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Abstract: Three-dimensional mesh pose transfer transforms the pose of a source model
into the pose of a reference model while preserving the source model’s identity (body
detail). It has tremendous potential in computer graphics tasks. Current neural network-
based methods primarily focus on extracting pose and body features, not entirely using
the articulated body structure of humans and animals. We propose an end-to-end pose
transfer network based on skinning deformation to address these issues. This network
first extracts skinning weights and model joint features. Then, they are decoded to transfer
the source model to a pose similar to the reference model while preserving the features
of the source model. During feature extraction, we utilize the features of the k-nearest
neighborhoods and one-ring neighborhoods to enable the network to learn the body details
of the model better. Additionally, we apply skinning weights and joint features to capture
the variation in the source model pose compared to the reference model pose and then
use a decoding network to obtain the target model, replacing linear blend skinning. We
conducted experiments on datasets such as SMPL, SMAL, FAUST, DYNA, and the MG
dataset to provide empirical evidence and demonstrate that our method is the best in
quantitative experiments. Our method efficiently transfers poses while better preserving
the identity of the source model.

Keywords: pose transfer; skinning deformation; skeleton extraction; neural network

1. Introduction
Deformation transfer and pose transfer are two techniques for reusing 3D models, and they

hold significant research value in the field of computer graphics. These techniques can greatly
reduce the workload involved in 3D animation production and virtual world modeling. As shown
in [1–3], these techniques are widely used in high-fidelity 3D mesh modeling tasks. As described
in [4] (blue dashed arrow in Figure 1), given two poses for the reference model (two cat models,
one of which is similar to the pose of the lion source model and the other provides the pose that
needs to be transformed into), deformation transfer uses the deformation process between the
two reference models to drive a similar deformation of the source model (lion model). In contrast,
pose transfer only requires a reference model that provides the pose to guide the deformation of
the source model as in [5] (red arrow in Figure 1). Given a source model and a reference model,
pose transfer outputs a target model with the source model’s body details and a pose similar to
the reference model.
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Figure 1. Deformation transfer and pose transfer. Deformation transfer requires two poses of the
reference model to guide the deformation of the source model. In contrast, pose transfer requires
only one reference model for the deformation of the source model.

In recent years, inspired by image style transfer, researchers such as Chen et al. [6] and
Song et al. [7] have proposed end-to-end deep learning models for pose transfer, known as
Neural Pose Transfer (NPT) [8]. This approach encodes the 3D model vertices into features
in a latent space and utilizes a decoding module to generate target models with preserved
details. However, as Kingma et al. show [9], this pose transfer method does not impose
regularity constraints on the latent space, and the encoder–decoder architecture has a high
degree of freedom. As shown in the results tested by Guo et al. [10] and Yang et al. [11],
such neural networks cannot effectively capture the intrinsic connections between the vertex
feature spaces of the source and reference models. The PMD metric for predictions outside the
known shape and pose spaces is significantly higher than for poses fitted in the training set.

Although it is a simple and practical approach to compute transformation matrices
for each grid vertex to obtain the final deformation result like LBS [12], this method can
introduce issues such as “candy wrapping”. Inspired by skinning deformation techniques,
we propose an end-to-end pose transfer method based on neural skinning deformation,
aiming to address this problem using neural networks. Unlike previous methods that
directly encode the vertex’s 3D coordinates into features in the latent space using an
encoder, we map the vertex features to the skeleton latent space using skinning weights to
obtain skeleton latent space features. Subsequently, vertex latent transformation features are
obtained, and pose transfer is performed through a neural network, solving the problems
faced by Yang et al. [11] as described above.

Our method consists of two stages: rigging and pose transfer. In the rigging stage,
a topology-aware neural network is employed to predict the joints and corresponding
skinning weights for both the source and reference mesh models. The predicted joints are
used to encode the overall pose of the models, while the skinning weights map the model
vertices to their respective joints. In the pose transfer stage, the vertex latent space features
of the source and reference models are encoded into skeletal latent space features using
skinning-based pooling. Then, an edge convolutional neural network further encodes the
skeletal latent space features into skeletal latent transformations. These transformations
are linearly combined with the skinning weights and then unpooled to obtain per-vertex
latent transformation features of the source model. Finally, the network generates a target
mesh model using these features. It has been observed that this approach encourages the
network to integrate features from corresponding limb parts of the two models, resulting in
a target model that exhibits both fine details and comprehensive pose learning. This paper
is organized as follows: Section 2 discusses related work, Section 3 introduces the main
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methods, Section 4 shares the training details, Section 5 shows the experimental results,
and Section 6 gives the conclusion. Our main contributions can be summarized as follows:

(1) We propose a pose transfer method that utilizes neural networks as a replacement for
linear blend skinning (LBS). By mapping the latent space features of two 3D models
with no correspondence to the latent space features of a skeleton with an isomorphic
relationship, we transform the pose transfer problem between models into a latent
transformation learning problem between the corresponding nodes of the source model
and the reference model with an isomorphic relationship. This approach results in highly
accurate pose features, which are then used by a neural network to generate the target
model with preserved details utilizing the concept of linear blend skinning.

(2) An improved neural weight binding method for mesh skinning was proposed
by Yang et al. [11]. Sparse-Softmax is used to smooth the skinning weights, and
KL divergence is employed for supervision, enabling the network to predict sparse
and accurate smooth skinning weights.

(3) Experimental results demonstrate that our method achieves superior performance
compared to other deep learning-based pose transfer methods on human and animal
meshes from unknown datasets.

The source code is publicly available at https://github.com/lzszmp/3D-mesh-pose-
transfer-based-on-deep-learning-skinning-deformation, accessed on 1 May 2024.

