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Abstract: Design of automated video surveillance systems is one of the exigent missions in computer
vision community because of their ability to automatically select frames of interest in incoming
video streams based on motion detection. This research paper focuses on the real-time hardware
implementation of a motion detection algorithm for such vision based automated surveillance
systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion
detection scheme. The working prototype of a complete standalone automated video surveillance
system, including input camera interface, designed motion detection VLSI architecture, and output
display interface, with real-time relevant motion detection capabilities, has been implemented on
Xilinx ML510 (Virtex-5 FX130T) FPGA platform. The prototyped system robustly detects the relevant
motion in real-time in live PAL (720 ˆ 576) resolution video streams directly coming from the camera.

Keywords: motion detection; VLSI architecture; FPGA implementation; video surveillance System;
smart camera system

1. Introduction

The importance of motion detection for designing an automated video surveillance system
can be gauged from the availability of a large number of robust and complex algorithms that have
been developed to-date, and the even larger number of articles that have been published on this
topic so far. The problem of motion detection can be stated as “given a set of images of the same
scene taken at several different times, the goal of motion detection is to identify the set of pixels
that are significantly different between the last image of the sequence and the previous images” [1].
The simplest approach to motion detection is the frame differencing method in which motion detection
can be achieved by finding the difference of the pixels between two adjacent frames. If the difference is
higher than a threshold, the pixel is identified as foreground, otherwise background. The threshold
is chosen empirically. Different methods and criteria for choosing the threshold have been surveyed
and their comparative results have been reported in the literature [2–4]. Researchers have reported
several motion detection methods that are closely related to simple differencing e.g., change vector
analysis [5–7], image rationing [8], and frame differencing using sub-sampled gradient images [9].
The simplicity of frame differencing based approaches comes at the cost of motion detection quality.
For a chosen threshold, simple differencing based approaches are unlikely to outperform the more
advanced algorithms proposed for real-world surveillance applications. There are several other motion
detection techniques such as predictive models [10–14], adaptive neural networks [15], and shading
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models [16–18]. A comprehensive description and comparative analysis of these methods has been
presented by Radke et al. [1].

The practical real-world video surveillance applications demand a continuous updating of the
background frame to incorporate any permanent scene change, for example, light intensity changes
in the day time must be a part of the background. For this purpose, several researchers [19–21]
have described adaptive background subtraction techniques for motion detection using a Gaussian
Density Function. They are capable of handling illumination changes in a scene with stationary
background scenarios.

Due to pseudo-stationary nature of the background in real-world scenes, assuming that
background is perfectly stationary for surveillance applications is a serious flaw. For example, in a
real-world video scene, there may be swaying branches of trees, moving tree leaves in windows
of rooms, moving clouds, the ripples of water on a lake, or a moving fan in the room. These are
small repetitive motions (typically not important) and so should be incorporated into background.
The single background model based approaches mentioned above are incapable of correctly modeling
such pseudo-stationary backgrounds. Stauffer and Grimson [22] recognized that these kinds of
pseudo-stationary backgrounds are inherently multi-model and hence they developed the technique
of an Adaptive Background Mixture Models, which models each pixel by a mixture of Gaussians.
According to this method, every incoming pixel value is compared against the existing set of models
at that location to find a match. If there is a match, the parameters of the matched model are updated
and the incoming pixel is classified as a background pixel. If there is no match, the incoming pixel is
motion pixel and the least-likely model (model having minimum weighted Gaussian) is discarded
and replaced by a new one with incoming pixel as its mean and a high initial variance. However,
maintaining these mixtures for every pixel is an enormous computational burden and results in low
frame rates when compared to previous approaches. Butler et al. [23] proposed a new approach, similar
to that of Stauffer and Grimson [22], but with a reduced computational complexity. The processing,
in this approach, is performed on YCrCb video data format, but it still requires many mathematical
computations and needs large amounts of memory for storing background models.

