A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings
Abstract
:1. Introduction
2. Related Work
3. Proposed Energy Consumption Prediction Methodology
3.1. Data Acquisition Layer
3.2. Preprocessing Layer
3.3. Prediction Layer
3.3.1. Deep Extreme Learning Machine (DELM)
3.3.2. Artificial Neural Network (ANN)
3.3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)
3.4. Performance Evaluation Layer
4. Experimental Results Based on Prediction Algorithms
4.1. Model Validation of DELM
4.2. Model Validation of ANFIS
4.3. Model Validation of ANN
5. Discussion and Comparative Results Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fayaz, M.; Kim, D. Energy Consumption Optimization and user comfort management in residential buildings using a bat algorithm and fuzzy logic. Energies 2018, 11, 161. [Google Scholar] [CrossRef]
- Selin, R. The Outlook for Energy: A View to 2040; ExxonMobil: Irving, TX, USA, 2013. [Google Scholar]
- Sieminski, A. International Energy Outlook; Energy Information Administration: Washington, DC, USA, 2014. [Google Scholar]
- Mitchell, B.M.; Ross, J.W.; Park, R.E. A Short Guide to Electric Utility Load Forecasting; Rand Corporation: Santa Monica, CA, USA, 1986. [Google Scholar]
- Parez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Ahmad, A.; Hassan, M.; Abdullah, M.; Rahman, H.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. A multi-criteria approach toward discovering killer iot application in Korea. Technol. Forecast. Soc. Change 2016, 102, 143–155. [Google Scholar] [CrossRef]
- Malik, S.; Kim, D. Prediction-learning algorithm for efficient energy consumption in smart buildings based on particle regeneration and velocity boost in particle swarm optimization neural networks. Energies 2018, 11, 1289. [Google Scholar] [CrossRef]
- Khosravani, H.R.; Castilla, M.D.M.; Berenguel, M.; Ruano, A.E.; Ferreira, P.M. A comparison of energy consumption prediction models based on neural networks of a bioclimatic building. Energies 2016, 9, 57. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial neural networks in energy applications in buildings. Int. J. Low-Carbon Technol. 2006, 1, 201–216. [Google Scholar] [CrossRef]
- Kampouropoulos, K.; Cárdenas, J.J.; Giacometto, F.; Romeral, L. An energy prediction method using adaptive neuro-fuzzy inference system and genetic algorithms. In Proceedings of the 2013 IEEE International Symposium on Industrial Eleactronics, Taipei, Taiwan, 28–31 May 2013. [Google Scholar]
- Ullah, I.; Ahmad, R.; Kim, D. A prediction mechanism of energy consumption in residential buildings using hidden markov model. Energies 2018, 11, 358. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Xiao, F.; Zhao, Y. A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 2017, 195, 222–233. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Lv, Y.; Wang, F.Y. Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 2016, 3, 247–254. [Google Scholar]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time series forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, FL, USA, 9–12 December 2014; pp. 21–26. [Google Scholar] [CrossRef]
- Kalogirou, S.; Neocleous, C.; Schizas, C. Building heating load estimation using artificial neural networks. In Proceedings of the Clima 2000 Conference, Brussels, Belgium, 30 August–2 September 1997. [Google Scholar]
- Olofsson, T.; Andersson, S.; Östin, R. A method for predicting the annual building heating demand based on limited performance data. Energy Build. 1998, 28, 101–108. [Google Scholar] [CrossRef]
- Yokoyama, R.; Wakui, T.; Satake, R. Prediction of energy demands using neural network with model identification by global optimization. Energy Convers. Manag. 2009, 50, 319–327. [Google Scholar] [CrossRef]
- Kreider, J.; Claridge, D.; Curtiss, P.; Dodier, R.; Haberl, J.; Krarti, M. Building energy use prediction and system identification using recurrent neural networks. J. Sol. Energy Eng. 1995, 117, 161–166. [Google Scholar] [CrossRef]
- Ben-Nakhi, A.E.; Mahmoud, M.A. Cooling load prediction for buildings using general regression neural networks. Energy Convers. Manag. 2004, 45, 2127–2141. [Google Scholar] [CrossRef]
- Carpinteiro, O.A.; Reis, A.J.; da Silva, A.P. A hierarchical neural model in short-term load forecasting. Appl. Soft Comput. 2004, 4, 405–412. [Google Scholar] [CrossRef]
- Gross, G.; Galiana, F.D. Short-term load forecasting. Proc. IEEE 1987, 75, 1558–1573. [Google Scholar] [CrossRef]
- Irisarri, G.; Widergren, S.; Yehsakul, P. On-line load forecasting for energy control center application. IEEE Trans. Power App. Syst. 1982, 71–78. [Google Scholar] [CrossRef]