2. Related Work
This paper’s method aims at the posture transfer of 3D models based on skin defor-

mation, which mainly involves deformation technology, skin deformation technology, and
digital geometry technology based on deep learning. The following briefly introduces the
work closely related to this paper, such as deformation transfer and posture transfer.

2.1. Deformation Transfer

Given two different poses of a reference model and a source model, deformation
transfer applies the geometric transformations of the reference model’s different poses
to the source model. Sumner et al. [4] utilized model correspondences as constraints
to transfer the deformation gradients of the target model’s triangular faces, achieving
deformation transfer on triangular meshes. Baran et al. [13] proposed establishing semantic
correspondences between non-corresponding parts of the reference model and the source
model, enabling semantic deformation transfer. However, user specification is required for
semantic correspondences. Kamel et al. [14] proposed a method for quantifying human
body movements using three-dimensional joint coordinates and dividing joint motions
into global and local movements for predicting full-body actions. Shen et al. [15] utilized a
convolutional neural network-based pose estimation method to predict poses, which has
great potential in deformation transfer tasks. Ahmad et al. [16] employed a combination of
three compact CNN models, including the low-cost SparseNet, and a feature representation
technique to extract features of three-dimensional objects. This approach can assist in
achieving more accurate deformation transfer. Li et al. [17] defined rigid geometric
transformations between k-nearest points of corresponding vertices as vertex deformation
gradients, addressing the issue of deformation gradient calculation between two points
in point cloud models, thereby extending deformation transfer to point cloud models.
However, this method can result in tearing artifacts in the target model, requiring target
model resampling. Deng et al. [18] employed the method of template assistance to achieve
unsupervised processing of human body point clouds. Li et al. [19] applied transform to
the prediction of human body poses. On the other hand, Gao et al. [20] utilized Generative
Adversarial Networks (GANs) to map the deformed source shape to the deformed target

https://github.com/lzszmp/3D-mesh-pose-transfer-based-on-deep-learning-skinning-deformation
https://github.com/lzszmp/3D-mesh-pose-transfer-based-on-deep-learning-skinning-deformation
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shape. Since both shapes exist in the latent space, this ensures similarity between the
shape obtained from the mapping and the target shape. The authors also employed reverse
mapping from the target to the source shape, incorporating cycle consistency loss. This
VAE-Cycle GAN (VC-GAN) architecture establishes reliable mappings between shape
spaces for high-quality transfer.

2.2. Pose Transfer

Unlike deformation transfer, pose transfer focuses solely on the relationship between
the source model and the reference model, resulting in a target model that closely resembles
the reference model’s pose while preserving the source model’s geometric details. This
technique is suitable for animal and human models with limbs. Kovnatsky et al. [21]
improved upon the primary pose transfer method, as in Levy et al. [22], by utilizing
optimized coupled quasi-harmonic bases. It allows for approximating models’ poses with
different connectivity, although it may result in losing local model details. Yin et al. [23]
introduced a detail-preserving multi-level spectral pose transfer method that establishes a
Laplacian editing framework. It employs frequency components and combines cage-based
subspace techniques to address the pose transfer problem. However, manually selecting
matched point pairs is necessary to construct the functional mapping.

With the increasing integration of neural network techniques and digital geome-
try, some researchers have explored neural network for pose transfer of 3D mesh mod-
els. Inspired by image style transfer methods such as those of Cosmo et al. [24],
Zhuo et al. [25] and Wang et al. [8] proposed an end-to-end neural pose transfer model
called NPT, which utilizes PointNet [26] to encode the pose of the reference model. It
employs a spatially adaptive encoding layer to learn pose-invariant features and generate
target models with similar poses. NPT is a vertex-shared weight network model based on
PointNet, which cannot capture local details of the model vertices. As a result, it is sensitive
to the distribution of vertices and may produce distorted target models when using un-
trained poses as input. Building upon NPT, Song et al. [27] recognized that vertex features
have certain correspondences. They proposed a vertex feature matching approach based on
optimal transport theory. They constructed a decoding module using an elastic singleton
normalization layer to achieve higher accuracy in generating target models. However, this
method still cannot capture the local details of the model vertices, thus failing to solve
the fundamental sensitivity issue to vertex distribution in NPT. Yang et al. [11] combined
with Wang et al. [28] to incorporate local features into pose transfer, addressing the sensitivity
problem to vertex distribution. Wang et al. [29] also chose to use DGCNN to process human
body point clouds. Chen et al. [30] designed a cycle reconstruction loss for self-supervised
pose transfer, eliminating the need for real datasets. Sun et al. [31] introduced global pattern
loss in the latent space to decouple pose and detail features and a loss for distinguishing local
semantics, aiming to separately learn the pose and features of the model for high-quality pose
transfer. Liu et al. [32] utilized cross-covariance attention to perceive the correlations between
points at different distances to assist in completing the task.

3. Method
Given a source mesh model Ms = (Vs, Fs) and a reference mesh model Mr = (Vr, Fr),

where V represents the vertex coordinates and F represents the face, the goal of pose
transfer is to find a target mesh model Mt = (Vt, Fs) that possesses the geometric details
and topological structure of the source model Ms, as well as a similar pose to the reference
model Mr (where Vs ∈ Rns×3, Vr ∈ Rnr×3, Vt ∈ Rns×3 represent the vertices of the model,
Fs ∈ N|Fs |×3 represents the face set of the source and target models, and Fr ∈ N|Fr |×3

represents the face set of the reference model). As shown in Figure 2, our method consists
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of two main stages: the rigging stage and the pose transfer stage, corresponding to the
rigging branch and the pose transfer branch in the network architecture, respectively.