In parallel with the algorithm development, many researchers from VLSI design and system
design research community published several research articles describing different hardware design
based approaches to address the issue of real-time implementation of motion detection algorithms.
These methods of hardware based motion detection reported in literature differ from each other due
to design methodologies/approaches and design tool chains used. Based on design methodologies,
various hardware based methods can be categorized as general purpose processor based approach,
digital signal processor (DSP) based approach [24–26], complex programmable logic device (CPLD)
based approach [27], application specific integrated circuit (ASIC) based approach [28,29], FPGA based
hardware design approach [30–49], and FPGA based hardware/software co-design approach [50–52].
From design tool-chain perspective, the differences can be based on the use of VHDL/Verilog,
high level hardware description language like Handle-C or SystemC, MATLAB-Simulink software,
an Embedded Development kit, and a System Generator tool.

In current surveillance scenario, motion detection is one component of a potentially complex
automated video surveillance system, intended to be used as a standalone system. Therefore, in
addition to being accurate and robust, a successful motion detection technique must also be economic
in the use of computational resources on FPGA development platform. This is because many
other complex algorithms of an automated video surveillance system also run on the same FPGA
platform. In order to address this problem of reducing the computational complexity, Chutani and
Chaudhury [53] proposed a block-based clustering scheme with a very low complexity for motion
detection. On one hand, this scheme is robust enough for handling pseudo-stationary nature of
background, and on the other it significantly lowers the computational complexity and is well suited
for designing standalone systems for real-time applications. For this reason we have selected the
clustering based motion detection scheme for designing the real-time standalone motion detection
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system which features real-time processing and is capable of discarding irrelevant motion using
adaptive background model. The implemented motion detection system can be used as a standalone
system for automated video surveillance applications.

2. Motion Detection Algorithm

In this section, the clustering based motion detection scheme is briefly described. For more
detailed description refer to [53] and [23]. Clustering based motion detection uses a block-based
similarity computation scheme. To start with, each incoming video frame is partitioned into 4 ˆ 4 pixel
blocks. Each 4 ˆ 4 pixel block is modeled by a group of four clusters where each cluster consists of
a block centroid (in RGB) and a frame number which updated the cluster most recently. Optionally,
for each block there may be a motion flag field. The group of four clusters is necessary to correctly
model the pseudo-stationary background, as a single cluster is incapable of modeling multiple modes
that can be present in pseudo-stationary backgrounds. The group size is selected as four because it
has been reported by Chutani and Chaudhury [53] that four clusters per group yield a good balance
between accuracy and computational complexity. The basic computational scheme is shown in
Figure 1 and the pseudo-code is shown in Figure 2. The sequence of steps for motion detection using a
clustering-based scheme is given below.
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1. Block Centroid Computation: Each incoming frame is partitioned into 4 ˆ 4 blocks. For each
block, the block centroid for RGB color space is computed by taking the average color value
of the 16 pixels of that block. The block centroid is of 24-bits (8-bits for each R, G, and B
color component).

2. Cluster Group Initialization: During the initial four frames, initialization is performed. In the
first frame, the first cluster of each block is initialized with its centroid set to the block centroid
of corresponding block of the first frame and its frame number is set to 1. In the second frame,
the second cluster of each block is initialized with its centroid set to the block centroid of the
corresponding block of the second frame and its frame number is set to 2. In the third frame, the
third cluster of each block is initialized with its centroid set to the block centroid of corresponding
block of the third frame and its frame number is set to 3. In the fourth frame, the last/fourth
cluster of each block is initialized with its centroid set to the block centroid of corresponding
block of the fourth frame and its frame number is set to 4. In this way, during initialization all the
four clusters of the cluster group are initialized.

3. Cluster Matching: After initialization, the next step for motion detection in incoming frames
is to compare each of the incoming blocks against the corresponding cluster group. The goal
is to find a matching cluster within the cluster group. For finding a matching cluster, for each
cluster in the cluster group, the difference between its centroid and the incoming current block
centroid is computed. The cluster with minimum centroid difference below the user defined
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threshold is considered as a matching cluster. In order to simplify this computation, Manhattan
distance (sum of absolute differences) is used which avoids the overheads of multiplication in
difference computation [23]. Eliminating multiplications is very beneficial in terms of reducing
computational complexity of the algorithm as multiplications are costly in hardware.

4. Cluster Update: If, for a given block, a matching cluster is found within the cluster group, then
the matching cluster is updated. The frame number of the matching cluster is replaced by the
current frame number and the centroid of the matching cluster is replaced by the average value
of the matching cluster centroid and the incoming current block centroid.

