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Abstract: Model lightweighting is significant in edge computing and mobile devices.
Current studies on fast network design mainly focuses on model computation compression
and speedup. Many models aim to compress models by dealing with redundant feature
maps. However, most of these methods choose to preserve the feature maps with simple
manipulations and do not effectively reduce redundant feature maps. This paper proposes
a new convolution module, PDConv, which compresses redundant feature maps to reduce
network complexity and increase network width to maintain accuracy. PDConv (Partial
Deep Convolution) outperforms traditional methods in handling redundant feature maps,
particularly in deep networks. Its FLOPs are comparable to deep separable convolution
but with higher accuracy. This paper proposes PDBottleNeck and PDC2f (Partial Deep
CSPDarknet53 to 2-Stage FPN) and build the lightweight network PDNet for experimental
validation using the PASCAL VOC dataset. Compared to the popular HorNet, our method
achieves an improvement of more than 25% in FLOPs and 1.8% in mAP50:95 accuracy. On
the CoCo2017 dataset, our large PDNet achieves a 0.5% improvement in mAP75 and lower
FLOPs than the latest RepVit.

Keywords: PDConv; PDNet; lightweight; object detection

1. Introduction
Lightweight object detection models have become a highly anticipated trend in com-

puter vision in recent years. They significantly reduce computational complexity and
resource consumption while maintaining high accuracy. These advantages bring multiple
benefits, including real-time performance, broad applicability, cost and energy savings, and
enhanced user experience. As a result, lightweight models have become one of the most
prominent cutting-edge technologies in computer vision, receiving widespread attention
and applications.

However, achieving both high accuracy and efficiency remains a critical challenge.
Many lightweight models adopt depthwise convolution (DW) to improve speed, but relying
solely on DW sacrifices accuracy due to its inability to effectively fuse inter-channel infor-
mation or fully utilize spatial features. MobileNets [1–3] introduces Pointwise Convolution
(PW) to fuse inter-channel features, while ShuffleNets [4,5] enhances performance through
channel reorganization. However, these approaches have limitations, such as additional
computational overhead from PW or instability in practical channel reorganization.
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In addition, the redundancy of feature maps is a critical issue that is often overlooked
in lightweight model research. By observing feature maps, this paper found that some
exhibit a high degree of similarity, and simply retaining these features using low-cost
operations does not resolve the problem but rather leads to redundant information. While
existing methods have made progress in reducing computational complexity, they often fall
short in effectively leveraging feature representation. For instance, GhostNet [6] reduces
model complexity by generating cheap feature maps but fails to fully eliminate redundant
features. Additionally, many approaches attempt to compensate for accuracy loss by
increasing network width, which typically incurs higher memory access overhead, making
them less practical for low-power devices.

To address these challenges, this paper proposed a novel strategy based on compress-
ing redundant feature maps, complemented by network width enhancement to optimize
feature representation and achieve a balance between accuracy and efficiency. Building
on this strategy, this paper designed a new convolution method, PDConv, which signifi-
cantly reduces network complexity by retaining only a portion of the redundant feature
maps. Leveraging this method, this paper constructed an efficient neural network, PDNet
(Figure 1). Experimental results demonstrate that PDNet achieves notable accuracy im-
provements while maintaining high efficiency, highlighting the effectiveness of the pro-
posed approach. Our contributions are as follows:

• In the process of feature map generation, this paper introduced a new idea: retaining
only part of the redundant feature maps can achieve similar results as retaining all
the redundant feature maps completely. This idea explores a new way of dealing
with feature map redundancy, aiming to improve the efficiency of the model while
maximising the retention of key information.

• This paper proposed a lightweight convolutional module, PDConv, which is designed
to reduce the complexity of the model. PDConv is capable of removing part of the
redundant feature maps, thus reducing the number of parameters and computational
burden of the network while maintaining the model performance.

• Based on PDConv, this paper has designed a more suitable PDBottleneck and PDC2f
structure to better exploit the characteristics of PDConv.

• This paper constructed a lightweight network structure, PDNet, which integrates
PDConv, PDBottleneck, and PDC2f modules and achieves the goal of reducing model
complexity while maintaining accuracy in feature extraction through well-designed
connections and parameter settings.

The rest of the paper is organised as follows: Section 2 briefly describes the work
related to the lightweight design of the detector, Section 3 details our proposed PDConv as
well as the PDNet, Section 4 presents the results of our experiments, Section 5 summarizes
the limitations of our proposed PDConv and future work, and a final conclusion is given in
Section 6.
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Figure 1. PDNet backbone and PDConv structure diagram. For a 640 × 640 colour three-channel
image, it is converted into a 1024 × 20 × 20 feature map after nine processing stages. PDConv on
the left, c⃝ stands for concat. C stands for channels. Four convolutions of the input feature maps are
performed, and the feature maps from the first convolution are spliced over the channels with the
final feature maps to form the output feature maps. It is worth noting that PDConv, as well as PDC2f,
can be combined in any way.