Figure 2. Our method overview. Our network contains two parts: the rigging branch extracts
skinning weights and joint information from the input model, and the pose transfer branch performs
pose transfer.

Rigging: As shown in the left part of Figure 2, in this stage, we were inspired
by Yang et al. [11] and found that treating vertices as point clouds to extract local in-
formation is highly effective in tasks such as skeleton extraction and skin weight prediction,
as this will improve the overall quality of the transformation. Using a similar feature
extraction structure, the rigging branch of the network predicts the joints Cs ∈ Rm×3 and
Cr ∈ Rm×3 with a predefined topological structure for both the source model Ms and the
reference model Mr, as well as the corresponding skinning weights Ws ∈ R|Vs |×m and
Wr ∈ R|Vr |×m. Based on edge convolutional neural networks, this module extracts topolog-
ical and geometric k-nearest neighbor features from the mesh as local features for vertices,
making it topology aware. However, unlike Yang et al. [11] who used regular Softmax to
compute skin weights and then applied smoothing, we directly obtain smooth skin weights
using Sparse-Softmax. Additionally, we improved the GKEdgeConv convolutional layer
used by Yang et al. [11] to better predict skeleton information.

Pose transfer: As shown in the right part of Figure 2, in this stage, the source model Ms,
reference model Mr, their skinning weights Ws and Wr, and joints Cs and Cr are input into
the second branch of the network for pose transfer to generate the target model Mt. This
branch mainly includes skinning-based pooling, skeleton edge convolution, and skinning-
based unpooling operations. In the pose transfer branch, the skinning-based pooling
utilizes the skinning weights to map the unordered vertex features of the source and
reference models to a skeleton latent space Os, Or ∈ Rh×m with isomorphic relationships.
This allows the use of skeleton edge convolution in the isomorphic skeleton latent space to
extract the hidden transformation between the source model skeleton and the reference
model skeleton. The skinning-based unpooling performs linear blending on the skeleton
latent space to obtain the h-dimensional per-vertex transformation latent space T′ ∈ Rh×n

for the source model. Then, a decoding module is used to decode and obtain the final target
model Mt.

3.1. Rigging

Given the mesh model M = (V, F)(V ∈ Rn×3, F ∈ N|F|×3) (Since the source model
and the reference model perform the same operations, V and F are used here to represent
the vertices and faces of the two models uniformly), in this stage, the skinning binding
branch is used to predict smooth skinning weights W ∈ Rn×m and joints C ∈ Rm×3. As
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shown in Figure 3, this branch mainly consists of two parts: skinning weight binding and
joint regression.

Figure 3. Rigging branch. The rigging branch extracts skinning weights W and joint information C
from vertex information for subsequent pose transfer.

3.1.1. Skinning Weights

We treat the mesh vertices as point clouds and extract features. Since the methods
based on transformer used by and Zhao et al. [33] cannot effectively capture local features,
we adopt a skin weight binding module similar to the structure proposed by Yang et al. [11],
as shown in the upper part of Figure 3. The mesh model M is inputted, and the GKEdge-
Conv convolutional layer [11] encodes per-vertex features. GKEdgeConv is a primary
improvement of the edge convolution operator proposed in [28]. Specifically, for the input
feature vectors xv of the previous layer, their k-nearest neighbors Nk(v) and 1-ring neigh-
bors N(v) are constructed. A multi-layer perceptron encodes both global features xv and
local features xu − xv:

x′v = MLP(concat(x′v,k, x′v,g); wgk), (1)

x′v,k = max
u∈Nk(v)

MLP(xv, xu − xv; wk), (2)

x′v,g = max
g∈Ng(v)

MLP(xv, xu − xv; wg), (3)

where Nk(v) represents the dynamic k-nearest neighbors of the vertex feature, which is
reconstructed based on the feature space obtained from the previous layer before each
convolution computation. Ng(v) represents the static 1-ring neighbors of the vertex deter-
mined by the topological space of the mesh and is not affected by changes in the feature
space. Concat operation denotes channel concatenation, where wk, wg, and wgk are learn-
able weights for these perceptrons. This strategy allows the network to simultaneously
consider the dynamic geometric features x′v,k in Euclidean space and the static topological
features x′v,g of the mesh. The final MLP layer processes the combined features, balancing
the importance of topological perception features x′v,g relative to geometric perception
features x′v,k.

After three layers of GKEdgeConv encoding, the output features are encoded by the
intermediate MLP layer and pooling layer to capture the global shape features of the mesh.
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The local features of the vertices are combined with the global features and passed through
the final MLP network to output per-vertex confidence matrix A ∈ RN×m:

A = (Aij) = fs(M; ws), (4)

where ws represents the learnable parameters of module fs, and Aij represents the confi-
dence level from the i-th vertex to the j-th joint.

Yang et al. [11] use the softmax function to convert the predicted per-vertex confidence
into a probability distribution, obtaining the final skinning weights. We found that the
skinning weights obtained from softmax output are excessively “smooth”, resulting in
vertices being bound to unrelated joints and failing to achieve sparse skinning weights.
The accumulation of these smaller weights significantly impacts the overall accuracy of
the skinning weights, leading to a chain reaction and making it challenging for subsequent
joint regression and latent space encoding. Therefore, in the prediction stage, we switch to
using Sparse-Softmax to smooth the per-vertex confidence:

Wij = Sparse-So f tmax(Aij) =
σ(Aij)e

Aij

∑j σ(Aij)e
Aij + ε

, (5)

σ(Aij) =

{
1 Aij ≥ q

0 others
, (6)

where q represents the k-th (we set K = 4) largest value in Ai, and ε is a constant used
for stable numerical computation (we set it as 10−10). Through the ablation experiments
conducted in Section 5, we have demonstrated that Sparse-Softmax can prevent vertices
from being bound to joints with low confidence, resulting in higher precision skinning
weights and better transfer effects. Additionally, we found that during loss computation,
the gradient of the vertex skinning weights processed by Sparse-Softmax at Aij < q is zero.
This allows the network to focus only on the connection between vertices and the top k
most relevant joints, enabling faster network training.