5. Cluster Replace: If, for a given block, no matching cluster could be found within the group,
then the oldest cluster which has not been updated for the longest period of time (cluster with
minimum frame number) is deleted and a new cluster is created having the current block centroid
as its centroid and the current frame number as its frame number.

6. Classification: For a given block, if no matching cluster is found and the oldest cluster is replaced,
then it implies that the incoming current block is not matching with the background models and
it is marked as motion detected block by setting the motion flag field of the block to “1”. If a
matching cluster is found within the cluster group and the matching cluster is updated, then
the incoming current block belongs to the background and therefore, the motion flag field of the
block is set to “0” (i.e., no motion detected).
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The above-mentioned clustering-based motion detection scheme has been implemented by us
in C/C++ programming language. For running the code, a Dell Precision T3400 workstation (with
Windows XP operating system, quad-core Intel® Core™2 Duo Processor with 2.93 GHz Operating
Frequency, and 4GB RAM) was used. The Open Computer Vision (OpenCV) libraries have been used
in the code for reading video streams (either stored or coming from camera) and displaying motion
detection results. The frame rate of this software-based implementation for standard PAL (720 ˆ 576)
resolution was much lower than the real-time requirements of automated video surveillance systems.

3. Motion Detection System

In order to achieve real-time performance, as required in an automated video surveillance system,
we have proposed a dedicated hardware architecture for clustering-based motion detection scheme
and its implementation as a prototype system using the Xilinx ML510 (Virtex-5 FX130T) FPGA board
for real-time motion detection.

A simplified conceptual block diagram of the proposed and developed FPGA-based motion
detection system is shown in Figure 3 to illustrate the data flow within the system. The main
components of a complete FPGA-based standalone motion detection system are: analog Camera,
VDEC1 Video Decoder Board for analog to digital video conversion, custom designed Interface PCB,
Xilinx ML510 (Virtex-5 FX130T) FPGA platform for performing real-time motion detection, and a
display device (Display Monitor).
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Input video, captured by a Sony Analog Camera, is digitized by Digilent VDEC1 Video Decoder
Board. The digital output signals from the video decoder board are transferred to FPGA platform
using high speed I/O ports (HSIO PINS) available on Xilinx ML510 (Virtex-5 FX130T) FPGA Board
using custom designed Interface PCB. The components inside dashed blue line are available on Xilinx
ML510 (Virtex-5 FX130T) FPGA Board. These include FPGA Device (shown by dashed red line), High
Speed Input Output Interface (HSIO PINS), and DVI Interface. The Camera Interface module uses
the digital video signals available at the FPGA interface and extracts RGB data and generates Video
Timing Signals. The DVI Display Controller is used to display the processed data on Display Monitor.

Data arrives from the Camera Interface module row by row. As the motion detection scheme
is based on the processing of 4 ˆ 4 image blocks, streaming video processing cannot be used for
clustering based motion detection scheme. For this reason, the four rows of image data are buffered in
Input Memory before processing begins. The Motion Detection architecture takes its input from the
Input Memory and processes the data. The output of Motion Detection module is stored in Output
Memory for synchronization purpose before sending it for display. This is because the output data of
Motion Detection module is for 4 ˆ 4 pixel block while the DVI Display Controller takes the input data
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row by row. The processed image pixel data from Output Memory along with video timing signals
is sent for display on Display Monitor through DVI Interface available on FPGA board. The three
modules (Input Memory, Motion Detection, and Output Memory) within green dashed line form the
clustering based motion detection architecture.

4. Proposed Architecture

In order to achieve real-time performance, as required in an automated video surveillance system,
we have proposed a dedicated hardware architecture for clustering-based motion detection scheme
and its implementation. The detailed VLSI architecture proposed and designed for clustering-based
motion detection scheme is shown in Figure 4. The first module is INPUT MEM. This module receives
the incoming pixel data as input and buffers it in the memory. Buffering is required because the
motion detection algorithm works on 4 ˆ 4 pixel windows. The output from INPUT MEM is four
pixel data coming out in parallel. BLCENT COMPUTATION UNIT computes the average centroid
for 4 ˆ 4 image block by taking pixel data from the input memory (four clock cycles are required
for reading 16 pixels from the input memory buffer). This computation is done by adding 16 pixel
values of current block and then dividing the sum by 16. The read address, write address, and write
enable signals for input memory are generated by the corresponding INPUT-MEM RADD-WRADD
WEN module.
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The motion computation enable (MCEN) signal is generated by MOTION COMPUTATION
ENABLE UNIT. This signal is used as the enable signal in different modules of the designed motion
detection architecture.

