L.; Spedicato, E. Numerical Performance of ABS Codes for Systems of Nonlinear Equations; Technical
Report DMSIA 01/2001; Universitá degli Studi di Bergamo: Bergamo, Italy, 2001.

34. Ziani, M.; Guyomarc’h, F. An autoadaptative limited memory Broyden’s method to solve systems of nonlinear equations. Appl.
Math. Comput. 2008, 205, 202–211. https://doi.org/10.1016/j.amc.2008.06.047.

35. Kelley, C.T.; Qi, L.; Tong, X.; Yin, H. Finding a stable solution of a system of nonlinear equations. J. Ind. Manag. Optim. 2011,
7, 497–521. https://doi.org/10.3934/jimo.2011.7.497.

36. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the Spring Joint Computer Conference, New York, NY, USA, 18–20 April 1967; pp. 483–485.
https://doi.org/10.1145/1465482.1465560.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cosrev.2020.100254
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1145/355934.355936
https://doi.org/10.1080/10556789708805664
https://doi.org/10.1080/10556789708805664
https://doi.org/10.1016/j.amc.2008.06.047
https://doi.org/10.3934/jimo.2011.7.497
https://doi.org/10.1145/1465482.1465560

	Introduction
	Background and Related Work
	Particle Swarm Optimization Algorithm
	PSO for Solving SNEs
	Related Work

	Algorithm Implementations
	Sequential Algorithm
	Multithreaded Design
	GPU Parallelization
	CUDA Programming Fundamentals
	GPU-Based PPSO

	Computational Experiments
	Experimental Setup
	Test Problems

	Results and Discussion
	Sequential Codebase Evaluation
	Multithreaded Speedup Analysis
	GPU Parallelization
	Parallelization Impact on Solution Quality

	Conclusions
	References