3.1.2. Joint Regression

The structure of the joint regression module, as shown in the lower part of Figure 3, takes
the input mesh model M and skinning weights W, and outputs the coordinates of the joint:

C = fc(M, W; wc), (7)

where wc is the learnable parameter in the network of this module.
Specifically, we first encode the vertex coordinates into h-dimensional features

V′ ∈ Rn×h using three GKEdgeConv convolutional layers. Then, we employ skinning-
based pooling (detailed method in Section 5.1) with the skinning weights W to map the
vertex features to the joint’s latent space. These joint features are then fed into our pro-
posed Skeleton EdgeConv layers (detailed method in Section 5.2), ultimately generating
the coordinates C ∈ Rm×3 of the joints. It is worth noting that we assume a fixed skeletal
topology, where the joints C are ordered. This ensures that each joint contains unique
semantic information, providing the necessary conditions for isomorphic skeletal latent
space encoding of the source model and the reference model.

3.2. Neural Pose Transfer

After obtaining the source mesh Ms and the reference mesh Mr, with their respective
skinning weights Ws and Wr, as well as joint information Cs and Cr, in this stage, we will
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utilize our proposed pose transfer branch to generate the final target mesh Mt. The overall
structure of this module is illustrated in Figure 4. The source model Ms and reference
model Mr are passed through a shared-weight feature extractor to extract grid features Fs

and Fr. These features are then combined with weights Ws, Wr, Cs, and Cr, followed by
skinning pooling to obtain hidden spatial features O for the joint. Afterward, the skeletal
information from both models is combined and processed through skeletal edge convolutions
and skinning unpooling to obtain per-vertex hidden transformations T′. Finally, the final
result is obtained by applying deformations through an MLP used as the decoder.

Figure 4. The network architecture of the pose transfer branch. The encoder in Figure 2 comprises the
GKEdgeConv module with shared weights, input source model, and reference model. Then, through
the GKEdgeConv layer, skinning-based pool, Skeleton EdgeConv, and skinning-based unpooling and
after linear mixing operations with the source model vertices to encode the target model, the skeleton
structure comes from the bone information obtained from the rigging part, which is C in Figure 2.

3.2.1. Skinning-Based Pooling

After encoding the vertex coordinates of the source model and the reference model
through three layers of GKEdgeConv layers with shared weights, we obtain the hv-
dimensional latent space features Fs, Fr ∈ Rn×hv :

Fs = fGKE(Ms; wz), (8)

Fr = fGKE(Mr; wz). (9)

As Wang et al. [28] describes, due to the unordered nature of 3D model vertices, con-
volutional neural networks (CNNs) for 3D models typically focus more on local geometric
features of vertices rather than global features such as global pose or shape. Additionally,
the vertex features output by CNNs lack a mapping relationship between 3D models
and often contain redundancy. In such cases, neural networks that solely encode vertex
features struggle to capture the correlation between the latent spaces of the source and
reference models, posing challenges for subsequent pose learning. Further compressing
and encoding of these unordered vertex features is necessary to reduce redundancy.

As shown in Figure 5, skinning weights represent the proxy relationship between
vertices and joints and implicitly carry information about the body parts to which the
vertices belong. In our method, the assumed skeletal topology is fixed, and thus, the
joints mapped by the skinning weights are also ordered. We can map redundant and
unordered vertex features to a smaller quantity of topologically isomorphic skeletal latent
space by exploiting this characteristic of skinning weights. Specifically, as described in [34],
skinning-based pooling is defined as follows:
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Oj =
∑n

i WjiFi

∑n
i Wji

, (10)

where Fi ∈ Rhv represents the i-th vertex latent space feature, and Oj ∈ Rhv represents the
j-th joint’s latent space feature. As shown in Figure 5, we use different colors to represent
the skinning of model vertices bound to different joints. The left lower leg of the source
model and the reference model (indicated by the purple regions in Fs and Fr) belong to
the same position in the skeletal topology. Skinning-based pooling maps this region’s
unordered vertex latent space features to the same limb part, thereby constructing the
ordered skeletal latent spaces Os and Or.

Figure 5. The schematic diagram of skinning-based pooling and skeleton edge convolution. Con-
cat skeleton latent space features and joint information channels are then input into the Skeleton
EdgeConv operator, which ultimately outputs the joint latent transform.

In the skinning binding branch, skinning-based pooling is primarily applied to the
regression of joint positions, enhancing the network’s perception of the relationship between
the coordinates of joints and model vertices. In the neural pose transfer branch, we combine
the latent spaces Os ∈ Rhv×m and Or ∈ Rhv×m of the source model and the reference model,
which have a one-to-one mapping relationship (as shown in Figure 4). This allows the
neural network to discover the hidden transformations embedded between the joint latent
spaces of the source model and the reference model more easily.

3.2.2. Skeleton Edge Convolution

Generally, after skinning-based pooling is applied to vertex features, the resulting
skeletal latent space features are independent. In skin deformation, the skeleton is com-
monly represented as a tree, and the skeletal topology is an essential basis for forward
kinematics. The transformations of child joints are closely related to their parent joints. We
aim for the neural network to learn these forward kinematics characteristics, enabling it to
better extract information from the skeletal latent space as hidden transformations.