As mentioned in the algorithm section, the clustering-based scheme stores centroid and frame
number information for each 4 ˆ 4 image block. It, therefore, requires the assignment of a unique
identity (or address) to each block. This is done by using row and column counters generated by
COUNTERS & CONTROLLER MODULE. This unit takes the video timing signals from camera
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interface module and generates the different counter values (row counter, column counter, frame
number counter) and control signals required for the proper functioning of complete system.

For storing background related information in the clustering-based algorithm, a parameter
memory is used. It has two components viz. Centroid Memory (CENT MEM) and Frame Number
Memory (FRNM MEM). Each Centroid Memory location contains four Centroid values (corresponding
to four clusters) which contain the background color and intensity related information. Each Frame
Number Memory location stores four Frame Number values (corresponding to four clusters) which
are used to keep the record of Centroid value updating or replacement history i.e., for the particular
4 ˆ 4 pixel block when (at what time or for what Frame Number) the cluster Centroid value is
updated or replaced. The read address and write address signals for CENT-MEM and FRNM MEM
are generated by the corresponding units CENT-MEM RADD-WRADD UNIT and FRNM-MEM
RADD-WRADD UNIT.

During initial four frames, control signals are generated in such a way that the four clusters
are initialized (one in each frame). For all subsequent frames, the generated control signals enable
the motion detection process. After initialization, the matching cluster is searched within the cluster
group of four clusters. For this purpose, first difference between cluster Centroid value (CENT DATA)
and incoming current block Centroid value (BLCENT) is computed for all four clusters by reading
the cluster Centroid values (4 CENT DATA) from CENT-MEM corresponding to current 4ˆ4 image
block and taking absolute sum of differences with current block Centroid value (BLCENT). From the
four difference values, minimum Centroid difference value is selected. This complete task is carried
out by the MINIMUM CENT DIFF COMPUTATION UNIT. It outputs MCD (minimum centroid
difference value) and CINDX (Centroid Index). CINDX gives the cluster number corresponding to
MCD (minimum centroid difference value).

In parallel with this, MINIMUM FRAME NUM COMPUTATION UNIT finds the frame index
(FINDX). FINDX gives the cluster number having minimum frame number value corresponding to
current 4 ˆ 4 block in the frame number memory (FRNM MEM).

The MCD and BLCENT values are used by CENT-MEM WDATA COMPUTATION UNIT to
compute the write data for Centroid Memory (CENT MEM). MCD is compared with a user defined
threshold. For MCD less than or equal to the threshold (i.e., matching cluster is found), the write data
for CENT MEM is the average value of current block Centroid value (BLCENT) and matching cluster
Centroid value (matching cluster number is given be CINDX). For MCD greater than threshold (i.e., no
matching cluster is found), the write data for CENT MEM is current block Centroid value (BLCENT)
and, in this case, the cluster number for which value is replaced is determined by frame number index
value (FINDX) which corresponds to the oldest cluster in the cluster group.

The write data for frame number memory (FRNM-MEM) is generated by FRNM-MEM WDATA
COMPUTATION UNIT and it is the present or the current frame number (PFRNM) value.

The CINDX and FINDX values are used by CENT-MEM FRNM-MEM WEN UNIT for generating
the write enable signals for CENT MEM and FRNM MEM. The write enable signals help for selecting
the cluster for which the centroid value and the frame number value is to be updated or replaced.

The MD FLAG takes MCD as input and compares it with a user defined threshold. A 1-bit Flag
signal is generated which is low if difference is less than the threshold (i.e., current block matches with
background model and therefore, no motion is detected) and high if the difference is greater than the
threshold (i.e., current block is motion detected block). This motion information data of 4x4 pixel block
is written to the output memory (OUTPUT MEM) and corresponding addresses for this memory are
generated by OUTPUT-MEM RADD-WRADD WEN module. Finally, the motion detected data is read
from this output buffer memory and sent to the display controller for display on the screen.