2. Related Work
With the widespread application of deep learning models in computer vision and

other tasks, reducing the model’s computational load and storage requirements without
significantly sacrificing performance has become a research hotspot. Lightweight net-
work architecture design is an important approach to addressing this challenge. Unlike
traditional model compression methods (such as pruning and quantization), lightweight ar-
chitecture design optimizes the model’s computational and storage efficiency by modifying
the network structure itself.

To explore faster networks, the discussion begins with the CNN architecture.
Refs. [7–13] worked by using deep convolution or improved deep convolution, which
is probably the most popular method at the moment, but, as mentioned above, there
can be a problem in not being able to fuse the information between channels; therefore,
MobileNets [1–3] introduces Pointwise Convolution (PW), which uses a 1 × 1 convolu-
tion to fuse the feature maps between channels. ShuffleNets [4,5] enhances the effect by
disrupting the channel reorganisation approach to promote better information exchanges
between channels. These strategies proved effective. Ghost [6], on the other hand, generates
cheap feature maps by halving the SC, but this introduces an additional 1 × 1 convolu-
tion, resulting in no significant improvement in inference speed despite the reduction in
model complexity.

In addition, PConv uses the application of Conv on only a portion of the channels
without affecting the other channels through partial SC operation. There are also many
lightweight models, such as EfficientNets [14,15], TinyNet [16], CondenseNets [17,18],
TVConv [19], MnasNet [20], and FBNets [21–24]. All these nets have one thing in common,
i.e., they use different methods to minimise the resources consumed for feature extraction
in order to achieve the lightweight model. However, they tend to increase the width of the
network to compensate for the accuracy, which is affected by the increased memory access



Electronics 2025, 14, 591 4 of 19

in some limited devices. Instead, this paper proposed to reduce the network complexity by
compressing some of the redundant features and then improve the feature representation
by increasing the network width, which compensates for the increase in memory access
and feature specificity caused by simply increasing the network width.

Since the application of Vision Transformer (VIT) to the field of computer vision, many
subsequent works have attempted to provide a better understanding of VIT in training
settings [25,26] and model design [27–29] in order to improve VIT. Refs. [30–32] reduces the
burden on the network by reducing the attention operator, while [33–35] suggests replacing
attention with simple MLP-based operators instead of attention, but this often evolves into
CNN-like architectures.

In this paper, VIT is not our focus of research; this is because convolutions based on the
attention mechanism tend to result in slower operation, and, in autonomous driving and
edge devices, the deep convolution-based lightweight model is still the mainstream choice.

3. Principles and Methods
3.1. HOW PDConv

Before delving into the proposed research, it is essential to examine the image in
Figure 2, which illustrates the feature maps obtained through two-layer SC extraction.
The image highlights the presence of similar or even identical patterns among multiple
feature maps, a phenomenon referred to as feature redundancy. Addressing this redun-
dancy without compromising the network’s performance has been a critical challenge.
A review of existing lightweight convolution methods has revealed that halved SC is a
promising approach, where half of the channels remain unprocessed and the other half
undergo lightweight operations. For instance, Ghost Conv utilizes inexpensive opera-
tions, GSConv [36] incorporates depthwise convolution and channel shuffling, and PConv
selectively convolves only a portion of the channels, leaving others unchanged. Drawing inspi-
ration from these methods, PDConv is proposed as a novel approach to efficiently mitigate
feature redundancy.

Figure 2. As shown in the figure, the feature maps extracted after two layers of standard convolution
clearly reveal some nearly identical feature maps, which this paper refers to as redundant feature maps.
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These redundant feature maps often appear in certain layers of the network, especially when the
convolution process is simple or repetitive. They carry highly similar information, leading to wasted
computational resources and inefficiency in the model. Reducing the number of redundant feature
maps not only improves computational efficiency but also avoids excessive repetition of information,
thereby helping the network to better extract and learn meaningful features.

For the input feature map, the number of channels is first halved using a 1 × 1
convolution, i.e., a convolution kernel where half the number of channels is set. The
dimension of the input tensor X is [H, W, 2C], where H denotes the height, W the width,
and 2C the number of input channels. We assume that there exists a 1 × 1 convolution
kernel K with dimensions [1, 1, C]. The output Y1 of the 1 × 1 convolution can be expressed
as follows:

Y1 =
C−1

∑
i=0

X · K[1, 1, i] (1)

In the above expression, Y1 represents the output of the 1 × 1 convolution, i represents
the index of the input channel, and K[1, 1, i] represents the weights of the 1 × 1 convolution
kernel. The 1 × 1 convolution performs a weighted combination of the input channel’s
features at each position and then generates the output channel’s features. This operation
results in a generated feature map with half the number of channels, i.e., C. Then, a DW
convolution is performed on half of the number of channels using a convolution kernel of
size k × k, typically 3 × 3. The output tensor of this operation has dimensions [H, W, C]
and can be denoted as:

Y2 =
C−1

∑
i=0

Y(i)
1 · K[k, k, i] (2)