Due to the fixed topology of the skeleton in our network and the relatively small number
of skeleton points, we were inspired by the GKEdgeConv block [11]. We utilize this fixed-
topology construction with a locally supported edge convolution operator (proposed in [28])
to learn the relationships between a certain joint and its 1-neighborhood joints. This allows us
to obtain deeper-level skeletal latent transformation information. The structure of the skeletal
edge convolution is depicted in the right half of Figure 5; unlike the GKEdgesConv block, the
Skeleton EdgeConv block does not extract features from k-nearest neighbors. This is because,
unlike mesh vertices, the number of skeleton points is relatively small, and selecting k-nearest
neighbor points would result in a significant proportion of the overall points being included.
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This could lead to a decrease in the effectiveness of local feature extraction. For a given latent
space feature xi, the edge convolution feature x′i can be obtained by encoding its global feature
xi and its local feature xj − xi using a multi-layer perceptron:

x′i = max
j∈N(i)

MLP(xi, xj − xi, wmlp), (11)

where wmlp is the learnable weights of the multi-layer perceptron. N(i) represents the
1-neighborhood of feature xi, determined by the skeleton topology.

As shown in Figures 3 and 4, we apply skeletal edge convolution operators in both the
pose transfer branch and the joint regression module. In the joint regression, the input of the
skeletal edge convolution layer is the skeletal latent space of the two models, obtained by
pooling the vertex depth features, and it outputs the coordinates Ci of the joint. As shown
in Figure 5, in the pose transfer branch, we concatenate the skeletal latent spaces Os

i , Or
i of

the source model and the reference model, obtained by pooling the skinned vertices, along
with their joint Cs

i , Cr
i coordinate channels:

xi = Concat(Os
i , Or

i , Cs
i , Cr

i ). (12)

Then, it is fed into the skeletal edge convolution operator, and the final output is the
latent transformation Ti ∈ Rht , (i = 1, 2, · · · , m) of the joints in the dimensional space.

3.2.3. Skinning-Based Unpooling

As shown in Figure 5, inspired by linear blend skinning (LBS), for the latent trans-
formation T ∈ Rm×ht obtained from the skeletal edge convolution, it is unpooled and
transformed on a per-point basis using skinning weights, in a linear blending manner, to
obtain the per-point latent transformation T′ ∈ Rn×ht :

T′
i =

m

∑
i

WjiTj, (13)

where T′
i ∈ Rht represents the ht-dimensional latent transformation associated with the

ith vertex. By concatenating this M-dimensional latent transformation with the coordinate
channels of the source model vertices and inputting them into a multi-layer perceptron
decoder, we can obtain the final coordinates Vt of the target mesh Mt, denoted as:

Vt = fd(concat(T′, Vs); wd), (14)

where wd represents the learnable parameters of this module fd. We use a combination
of linear blending and multi-layer perceptron to encourage the network to decode and
generate deformation effects similar to linear blend skinning while preserving fine details.

4. Training
Our loss function is as follows:

L = αLs + βLc + γLv + δLe, (15)

where Ls represents the skin weight loss, Lc represents the joint regression loss, Lv rep-
resents the reconstruction loss, Le represents the margin loss, and α, β, γ, δ represent the
hyperparameters for each of the losses.

Skinning weight loss: This is calculated by comparing the predicted skin weights
W ∈ Nn×m with the ground truth weights Ŵ ∈ Nn×m. We treat the per-vertex skin weights
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as probability distributions and measure the difference between the predicted distribution
and the ground truth distribution using KL divergence, denoted as:

Ls = − 1
nm

n

∑
i

m

∑
j

Ŵijlog

(
Wij

Ŵij

)
. (16)

Considering that we use Sparse-Softmax as the probability transformation function to
calculate Wij, to prevent gradient explosion, we only consider the top k highest predicted
values (topk(Wi)) for each vertex in the computation, denoted as:

Ls = − 1
nm

n

∑
i

k

∑
j∈topk(Wi)

Ŵijlog

(
Wij

Ŵij + ε

)
, (17)

where ε is 10−10, used for stable numerical computation. We observed that, as shown
in ablation experiments , compared to using cross-entropy as the loss function, using KL
divergence as the loss function leads to higher accuracy in generating skin weights.

Joint regression loss: The difference between the predicted values C and the ground
truth values Ĉ is measured using mean squared error, denoted as:

Lc =
1

| C | ∑
i
|| Ci − Ĉi ||

2
2. (18)

Reconstruction loss: The reconstruction loss is applied to measure the difference
between the reconstructed vertex positions V and the ground truth vertex positions V̂,
aiming to guide the vertices to regress to their correct positions:

LV =
1

| V | ∑
i
|| Vi − V̂i ||

2
2. (19)

Edge length loss: When solely using the L2 norm between vertices for regression,
there may be issues with insufficient preservation of mesh details. Inspired by [17], we
introduce an edge length regularization term as a penalty, encouraging the network to
generate smoother target models:

Le =
1

| E |

|E|

∑
e
|| e − ê ||22, (20)

where e represents the predicted edge lengths of the mesh model, while widehate represents
the corresponding edge lengths of the ground truth mesh model.