The details of individual blocks of the proposed and implemented motion detection architecture
are presented in the following sub-sections.
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4.1. Input Buffer Memory

The input buffer memory module (Figure 5) is used to buffer the four rows of input image data.
There are two memories (MEM1 and MEM2) in parallel. If the data is written in first memory then the
reading is performed from the second memory and vice-versa. Each of the memory is constructed by
four block RAMs (BRAMs) in FPGA. These four block RAMs are connected in parallel. Each block
RAM is used to buffer one row of image pixel data. The width of each block RAM is 8-bit. The 8-bit
input data is applied to the inputs of all block RAMs of MEM1 and MEM2. The read address and write
address for the block RAMs of MEM1 and MEM2 are generated by RDADD WRADD GENERATOR.
The write enable signals are generated separately based on the row counter (RW4C) and switch value.
The selection of four output pixels (read from MEM1 or MEM2) is done by using multiplexers based
on switch value.
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4.2. Minimum Centroid Difference Computation

The objective of this block (Figure 6) is to find the minimum centroid difference and corresponding
index value. The current block centroid value is subtracted from centroid values of four clusters (read
from CENT MEM). The four centroid values from CENT MEM are CMRD1, CMRD2, CMRD3, and
CMRD4. The absolute difference of current block centroid BLCENT is computed in parallel with these
four values. The first two differences are compared and the minimum difference among two (MDIFF1)
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is computed using comparator and multiplexer. The corresponding index value is also computed
(INDX1). Similarly, the last two differences are compared and the minimum difference among the
last two differences (MDIFF2) and corresponding index (INDX2) is computed. Finally, using a set of
comparator and two multiplexers the minimum centroid difference (MCDIFF) and the corresponding
centroid index (CINDX) is computed using MDIFF1 & MDIFF2 and INDX1 & INDX2, respectively.
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4.3. Minimum Frame Number Computation

The objective of minimum frame number computation block (Figure 7) is to find the minimum
frame number and the corresponding index value. The four frame number values from FRNM
MEM are FMRD1, FMRD2, FMRD3, and FMRD4. The first two frame number values (FMRD1 and
FMRD2) are compared and the minimum value among two (MFN1) is computed using comparator
and multiplexer. The corresponding index value is also computed (INDX1). Similarly, the last frame
number values (FMRD3 and FMRD4) are compared and the minimum value among last two (MFN2)
and corresponding index (INDX2) is computed. Finally, using a set of comparator and two multiplexers
the minimum frame number (MFRNM) and corresponding frame number index (FINDX) is computed
using MFN1 & MFN2 and INDX1 & INDX2, respectively.
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4.4. Parameter Memory

There are two parameter memories as shown in Figure 8. The first one is CENT MEM which
stores centroid value of each block for four clusters. This memory contains four memory modules
in parallel each corresponding to one cluster. Each centroid memory module is 8-bit wide and is
25,920 locations in size. The four centroid parameter memory modules are CM1, CM2, CM3, and CM4.
The data is written to and read from all the four memories from same locations at a time. Therefore,
the read address and writes address is common to all centroid memories modules. The write data
(WRDATACM) and write enable signals (WRENCM) for these four memories are different. The second
parameter memory is FRNM MEM which stores frame number value of each block for four clusters.
This memory contains four memory modules in parallel each corresponding to one cluster. Each frame
number memory module is 16-bit wide and 25,920 locations in size. The four frame number parameter
memory modules are FM1, FM2, FM3, and FM4. The data is written to and read from all the four
memories from same locations at a time. Therefore, the read address and writes address is common
to all frame number memories modules. The write data (WRDATAFM) and write enable signals
(WRENFM) for these four memories are different. The four data can be written to and read from the
parameter memories at any time in single clock cycle. The data to be written to CENT MEM and
FRNM MEM is computed by corresponding write data generation modules.
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The write enable signals for CENT MEM and FRNM MEM are same. Therefore, a common 4-bit
write enable signals is generated for both memories. Each bit of the write enable signal is corresponding
to each memory module of the two parameter memories.