Y(i)
1 represents the cth group into which the output of Equation (1) is divided. When

performing a 1 × 1 convolution operation on the feature map after DW convolution, this
paper aims to make full use of the spatial information at different locations. The number
of convolution kernels for this convolution operation is set to one-half of the number of
input channels, i.e., C/2. Therefore, the final number of channels of the feature map is only
one-fourth of the initial number of input channels after the weighted combination, similar
to downsampling. One might be concerned about whether the reduced number of channels
would lead to a loss of information. However, when this paper examines the actual situation
more closely, it will be clearly found that, although this paper has downsampled the number
of channels, this specific operation is carried out after the depthwise separable convolution
(DW convolution). The main purpose of the DW convolution is to comprehensively
integrate the information dispersed among different channels, eliminate redundancies, and
extract the most valuable data. Therefore, by the time the downsampling step is performed,
the feature map has already been refined to a certain extent, so the impact of downsampling
on it is much smaller than what people initially assumed.

In the final stage, the last generated feature map is uplifted and spliced with the feature
map Y1 produced by Equation (1) to form a complete feature map. A potential question
is why Y1 was not removed and was, instead, spliced. The rationale behind this choice
is that removing Y1 would reduce the convolution to a depthwise separable convolution
with a limited number of channels, leading to a loss of accuracy. Such a reduction would
contradict the design philosophy, which aims to minimize feature map redundancy with-
out compromising the model’s feature generation capacity. The objective is to retain the
richness of the overall feature map, ensuring that sufficient feature information remains
rather than processing only part of the feature map. By retaining and splicing Y1, the infor-
mation richness of the network is preserved, which contributes to maintaining the model
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integrity. This approach ensures that feature extraction and information representation
remain comprehensive, thus upholding the performance of the model.

The feature maps generated after two PDConv processes exhibit significantly fewer
redundant features, (see Figure 3). This change is evident. It is worth noting that, during
feature extraction, these feature maps are less sensitive to aspects such as colour background
and more sensitive to features such as target contours. In fact, this type of feature extraction
is closer to biology and is similar to the way the animal visual system works.

Figure 3. The feature maps extracted after two PDConvs have reduced redundant feature maps
compared to those extracted by SC and are more focused on contours rather than colour information.

3.2. Computational Complexity

In the last section, this paper introduced PDConv as a lightweight convolution de-
signed to reduce feature redundancy while maintaining network performance. To evaluate
the effectiveness of this design, it is crucial to analyze its computational complexity. The
computational cost of a convolution operation is typically measured using floating point
operations (FLOPs), and the amount of computation depends on the size of the input
feature map, the size of the convolution kernel, and the size of the output feature map.
Therefore, understanding the computational cost of PDConv is essential for verifying its
ability to reduce computational resources while maintaining efficiency. For regular 2D
convolution, the general formula for calculating FLOPs is as follows: when the number
of input channels is Cin, the size of the convolution kernel is K, the number of output
channels is Cout, and the size of the output feature map is H × W, then the formula without
considering the bias can be obtained as

FLOPs_SC = 2 · Cin · Cout · K · K · H · W (3)

This gives us the formula for FLOPs, which is split into 4 parts due to its complexity.
The first step is the first dimensionality reduction, where the convolution used is 1 × 1, so
K = 1, and the output channel is 1/2 of the input channel, i.e., Cin = 2Cout.

FLOPs1 = Cin · Cout · H · W (4)
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The second step performs one DW convolution of the reduced feature map with
the convolution kernel size K (usually 3), and the computational cost of this part can be
expressed as

FLOPs2 = Cin · K · K · H · W (5)

The third step accumulates the same position information from different spaces, and
the output channel, which is 1/2 of the input channel, here Cout/2, is used to denote the
output channel, while the convolution kernel is 1 × 1; therefore, it is expressed as

FLOPs3 =
Cin · Cout

2
· H · W (6)

The fourth step performs the upscaling; the convolution kernel used is 1 × 1, the input
channel is Cin/2, and the output channel is Cout, and so the expression is

FLOPs4 =
Cin · Cout

2
· H · W (7)

Note that this paper uses the same padding strategy in each convolution process so
that the image size maintains H * W constant. Then, the computational complexity ratio of
PDConv to SC is

r =
1

K2 +
1

2Cout
≈ 1

K2 (8)

This value is approximately equal to the depth of separable convolution.

3.3. Building PDC2f

In Convolutional Neural Networks (CNNs), the number of channels in the feature
map of the backbone network gradually increases as the depth of the network increases
and the spatial resolution gradually decreases. In this process, when using PDConv to
process the feature maps, the complete extraction of information may be adversely affected
due to the decrease in the number of channels. In order to solve this problem while taking
into account the lightweight design of the network, this paper proposes the PDC2f module
(shown in Figure 4) for further optimising the feature processing capability after PDConv.
The core component of PDC2f is the PDBottleNeck, which enhances the feature expression
capability through multi-level feature manipulation.

Specifically, in the backbone network, PDBottleNeck increases the number of channels
of the feature map by channel expansion when the number of input channels and the
number of output channels are the same. This design allows the network to extract richer
abstract features. Each channel can be considered as a unique feature representation of
the input data, and an increase in the number of channels equates to the network being
able to capture a more diverse pattern of features. This is important for the improvement
of feature extraction and representation in the backbone network, as well as in regard to
providing more comprehensive feature support for subsequent network layers.