To accelerate convergence and achieve better training results, we adopt a staged
training strategy for the network model’s parameters ws, wc, wz, wd. In the first stage, we
set α = 1, β = 1, γ = 0, δ = 0 and primarily update the parameters ws, wc in the skin
binding branch. In the second stage, we set α = 0, β = 0, γ = 1, δ = 5 × 10−4, fix the
parameters ws, wc, and update the parameters wz, wd in the pose transfer branch. In the
final stage, we set α = 0.1, β = 0.1, γ = 1, δ = 5 × 10−4 and update all parameters to obtain
the final results. The parameters are set in this way because we found that riggingnet has
been fully trained in the previous training, and the focus of the overall training should be
on correcting the subsequent posetransfernet. Therefore, the sizes of α and β are reduced to
reduce the training proportion of riggingnet parameters.
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5. Experiments
In this section, we first introduce the experimental setup, dataset, and other experi-

mental details. Then, we evaluate the results of skin weight binding and skeleton extraction,
pose transfer of the SMPL model, and pose transfer of non-SMPL models separately. Finally,
we conduct ablation experiments to demonstrate the effectiveness of each module in our
proposed method.

5.1. Experimental Details

Experimental environment: The experiments in this study were conducted in a Python
environment. The experimental platform is a processor from Intel, the Intel Core i7-11700K
3.60 GHz, with 16GB of RAM, sourced from Intel in Santa Clara, CA, USA, The GPU used
was an Nvidia RTX 3090 from Nvidia in Santa Clara, CA, USA. with a VRAM capacity of
24 GB. The operating system used was the 64-bit version of Windows 10. PyTorch, NumPy,
and other library functions were utilized for implementation.

Dataset: To train and test the models in this study, we utilized a popular dataset
constructed using the SMPL model [35]. Specifically, during the training phase, random
pose and shape parameters were generated in each epoch, and the resulting 3D coordinates
of 5000 SMPL models, their corresponding model skeletons, and skinning weights were
used as ground truth values. The vertex positions in the sequence were randomly permuted
(correspondingly, the vertex skinning weights underwent the same permutation, and the
model’s face indices were reconstructed). For the test set, we employed the same method to
generate 50,000 pairs of reference models and source models randomly. Then, we generated
the corresponding target model using the pose parameters from the source model and
the shape parameters from the reference model. In addition to SMPL, we evaluated the
performance of our model on other datasets such as SMAL [36], FAUST [37], DYNA [38],
and the MG dataset [39].

Training: During the training process, the vertex order of the source model and refer-
ence model in the sequence will be randomly permuted (correspondingly, the target model
undergoes the same vertex permutation). Additionally, random vertex noise is added to the
source model and reference model. For the first stage of training, the batch size is set to 16,
the base learning rate is set to 10−4, and the number of training epochs is set to 100. In the
second stage, the batch size is set to 8, the base learning rate is set to 5× 10−5, and the number
of training epochs is set to 200. In the third stage, the batch size is set to 4, the base learning
rate is set to 5 × 10−5, and the number of training epochs is set to 50. For all stages, the Adam
optimization algorithm is used to update the network parameters, and the learning rate is
updated using the cosine annealing learning rate schedule.

5.2. Experimental Result

This subsection presents the results of various experiments. In the rigging experiment,
we compare our method with commonly used rigging approaches such as RigNet [40]
regarding skeleton prediction and vertex binding. In the pose transfer experiment, we com-
pare our method with Yang et al. [11], NPT [8], 3D-CoreNet [7], and MAPConNet [31] with
supervised training methods. In the pose transfer experiment, in addition to comparing
with the standard SMPL model, we also demonstrate the performance of our method on
non-SMPL models and test its robustness against noise.

We first tested our rigging module, as shown in Figure 6. We compared our method
with commonly used rigging methods such as RigNet, NBS, and Yang et al. [11] It can
be observed that RigNet struggles to achieve the same bone topology as SMPL due to
varying predicted bone counts, leading to significant differences in skinning weight coloring
compared to GT. NBS exhibits substantial differences from GT in both skeleton prediction
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and skinning weights. On the other hand, Yang et al. [11] achieve more accurate weights
and skeletons than GT but still show some differences compared to our method, such as
the joint position at the right wrist. Our process, however, consistently produces accurate
skeletons and skinning weights across various poses.

Figure 6. Comparison testing of rigging [11].

In the SMPL mesh model, Figure 7 shows the results of pose transfer using NPT,
Yang et al. [11], 3D-CoreNet, MAPConNet, and our method. It can be observed that NPT results
in significant distortions. 3D-CoreNet performs better than NPT, but the body features still need
to be more accurate, such as the less prominent abdominal muscles compared to the in the results
of the first row. MAPConNet shows better feature preservation than 3D-CoreNet, but there are
still some issues handling details, such as the less smooth right thigh in the first and second rows.
In Yang et al. [11], the angle of the left foot is not accurate. Yang et al. [11] directly calculate the
skeletal transformation matrix from the source model to the reference model without accurately
calculating the skeletal twist. In contrast, our method directly predicts the hidden skeletal pose
transformation using a neural network, which implicitly contains the twist information, resulting
in more realistic effects, as shown in Figure 8.

Figure 7. Comparison testing on the SMPL model. On the SMPL model, our method is compared
with the results of NPT, 3D-CorNet, and MAPConNet, focusing on whether the pose transfer is
in place, whether the detailed features are preserved, and whether the model surface is smooth or
not [11].

The quantitative metrics are shown in Table 1. PMD (Equation (19)) and EL
(Equation (20)) were defined earlier, and we also use CD (Chamfer distance) and MaxDist
to measure the quality of the generated models. A minor CD indicates closer proximity
between the predicted point set and the ground truth point set. At the same time, MaxDist
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represents the maximum distance between corresponding vertices, reflecting whether there
are unnatural protrusions or indentations on the mesh surface. Table 1 shows that both
the PMD and CD metrics outperform the compared methods, indicating that our obtained
mesh poses are more accurate. The EL and MaxDist metrics also demonstrate that our
method achieves better results in local details, and the mesh is smoother without unnatural
concavities or convexities. Figure 7 illustrates the real example application results presented
in Table 1.