The 4-bit write enable signal (Figure 9) is generated based on Frame Number value, centroid
index value (CINDX), frame number index (FINDX) value, and Minimum Difference Value (MDIFF).
If frame number is less than 5 then write enable signal is generated in such a way that it initializes
the four memories. If MDIFF is less than that of user defined threshold then, the write enable signal
is generated for updating the existing centroid values and frame number values. If the MDIFF is
greater than that of user defined threshold then, the write signal is generated by replacing the existing
centroid and fame number values in parameter memories. This is done with the help of multiplexers
and comparators.
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4.5. Initialize-Update-Replace Module

The objective of this block (Figure 10) is to find the minimum centroid difference and corresponding
index value. The current block centroid value is subtracted from centroid values of four clusters (read
from CENT MEM). Initialization-update-replace module (Figure 10) computes the data to be written
in parameter memories (CENT MEM and FRNM MEM). The write data for frame number parameter
memory (FMWD) is always current/present frame number (PFRNUM). It is 16-bit data and is written
only when MDEN is high, otherwise it will be zero. For initial four frames, the initialization process take
place, therefore the data written to centroid memory (CMWD) will be current block average centroid
value (BLCENT) for initial four frames. For all subsequent frames, there are two possibilities. Either
existing data will be updated or it will be replaced depending upon the value of MDIFF. If MDIFF
value is greater than the user defined threshold, then replacing will take place and the old value will be
replaced by current block average centroid value. If MDIFF value is less than the user defined threshold
then, updating process will take place. The existing centroid value is updated with the average sum
of old value of centroid and current block average centroid value. Which memory centroid is updated
depends on the CINDX value. Based on CINDX, the 8-bit centroid value is selected and added with



Electronics 2016, 5, 10 12 of 18

BLCENT and the result is then divided by 2 using right shift. This average value will be written to
centroid parameter memory.
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5. Synthesis Results

All design modules of proposed architecture for clustering based motion detection scheme have
been coded in VHDL, simulated using ModelSim, and synthesized using the Xilinx ISE (Version 12.1)
tool chain. The resulting configuration (bit) file was stored in the Flash Memory to enable automatic
configuration of the FPGA at power-on. Thus a complete standalone prototype system for real-time
motion detection has been developed and is shown in Figure 11. The components of the system are a
Xilinx ML510 (Virtex-5 FX130T) FPGA platform, a Sony EVI D-70P Camera, and a display monitor.
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The FPGA resources utilized (post-place & route results) by camera interface (CI), display interface
(DVI), proposed architecture (PA), and complete implemented motion detection system (camera
interface, proposed architecture for motion detection, and display interface) are given in Table 1.
For PAL (720ˆ 576) resolution color video processing, implementation of the complete clustering-based
motion detection system utilizes approximately 57% of the available Block RAMs on Xilinx ML510
(Virtex-5 FX130T) FPGA platform. The total power consumption (analyzed using Xilinx XPower
Analyzer tool) is 1.97 W (Quiescent Power 1.82 W + Dynamic Power 0.15 W). The maximum operating
frequency is 73.88 MHz and maximum possible frame rate for PAL (720 ˆ 576) size color video
is 178 frames per second (fps). Frame rate achieved through the hardware implementation is far
higher than that required for real-time processing and is far higher than that obtained for software
implementation on a workstation.

Table 1. FPGA Resource Utilization by Clustering based Motion Detection System.

Resources
Camera

Interface
(CI)

Display
(DVI)

Proposed
Architecture

(PA)

Complete
System (CI +

PA +DVI)

Total
Available
Resources

Percentage
of

Utilization

Slice Registers 391 79 239 701 81920 0.86%
Slice LUTs 434 101 1379 1884 81920 2.30%

Route-thrus 42 39 62 122 163840 0.07%
Occupied Slices 199 33 467 697 20840 3.34%

BRAMs 36K 3 0 168 171 298 57.38%
Memory (Kb) 108 0 6048 6156 10728 57.38%

DSP Slices 3 0 0 3 320 0.94%
IOs 16 22 36 36 840 4.28%

Performance of the proposed, designed, and implemented motion detection architecture is
compared with some recently published motion detection implementations using different algorithms.
The performance comparison is shown in Table 2. The motion detection/segmentation architectures
presented by Genovese et al. [32] and Genovese and Napoli [33] were designed for OpenCV GMM
algorithm and were implemented on Virtex5 (xc5vlx50-2ff1153) FPGA. For accurate performance
comparison with their work, the proposed motion detection architecture has also been synthesized
(including place & route) for Virtex5 (xc5vls50) FPGA devices using Xilinx ISE tool chain.