In addition, PDConv selectively focuses on key regions through its dynamic sampling
mechanism, thus effectively improving the flexibility of feature extraction. However,
relying only on PDConv may result in missing some of the fine-grained information on
the high-resolution feature maps. Therefore, the combination of PDC2f and PDConv
can compensate the information loss while lightweighting and provide stronger feature
expression.PDBottleNeck plays a bridging role, enriching the feature expression through
channel expansion on one hand and reducing the risk of gradient disappearance by using
residual connectivity on the other hand to maintain the coherence of the information flow.
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Figure 4. The PDC2f diagram: First, the input feature map is processed through a 1 × 1 convolution;
then, the processed feature map undergoes a split operation and is divided into multiple parts.
Next, n PDBottleneck operations are performed, with each operation refining the feature map and
expanding the channels. Finally, all the processed results are fused through an add operation and
the final output is obtained through a 1 × 1 convolution. n, as a hyperparameter, is typically set
to 1. Additionally, Cin and Cout denote the input channel and output channels, while Cin = Cout is
commonly used in the backbone, as it is associated with the deeper layers of the network, specifically
the neck layer.

However, at the neck layer of the network, the marginal gain of channel expansion is
smaller due to the already high channel dimension of the feature graph. This is because
the feature graph has already formed a relatively high dimensional representation at this
stage and further increasing the number of channels may lead to additional computational
complexity without significantly improving the representation capability. Meanwhile,
the shape of the feature maps in the neck layer tends to be more elongated (similar to a
rope-like structure), in which case the usefulness of channel expansion is limited. Therefore,
in this paper, we choose not to perform channel expansion in the neck layer in order to
avoid unnecessary computational overheads, thus striking a balance between performance
and efficiency.

3.4. Building Efficient Net

In order to optimise the computational speed in Convolutional Neural Networks
(CNNs), it is often necessary to perform a series of transformation processes on the input
image in the backbone part of the network. The goal of these transformation processes
is to gradually transform spatial information into channel information. However, each
compression of the spatial dimensions (width and height) and expansion of the channels
on the feature map may result in partial loss of semantic information. The use of DSC may
lead to excessive loss of semantic information and thus lead to a significant decrease in the
accuracy; therefore, in this paper, this article designed a backbone based on PDConv. Its
structure is shown in Figure 1. This article borrows CSPDarkNet [37] and equips it with an
advanced detection head of YOLOv8, based on which it constructs a more efficient PDNet.

In order to highlight the extent to which the neural network contributes to different
regions of the image, as well as to highlight the relative importance and activity of these
regions, this article selected two images from the PASCAL VOC dataset and generated
heat maps (similar to the attention mechanism) (Figure 5). These heat maps clearly show
the regions where the network contributes more to the prediction results and enable an
intuitive understanding of the key regions on which the model bases its decision-making.
This article makes the detection results clearer by merging the results of object detection
and the heat maps.
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Figure 5. The regions of interest of the model are visualised using the CARD-CAM algorithm, which
captures the output features of the last layer of the backbone, the SPPF layer. Based on the gradient
information, CARD-CAM generates a heat map that identifies the pixels or regions that play a key
role in the model decision. A confidence threshold of 0.5 is set for this experiment to show only the
parts that have a significant impact on the prediction.

4. Experiments
In this section, this article describes in detail the dataset used for our experiments and

the configuration of the experimental environment. Additionally, we show the results of
the experiments that were carried out.

4.1. Experiment on PASCAL VOC

This article chose the PASCAL VOC2007+2012 [38] dataset, one of the most widely
used datasets for object detection, which includes four major classes (vehicle, household,
animal, and person) as well as 20 subclasses (plus one for background). The combined
VOC2007 and VOC2012 datasets provide a large number of labeled images. For training
and validation, this article used the VOC2007 and VOC2012 training sets (16,551 images)
and tested on the VOC2007 test set (4952 images). To ensure the fairness and comparability
of model results, the same hyperparameters were used for all ablation experiments and
various model training in the comparison experiments.

For image input, this article set the size to 640 × 640, the number of iterations to 200,
the batch size to 16, and the initial learning rate to 0.01. The non-maximum suppression and
confidence threshold were set to 0.7. The optimizer momentum was set to 0.937. In terms
of hardware and software, this article used two GeForce RTX 3090 GPUs, and the deep
learning model frameworks used were Pytorch 2.01 and Torchvision 0.15.2. The following
table uses this setup unless otherwise specified.

To review our experimental results more clearly, this article employed seven metrics
to evaluate the outcomes. These metrics consist of mAP0.5 (the average accuracy across
all categories when the Intersection over Union (IOU) is set to 0.5), mAP0.75 (the average
accuracy across all categories when the IOU is set to 0.75), and mAP0.5:0.95 (the average
accuracy across all categories at different IOU thresholds ranging from 0.5 to 0.95 in steps
of 0.05), parameters (the number of parameters), and FLOPs (the amount of computation,
typically a measure of model complexity), as well as P (precision) and R (recall).