Figure 8. Comparison testing of twist computing

In non-SMPL mesh models, we conducted tests on FAUST, DYNA, the MG dataset,
and SMAL. In FAUST and DYNA, the human body meshes were obtained by aligning 3D
scanning sequences with templates. The vertex count of these two datasets is the same as
the SMPL model, with 6890 vertices. The pose transfer results on FAUST and DYNA are
shown in Figure 9. Both the reference and source models in these datasets represent real
human poses, which differ significantly from SMPL and pose a significant challenge for
our network. Although some models may have minor feature loss, our method performs
well in both motion transfer and feature preservation tasks.

Table 1. Quantitative comparison of pose transfer results on the SMPL dataset. Our method
performs best on the SMPL dataset in terms of the quantitative indicators PMD (Equation (19)),
EL (Equation (20)), CD (Chamfer distance), and MaxDist, ↓ indicates that smaller values are better.

Method PMD (10−4) ↓ EL (10−4) ↓ CD (10−4) ↓ MaxDist (10−1) ↓

NPT 8.01 16.63 2.63 8.89
Yang et al. [11] 0.62 1.03 0.32 0.52

3D-CoreNet 0.58 0.92 0.53 1.02
MAPConNet 0.53 0.88 0.15 0.36

Ours 0.44 0.83 0.14 0.32

The standard model in the MG dataset, based on SMPL, has 27,554 vertices, with the
same topology as the SMPL model for the first 6890 vertices. The presence of models with
more vertices and complex clothing significantly increases the difficulty of motion transfer
and feature preservation. We used the first 6890 vertices for the test, as shown in Figure 10;
we tested MAPConNet and our method on the MG dataset. In the first and second rows,
when using the clothed MG dataset model as the reference, MAPConNet fails to identify the
pose, resulting in unnatural distortions. In contrast, our method demonstrates more accurate
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pose recognition. In the second and fourth rows, it can be observed that our method is less
sensitive to the features of the source model in the MG dataset. There are distortions in the
right foot and finger positions. This is because our method uses the skinning weights from
the SMPL model as the ground truth for training, and the vertex weights for clothing differ
significantly from those of SMPL, leading to some feature loss.

Figure 9. The performance on the FAUST and DYNA datasets. On the non-SMPL model, due to the
large difference between the model skin weights and SMPL, our method lacks detail preservation but
still performs the pose transfer task well.

Figure 10. The test results on the MG dataset. We compared our method with MAPConNet on MG
dataset data and found that our method is slightly inferior in body detail extraction but very accurate
in pose extraction.

Figure 11 demonstrates the experimental results of our method on SMAL. Feature
extraction is more difficult due to the denser number of vertices on the face. As a result,
in the second column, there might be some non-smoothness in the head vertices when
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the horse opens its mouth. However, overall, our model performs remarkably well in
accomplishing pose transfer tasks on the SMAL model.

Figure 11. The results of pose transfer on the SMAL dataset. In the SMAL model, our method
accomplishes the task well, except for some parts of the face that have a high density of vertices and
are drastically deformed and slightly bumpy.

To test the robustness of our model to noise, we conducted noise testing. We added
random noise to the vertices of the reference models and performed pose transfer. The
results are shown in Figure 12. The second column represents the reference model without
noise, while the fourth and fifth columns show the reference models with added noise
and the corresponding pose transfer results. The results show that the generated models
have motions that are very similar to the reference models without noise. This indicates
that our method maintains a certain level of robustness even in noise interference. Despite
the added noise, our approach still produces accurate and visually coherent pose transfer
results, demonstrating its ability to handle noisy input and maintain the overall quality of
the transferred motions.

Figure 12. The results of the noise testing. We input the random-noise-processed reference model to test
the robustness of our method to noise. It can be seen that our method copes excellently with noise.



Electronics 2025, 14, 589 17 of 21

We also conducted ablation experiments to determine the effectiveness of our Sparse-
Softmax and the application of skinning weights in the transfer network, as shown in
Table 2. N(S) indicates replacing Sparse-Softmax with a regular Softmax function, and
it can be observed that both the final PMD and EL metrics increase. Similarly, N(K)
represents replacing the KL divergence loss function with cross-entropy loss during weight
loss computation, and N(W) means replacing the added skinning weight matrix in the
transfer network with a matrix of equal shape and all values set to 1. In these cases, the
pose transfer performance of the entire network significantly deteriorates. PMD and EL
metrics both experience a notable increase. This also demonstrates the crucial role played
by skinning weights in the transfer stage. N(D) represents replacing the module that
calculates the hidden transformation between skeletal poses with Yang et al.’s [11] method
of directly computing the transformation matrix between two skeletons. It was found that
although the neural network can partially compensate for inaccuracies in skeletal twist
calculation, it leads to a decrease in accuracy.

Table 2. Ablation experiments. The quantitative indicators PMD and EL can be used to analyze
and prove that each module used in our method positively affects excellent results, ↓ indicates that
smaller values are better.