Table 2. Performance Comparison with Existing Motion Detection Implementations.

Target FPGA Device Implementation Maximum Clock
Frequency (MHz

Frame Rate for PAL
Resolution Video

Virtex5 (xc5fx130t-2ff1738) Our Implementation 73.88 MHz 178

Virtex5 (xc5vlx50-2ff1153)
Our Implementation 73.88 MHz 178

[33] 50.50 MHz 121
[32] 47.00 MHz 113

The architecture proposed in this paper for motion detection outperforms existing
implementations in terms of processing speed. An apple to apple comparison of FPGA resource
utilization does not make proper sense as the motion detection algorithms used, number of background
models considered, and the video formats and sizes considered in these implementations are different
than in our implementation. For this reason, one to one FPGA resource utilization comparisons are not
tabulated here. The system architecture for motion detection, proposed, designed, and implemented
by us is adaptable and scalable for different video sizes. The proposed architecture is capable of
processing HD (1920 ˆ 1080) resolution videos in real-time at a frame rate of 35 fps.
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6. Motion Detection Results

The implemented system was tested for different real-world scenarios (both indoor and outdoor),
which are broadly classified into two categories i.e., static background situations and pseudo-stationary
background situations. Figure 12 shows examples of real-world situations of static background
scenarios captured by the camera. In both the cases of Figure 12, the background is static and
the moving objects are present in the scene. Motion detected by our implementation in different
frames is shown just below the respective images. It can be clearly seen that only moving objects
have been detected by the implemented motion detection system. Figure 13 shows the scenarios
of pseudo-stationary background with moving foreground objects. In this case, there are moving
leaves of the trees in the background. Despite these pseudo-stationary movements in background,
only moving objects in the foreground have detected and the movements of leaves of trees in the
background (irrelevant motion) have been eliminated. Results of the tests show that the system is
robust enough to detect only the relevant motion in a live video scene and eliminates the continuous
unwanted movements in the background itself. All the above color frames are of PAL (720 ˆ 576) size
and are extracted from live video streams produced by the implemented system.
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The quantitative analysis of the motion detection quality of proposed hardware implementation
is done against the software implementation of the clustering-based motion detection algorithm by
using video streams of different real-world scenarios. For this purpose, for every frame of each video
stream, the mean square error (MSE) is calculated. MSE is a common measure of quality of video and
is equivalent to other commonly used measures of quality. For example, the peak signal-to-noise ratio
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(PSNR) is equivalent to MSE [34]. Some researchers measure the number of false positives (FP) and
false negatives (FN) whose sum is equivalent to the MSE [54]. MSE is defined as

MSE “
1

M ˚ N

M´1
ÿ

m“0

N´1
ÿ

n“0

pISOFTWARE pm, nq ´ IHARDWARE pm, nqq2

In the above equation, ISOFTWARE (m, n) is the motion detected binary output image produced
by running of the software (C/C++) implementation of clustering based algorithm, while IHARDWARE

(m, n) is the motion detected binary output image produced by running of the proposed hardware
(VLSI) implementation of a clustering based algorithm. M is the number of rows in a video frame and
N is the number of columns in a video frame. The computed MSE for every frame of all the test videos
is zero and it confirms that the proposed hardware (VLSI) implementation produces the same motion
detection results as the software implementation of the clustering based motion detection scheme but
at much higher frame rates.
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7. Conclusions

In this research article, the hardware architecture for a clustering based motion detection
scheme, realized using VHDL and implemented on a Xilinx ML510 FPGA platform, has been
presented. The complete working prototype system, including camera interface, motion detection
VLSI architecture, and display interface has been implemented on Xilinx ML510 (Virtex-5 FX130T)
FPGA Board. The implemented system can robustly and automatically detect relevant motion in
real-world scenarios (both for the static backgrounds and the pseudo-stationary backgrounds) for
standard PAL (720 ˆ 576) resolution live incoming video streams in real-time. It can be effectively
used as a standalone component for motion detection in video surveillance systems.
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