In Table 1, comparisons are made in two dimensions; firstly, our PDConv is compared
with some convolutional and plug-and-play modules, and the backbone used is CSPDark-
Net; secondly, the PDNet is compared with current popular networks. The baseline is
YOLOv8n. The first part of the table shows that the lightweight convolutional DWConv
and GSConv have lower accuracy metrics (mAP50, mAP75, mAP50:95) compared to the
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baseline, despite having lower FLOPs of 7.9 G and 7.7 G, respectively. CARAFE, SwinT,
and Involution look less attractive, with maximum computational complexity but low
accuracy compared to baseline. ODConv and CBAM both achieve good accuracy, have
improved accuracy metrics compared to baseline, and have the same FLOPs as baseline;
the backbones used above are the same, so the improvement in accuracy is relatively small.
Our PDConv has lower FLOPs (7.7 G) and higher accuracy (76.0%, 62.8%, 57.3%) compared
to the baseline, which is not a large effect but is the best result in the first part of the table.

The second part is a comparison of the different backbones used, including GhostNet
and VanilaNet, which was used as a lightweight backbone with a lower computational
complexity than baseline and which also has lower accuracy. In terms of computational
complexity, VanilaNet is undoubtedly the most attractive, but its accuracy drops by 13.6%,
16.1% and 15.7%, respectively, compared to the baseline. RepVit and HorNet are the
most popular networks nowadays, and RepVit achieves the highest mAP50, with an
improvement of 1.2% compared to baseline, and has the same computational complexity
as baseline, while HorNet performs poorly. Our PDNet, on the other hand, has the highest
mAP75 and mAP50:95 at 63.8% and 57.7%, respectively, and it also has a relatively low
computational complexity, second only to VanilaNet, demonstrating the effectiveness of
our work.

In addition, the superiority of PDConv and PDNet is not only reflected in the balance
between computational complexity and accuracy but also in the optimisation of the design,
which is also a core advantage. pDConv significantly reduces the computational effort
by compressing the redundant feature maps while optimising the width of the network;
additionally, at the same time, it maintains a high performance of accuracy in environments
with limited computational resources.

Table 1. In comparison experiments between our detector PDNet and other methods, the baseline is
yolov8n, a dataset using PASCAL VOC2007+2012, and the detectors in the experiments include some
of the latest lightweight models and some detectors with added attention. 3× Representations used
PDConv three times. Params in M, FLOPs in G, where P, R and F1 Score are calculated when IOU
is 0.5.

Methods Backbone FLOPs mAP50 mAP75 mAP50:95 P R F1

baseline CSPDarkNet 8.1 76.1 62.5 56.9 0.782 0.683 68.5

DWConv CSPDarkNet 7.9 75.3 62.2 56.0 0.787 0.668 68.7
GSConv CSPDarkNet 7.7 75.7 62.1 56.7 0.793 0.672 68.9

CARAFE [39] CSPDarkNet 12.8 75.4 61.0 55.1 0.783 0.67 67.7
ODConv [40] CSPDarkNet 8.1 76.2 62.6 57.1 0.792 0.678 69.4
Involution [41] CSPDarkNet 21.3 75.5 60.1 55.7 0.790 0.672 67.3

CBAM [42] CSPDarkNet 8.1 76.2 62.6 57.0 0.787 0.683 69.4
SwinT [29] CSPDarkNet 9.0 75.6 62.1 56.4 0.785 0.671 68.8

PDConv
(ours) CSPDarkNet 7.7 76.0 62.8 57.3 0.790 0.689 69.4

GhostNet GhostNet 7.7 75.6 62.2 56.7 0.795 0.677 69.9
HorNet [43] HorNet 8.8 75.6 61.5 56.0 0.805 0.657 67.9

VanilaNet [44] VanilaNet 5.0 62.4 46.7 41.6 0.699 0.547 53.4
RepVit [45] RepVit 8.1 77.3 63.5 57.5 0.789 0.702 69.9

PDNet (ours) PDNet 7.0 77.2 63.8 57.8 0.792 0.691 70.4

4.2. PDConv Is Low FLOPs

To demonstrate that our DPConv has low FLOPs and parameter counts, we next
stacked five layers of convolutions, constructed a simple CNN network with feature maps
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of typical dimensions as input, and computed the FLOPs required for each layer of the
convolution, the parameters, and the memory occupied by each layer. For comparison, this
article did the same for the other convolutions. The results in Table 2 show that PDConv
and DWConv have similar consumption in terms of Params and FLOPs; however, as men-
tioned earlier, DWConv, due to its characteristics, undergoes more accuracy degradation
as the number of network layers deepens. While comparing StandrdConv, the number of
parameters compresses more than eight times and FLOPs drop by more than six times.
Although the data in the table show that GConv looks more attractive in terms of the
number of parameters, the use of GConv [46] is often accompanied by an increase in the
number of channels to compensate for the loss of accuracy, which undoubtedly increases
the complexity of the model. As for memory, lower memory is another factor that affects
inference speed due to the constraints of the memory bottleneck, but this also means that,
if the memory bottleneck is sufficient enough to support the consumption of convolutions,
inference speed is strongly correlated with FLOPs.