Module PMD (10−4) ↓ EL (10−4) ↓

N(W) 9.99 3.86
N(K) 0.61 0.92
N(S) 0.51 0.89
N(D) 0.46 0.84
FULL 0.44 0.83

5.3. Limitations and Future Perspectives

Although Sparse-Softmax, which we used, allows for more accurate vertex binding
to skeletons and achieves better transfer results, its implementation involves setting the
values of predicted skinning weights to zero or a minimal value for all but the top k weights.
This approach can lead to issues such as the random initial position of the maximum value
and the vanishing gradient problem for smaller values, resulting in slow initial descent
and potential convergence to a local optimum during training. To address this problem, we
attempted a solution by using the indices of the top k weights from ground truth instead
of predicted weights during training. This ensures that the network starts learning in the
correct positions from the beginning. As shown in Table 3, using GTidx (the GT index)
leads to a faster descent of the skinning weight loss (SWL) and reduces its final value.
However, it does not contribute to the final transfer performance, as indicated by the PMD
metric, which increases instead of decreasing. This limitation can be gradually overcome as
GT provides better and more accurate skinning weights in the future.

Table 3. Attempts to improve the skinning weight loss. We found that using GTidx (the GT index),
although it causes the weighted tare loss (SWL) to decrease faster and reduce its final value, hurts the
final migration results, ↓ indicates that smaller values are better.

Test SWL (10−3) ↓ PMD (10−4) ↓

GTidx 1.22 0.56
Original 2.09 0.44

In addition, we utilize the edge convolution module of DGCNN, where the number
of mesh vertices influences the computation of k-nearest neighbors. While incorporating
neighborhood information in the network yields good results, it also increases the network’s
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sensitivity to the vertices. Suppose we directly train the network using SMPL to handle
pose transfer. In that case, the effectiveness of pose transfer will gradually deteriorate
with the change in the number of vertices, as shown on the left side of Figure 13. It can
be observed that the pose transfer results are already poor when the number of vertices is
halved. This leads to unsatisfactory pose transfer results when using the SMAL model with
fewer vertices, and the same applies when using manually modeled models, as shown on
the right side of Figure 13. Excellent results can be obtained when the model has a vertex
count close to 6890, as seen in the first column, but the performance declines when the
vertex count reaches 8972 in the second column. To address this issue, we simplify the
vertex count of the SMPL model to construct the dataset and retrain the network. We also
record the mapping relationship between the simplified and original mesh, allowing us to
map the network’s output back to the original mesh for further processing.

Figure 13. Using reference and source models with different vertex counts (left side) and results
using manually modeled models (right side).

Additionally, the random generation of parameters to control the generation of GT
models in our dataset results in unnatural representations of specific actions in the GT models.
This, in turn, leads to the suboptimal performance of our model in transferring specific actions
sampled from real scenarios. For example, in the first row of Figure 14, the source model
exhibits a single-leg jumping pose, where our model fails to accurately recognize the posture
of the right leg, resulting in distortion across the entire right side of the body. Similarly, in
the second row, the source model displays a thumbs-up gesture, which undergoes significant
deformation after the transfer process. At the same time, using the method of Ding et al. [41]
can reduce the use of SMPL-generated datasets and the negative impact of fixed weights,
which is also a method worth discussing in future development.
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Figure 14. Some inaccurate results in the transfer. Our model does not extract features well for some
specific poses, such as front high leg raise and thumbs up.

6. Conclusions
We propose an end-to-end pose transfer method based on neural network and skin

deformation. We employ Sparse-Softmax to smooth the skinning weights and supervise
them with KL divergence. We obtain skeletal latent features by mapping vertex features
to the skeletal latent space using the skinning weights. We further derive vertex latent
transformation features and guide the neural network in pose transfer utilizing the concept of
skin deformation. This transforms the pose transfer problem between models into a hidden
transformation problem between corresponding nodes in the source and reference models
with isomorphic relationships. As a result, we generate the target model with preserved
details using a skinning approach entirely through the neural network, achieving high-quality
deformation effects. Compared to existing neural network-based pose transfer methods, our
experimental results demonstrate superior details and pose fidelity performance.

However, as the current datasets are still relatively limited, we use datasets generated
by SMPL and SMAL. There is still significant room for improvement in terms of reality.
Additionally, our method still needs to improve gradient issues and sensitivity to the
number of vertices. We are incorporating improvements from unsupervised methods like
Chen et al. and Sun et al. [30,31], which would be a promising direction to enhance the
quality of our approach further.
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4. Sumner, R.W.; Popović, J. Deformation transfer for triangle meshes. ACM Trans. Graph. (TOG) 2004, 23, 399–405.
5. Zou, X.; Li, G.; Yin, M.; Liu, Y.; Wang, Y. Deformation-Graph-Driven and Deformation Aware Spectral Pose Transfer.

J. -Comput.-Aided Des. Comput. Graph./Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao 2021, 33, 1234–1245..
6. Chen, H.; Tang, H.; Yu, Z.; Sebe, N.; Zhao, G. Geometry-contrastive transformer for generalized 3d pose transfer. In Proceedings

of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 258–266.
7. Song, C.; Wei, J.; Li, R.; Liu, F.; Lin, G. 3d pose transfer with correspondence learning and mesh refinement. Adv. Neural Inf.

Process. Syst. 2021, 34, 3108–3120.
8. Wang, J.; Wen, C.; Fu, Y.; Lin, H.; Zou, T.; Xue, X.; Zhang, Y. Neural pose transfer by spatially adaptive instance normalization. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2020;
pp. 5831–5839.

9. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
10. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3D point clouds: A survey. IEEE Trans. Pattern Anal.

Mach. Intell. 2020, 43, 4338–4364.
11. Yang, S.; Yin, M.; Li, M.; Li, G.; Chang, K.; Yang, F. 3D mesh pose transfer based on skeletal deformation. Comput. Animat. Virtual

Worlds 2023, 34, e2156.
12. Magnenat, T.; Laperrière, R.; Thalmann, D. Joint-dependent local deformations for hand animation and object grasping.

In Proceedings of the Graphics Interface’88, Edmonton, AB, Canada, 6–10 June 1988.
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