Table 2. The CNN network constructed after five layers of convolutional stacking has an input size of
3 × 640 × 640 and the convolutional kernel used is 3 × 3. The grouping of GConv in the first layer
of the convolution is 3, and the last four layers use a grouping of 16, which is consistent with the
current input channel. “Feature Map” refers to the size of the feature map, and “Memory” refers to
its memory usage, where the BN layer is ignored, and the activation function layer.

Operator Feature Map Params Memory (M) FLOPs (M)

PDConv 3 × 3

16 × 320 × 320 198 75 90
32 × 160 × 160 712 37.5 79
64 × 80 × 80 2448 18.7 65

128 × 40 × 40 8992 9.3 59
256 × 20 × 20 34,368 4.7 56

Total 46,718 145.2 349

StandrdConv 3 × 3

16 × 320 × 320 464 82.8 204
32 × 160 × 160 4672 40.6 485
64 × 80 × 80 18,560 20.3 478

128 × 40 × 40 73,984 10.1 475
256 × 20 × 20 295,424 5.1 473

Total 393,104 158.9 2115

DWConv 3 × 3

16 × 320 × 320 94 60.9 52
32 × 160 × 160 704 34.4 79
64 × 80 × 80 2432 17.2 66

128 × 40 × 40 8960 8.6 59
256 × 20 × 20 34,304 4.3 56

Total 46,494 125.4 312

GConv 3 × 3 (g = 16)

16 × 320 × 320 464 82.9 203
32 × 160 × 160 352 40.1 43
64 × 80 × 80 1280 20.3 36

128 × 40 × 40 4864 6.9 33
256 × 20 × 20 18,944 5.1 31

Total 25,904 155.3 346

4.3. Experiment on CoCo2017

To evaluate the generalization ability of the network, this article utilized the COCO2017
dataset, a widely recognized benchmark provided by the Microsoft team for image recogni-
tion tasks. This dataset is extensively used for various computer vision tasks, including
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object detection, instance segmentation, and keypoint detection, due to its diverse and
complex real-world scenarios.

The COCO2017 dataset consists of a training set (118,287 images), a validation set
(5000 images), and a test set (40,670 images). It features annotations for 80 object categories
commonly encountered in daily life, along with high-quality bounding boxes, instance
masks, and keypoints. The dataset’s richness in multi-object scenes, varied resolutions, and
occlusions makes it a reliable standard for assessing the performance and robustness of
models in realistic settings.

This article conducted detector experiments for One Stage and Two Stage to evaluate
the network performance on metrics covering mAP50, mAP75, and FLOPs. In Table 3, this
paper reported, in detail, the results of the object detection experiments conducted on the
test set.

Table 3. Experiments were performed on the COCO2017 dataset [47]. FasterNet was chosen for the
two stage target detector, using FasterNet as the baseline and replacing its convolution with our
PDConv with reference to FasterNet. Twelve epochs were trained with a batch size of 16, and other
training settings were not further adjusted for hyperparameters. Additionally, YOLOv8 was chosen
as baseline for the single-stage target detector, the initial learning rate was set to 0.1, while the final
learning rate was set to 0.01, the number of warm-up training rounds was set to 3, and 24 epochs
were trained.

Backbone mAP50 mAP75 FLOPs

Two Stage

ResNet50 55.1 36.7 253
PoolFormer-S24 [48] 59.1 39.6 233

PVT-Small [49] 60.1 40.3 238
FasterNet-S 58.1 39.7 258

FasterNet-PDConv(ours) 58.0 39.4 243

ResNet101 57.7 38.8 329
ResNeXt101-32x4d 59.4 40.2 333

PoolFormer-S36 60.1 40.0 266
PVT-Medium 61.6 42.1 295
FasterNet-M 61.5 42.3 344

FasterNet-PDConv(ours) 61.8 42.4 325

ResNeXt101-64x4d 60.6 41.3 487
PVT-Large 61.9 42.5 358

FasterNet-L 62.3 43.0 484
FasterNet-PDConv(ours) 62.0 43.1 450

One Stage

YOLOv8-S 47.2 35.8 28.7
RepVit-S 47.5 36.6 29

PDNet-S(ours) 47.6 36.9 27

YOLOv8-M 53.2 42.1 79.1
EfficientNetV2 41.8 31.2 23.1

RepVit-M 54.2 42.7 79
PDNet-M(ours) 53.5 42.4 76

YOLOv8-L 56.4 45.2 166
RepVit-L 57.1 45.8 166
HorNet 54.7 43.7 188

PDNet-L(ours) 57.5 46.3 160

Experimental results on the COCO2017 dataset further validate the advantages of
PDConv and PDNet. Compared with other lightweight models, PDConv effectively reduces
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the computational complexity by reducing the computation of redundant feature maps
while maintaining high performance in several accuracy metrics. For example, on the
FasterNet architecture, the model using PDConv (FasterNet-PDConv) performs comparably
or slightly lower than the original architecture on mAP50 and mAP75, but there is a
significant reduction in FLOPs, reflecting the improvement in computational efficiency. As
for the One Stage detectors in the YOLOv8 series, PDNet improves mAP50 and mAP75
while maintaining lower FLOPs, especially in the PDNet-S and PDNet-M versions, which
show more obvious advantages, especially in striking an excellent balance between efficient
computation and accuracy.

Specifically, in the two stage detector, the training setup follows PConv, and our PD-
Conv is equipped with the advanced FasterNet. This article performed three comparison
experiments on the three models of detectors, S, M, and L. Our FasterNet-PDConv obtained
the best accuracies in the medium model backbone, reaching 61.8% and 42.4%, respectively,
while FLOPs are also relatively low, reaching 61.8% and 42.4%, with 0.3% and 0.1% im-
provement in mAP compared to FasterNet-M mAP,respectively, and relatively low FLOPs.
In the large backbone, our FasterNet-PDConv achieved the best result of 43.1% at mAP75
and had FLOPs second only to PVT-Large.

In the One Stage detector, our PDNet shows the best results in both S and L models,
with PDNet-S showing 0.4% and 1.1% improvement in mAP and 1.7 G lower FLOPs
compared to YOLOv8-S. In the large detector, PDNet-L outperforms YOLOv8-L by 1.1%
in terms of accuracy and also has the lowest FLOPs. This definitely proves the validity of
our work.

4.4. Ablation Experiment

In order to evaluate the effectiveness of the five different lightweight convolution
methods, as well as to ensure the fairness of the experiments, this article conducted the
experiments using the same detector YOLOv8n and uniform hyperparameters. For the
PASCAL VOC test set, this article performed a comparison of the lightweight convolution
methods, with evaluation criteria covering the complexity of the models as well as two
accuracy metrics. For each experimental setup, the number of training rounds was 200,
the number of warm-up rounds was three, and the momentum was set to 0.937. This
ensured that the experiments were performed under identical conditions to improve the
fairness of the comparison. For layers 3, 5 and 7 of the feature extraction network, this
article introduced five lightweight convolution methods and recorded the experimental
results in detail in Table 4. These results provide a comprehensive assessment of the
performance of the different lightweight convolution methods and provide clear data
support for comparing their effectiveness.

Table 4. Comparison of lightweight convolution methods. Includes DSConv, GSConv, Ghost Conv,
DWConv, and PConv. To accommodate the network structure, PConv is upsampled and down-
sampled once and Latency calculations are performed under a GTX3070. The dataset used is PAS-
CAL VOC.

Methods FLOPs Param Latency mAP75 mAP50:95

DSConv 7.5 2.7 2.8ms 60.8 54.8
GSConv 7.8 2.8 2.2ms 62.6 57.0

Ghost Conv 7.8 2.8 2.5ms 62.5 56.8
DWConv 7.4 2.6 2.1ms 62.6 56.4

PConv 7.8 2.7 2.3ms 61.2 55.7
PDConv(Ours) 7.7 2.8 2.3ms 62.8 57.3
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Table 4 shows that PDConv compares some popular lightweight convolutions and
is equal to DWConv in Latency metrics but also that the accuracy of PDConv is superior.
Moreover, the Latency consumption of DSConv and Ghost Conv to compensate for the
accuracy is obvious. DWConv, the most popular lightweight convolution, has the lowest
number of parameters and computations in existence, but its accuracy is slightly inferior.
Although PDConv does not look the most attractive in terms of inference speed, the
accuracy does reach the highest level. In fact, the pursuit of extreme speed will inevitably
lead to a decrease in accuracy, and this article prefers to achieve a balance between the
two. While inference speed is not strongly correlated with FLOPs and Param, DSConv,
despite having relatively low FLOPs (7.5G), is actually a PWConv after DWConv, which
can be limited by memory bottlenecks; indeed, our PDConv suffers from the same kind of
problem, but used partially lighter operations to alleviate such problems in some ways. In
order to observe the results in the table more intuitively, this article ploted the results in
Figure 6.

Figure 6. In order to better accommodate viewing habits, this article flipped the FLOPs and Latency
axes in the charts, which allowed us to observe the data more intuitively. By adopting the charts, this
article was able to more intuitively observe the attractiveness and advantages of the PDConv model.

PDConv achieves a better balance between accuracy and computational efficiency
than other lightweight convolution methods (e.g., DWConv, DSConv, and GhostConv).
DWConv, as a classical lightweight convolution, has the lowest computational complex-
ity but compromises on feature extraction accuracy. Although DSConv and GhostConv
improve the accuracy by increasing the Latency consumption, they still fail to effectively
solve the memory bottleneck problem. PDConv solves the feature redundancy problem by
introducing a dynamic channel processing mechanism, which firstly reduces the number
of channels by half through 1 × 1 convolution, then extracts the deep features through
DWConv while, at the same time, retaining the unprocessed channels to reduce the loss of
information and finally restoring the channel information through upscaling and splicing.
Finally, the channel information is recovered by upscaling and splicing. Compared with
the grouping strategy of GSConv, PDConv is more flexible, which not only retains the
key information but also greatly reduces the computational complexity. This design is
especially suitable for deep networks, which can reduce redundancy while maintaining
high computational efficiency and feature extraction capabilities.

Although the inference speed of PDConv is slightly lower than that of DWConv, its
accuracy is significantly better than other methods. The computational complexity analysis
shows that the FLOPs of PDConv are similar to those of DWConv, which effectively
alleviates the memory bottleneck by partially lightweighting the operation and maintains
the high feature expressiveness in deep networks. Experimental results show that PDConv
improves accuracy while still maintaining acceptable inference efficiency, validating its
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superior balance between speed and accuracy. This advantage makes PDConv more
competitive in practical applications.

To further validate the effectiveness of our constructed PDConv, 1×, 2×, and 3×
substitutions were made to the network. The results of these experiments are reported
in detail in Table 5. Through these experiments, this article was able to gain insight into
the role of PDConv in network performance. In Table 5, this article reported the results
of this experiment; 2× looks more attractive compared to 1× and 3×, but 3× is more
advantageous in terms of Param and FLOPs. It is worth noting that there tend to be more
redundant feature maps in the deeper structure of the network, where the use of PDConv
gives better results.

Table 5. The effect of different specifications of PDConv on the network, with the number of iterations
set to 100 and other parameters remaining the same as above. The dataset used is PASCAL VOC.

Methods mAP50 mAP75 mAP50:95 Param FLOPs

PDConv 1× 72.7 58.3 53.1 2.93 M 7.9 G
PDConv 2× 73.0 59.1 53.3 2.90 M 7.8 G
PDConv 3× 72.4 59.0 53.0 2.77 M 7.7 G

In Table 6, the ablation experiments demonstrate changes in model performance in a
sequence of stepwise improvements. Starting from Baseline (A), PDConv (B), PDC2f (C)
and DCN (D) were added gradually. The results show an overall gradual improvement in
performance metrics as each component is added.

Table 6. Ablation experiment with 100 iterations; the dataset used is PASCAL VOC.

Methods mAP50 mAP75 mAP50:95

Baseline 72.3 58.8 52.9
Baseline+PDConv 72.7 58.3 53.1

Baseline+PDConv+PDC2f 72.7 59.0 52.9
Baseline+PDConv+PDC2f+DCN 73.8 59.2 53.9

5. Limition and Future Work
This study introduces PDConv, a novel convolution method designed to tackle the

often-overlooked problem of feature map redundancy in lightweight object detection
models. By compressing redundant feature maps and leveraging an efficient network
width enhancement strategy, PDConv achieves a balance between computational efficiency
and accuracy, making it highly suitable for resource-constrained environments such as real-
time edge applications. The experimental results on PASCAL VOC and COCO2017 datasets
demonstrate its practical utility, showcasing its ability to outperform traditional methods
in lightweight model design. Compared to existing approaches, PDConv offers a unique
advantage in regard to minimizing computational overhead while preserving critical
feature information, contributing to the ongoing advancement of lightweight architectures
in computer vision.

While the results are promising, this work also highlights potential areas for further
exploration. For instance, PDConv’s current design may face challenges in tasks requiring
extremely fine-grained feature differentiation. However, this opens up opportunities to
develop more refined variants with tailored hyperparameter configurations and enhanced
structural flexibility. Additionally, while this study primarily evaluates PDConv on bench-
mark datasets, its adaptability to more specialized or complex tasks remains a valuable
avenue for future research. These considerations do not detract from the strengths of
PDConv but rather suggest pathways to further enhance its performance and applicability.
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In the future, we will focus on expanding the versatility of PDConv by exploring
different variants, optimizing hyperparameter configurations through advanced techniques
and testing its performance in broader application domains, such as medical imaging and
autonomous driving. Furthermore, incorporating complementary mechanisms, such as
lightweight attention modules, may further boost its feature extraction capabilities. These
improvements aim to solidify PDConv’s position as a highly effective and generalizable
solution for lightweight computer vision tasks, reinforcing its practical value in both
research and real-world applications.

6. Conclusions
This paper addressed the problem of feature map redundancy by proposing an innova-

tive lightweight convolution technique named PDConv. This technique aims at efficiently
eliminating redundancy with minimal impact on the ability to perform effective feature
extraction. This article provided a review of the history of lightweight model develop-
ment and an in-depth analysis of the value and contributions that these models bring.
Subsequently, this article provided an exhaustive analysis of the complexity of PDConv
and applied it to construct PDBottleNeck and PDC2f. Finally, this paper built PDNet
in an extensive experimental validation and verified the effectiveness of the proposed
convolutional technique and the excellent performance of the PDNet network structure on
the PASCAL VOC and CoCo2017 datasets. These results further highlight the academic
contributions of our approach and its potential applications in the field of lightweight deep
learning models.
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