- Ali, S.; Kim, D.-H. Effective and comfortable power control model using kalman filter for building energy management. Wirel. Pers. Commun. 2013, 73, 1439–1453. [Google Scholar] [CrossRef]
- Wahid, F.; Kim, D.H. Short-term energy consumption prediction in korean residential buildings using optimized multi-layer perceptron. Kuwait J. Sci. 2017, 44, 67–77. [Google Scholar]
- Wahid, F.; Kim, D.H. A prediction approach for demand analysis of energy consumption using K-nearest neighbor in residential buildings. Int. J. Smart Home 2016, 10, 97–108. [Google Scholar] [CrossRef]
- Arghira, N.; Hawarah, L.; Ploix, S.; Jacomino, M. Prediction of appliances energy use in smart homes. Energy 2012, 48, 128–134. [Google Scholar] [CrossRef]
- Li, K.; Su, H.; Chu, J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study. Energy Build. 2011, 43, 2893–2899. [Google Scholar] [CrossRef]
- Kassa, Y.; Zhang, J.; Zheng, D.; Wei, D. Short term wind power prediction using ANFIS. In Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 21–23 October 2016; pp. 388–393. [Google Scholar]
- Ekici, B.B.; Teoman Aksoy, U. Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 2011, 38, 5352–5358. [Google Scholar] [CrossRef]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Nau, R. Forecasting with Moving Averages. Fuqua School of Business, Duke University, 2014. Available online: https://people.duke.edu/~rnau/Notes_on_forecasting_with_moving_averages--Robert_Nau.pdf (accessed on 24 June 2018).
- Niu, D.; Wang, H.; Chen, H.; Liang, Y. The general regression neural network based on the fruit fly optimization algorithm and the data inconsistency rate for transmission line icing prediction. Energies 2017, 10, 66. [Google Scholar] [CrossRef]
- Cheng, J.; Duan, Z.; Xiong, Y. QAPSO-BP algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit. Shock Vib. 2015, 34, 177–181. [Google Scholar]
- Huang, G.-B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Yan, W.; Chen, Y.; Fu, X. Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Process. Lett. 2014, 39, 25–43. [Google Scholar] [CrossRef]
- Huang, G. An insight into extreme learning machines: Random neurons, random features and kernels. Cogn. Comput. 2014, 6, 376–390. [Google Scholar] [CrossRef]
- Wei, J.; Liu, H.; Yan, G.; Sun, F. Robotic grasping recognition using multi-modal deep extreme learning machine. Multidim. Syst. Signal Process. 2017, 28, 817–833. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation for the nonlinear muskingum model using the bfgs technique. J. Irrig. Drain. Eng. 2006, 132, 474–478. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.; Upton, J.; Scully, T. Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 2018, 150, 74–87. [Google Scholar] [CrossRef]
- Chau, K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.-P. An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. J. Mater. Process. Technol. 2003, 142, 665–675. [Google Scholar] [CrossRef]
- Elena Dragomir, O.; Dragomir, F.; Stefan, V.; Minca, E. Adaptive neuro-fuzzy inference systems as a strategy for predicting and controling the energy produced from renewable sources. Energies 2015, 8, 13047–13061. [Google Scholar] [CrossRef]
- Chang, F.-J.; Chang, Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 2006, 29, 1–10. [Google Scholar] [CrossRef]
- Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Owda, H.; Omoniwa, B.; Shahid, A.; Ziauddin, S. Using Artificial Neural Network Techniques for Prediction of Electric Energy Consumption. Available online: https://arxiv.org/abs/1412.2186 (accessed on 24 June 2018).
- MATLAB, version 8.1.0 (R2013a); The MathWorks Inc.: Natick, MA, USA, 2013.
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
DELM | 2.0008 | 5.7077 | 2.2451 |
ANFIS | 2.2679 | 6.3884 | 2.4636 |
ANN | 2.3918 | 6.7097 | 2.6030 |
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
DELM | 2.3347 | 6.5464 | 2.6864 |
ANFIS | 2.6433 | 7.3798 | 3.1712 |
ANN | 2.5437 | 7.4562 | 3.2400 |
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
DELM | 2.1677 | 6.1271 | 2.4657 |
ANFIS | 2.4556 | 6.8841 | 2.8174 |
ANN | 2.4317 | 7.0830 | 4.8561 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayaz, M.; Kim, D. A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings. Electronics 2018, 7, 222. https://doi.org/10.3390/electronics7100222
Fayaz M, Kim D. A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings. Electronics. 2018; 7(10):222. https://doi.org/10.3390/electronics7100222
Chicago/Turabian StyleFayaz, Muhammad, and DoHyeun Kim. 2018. "A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings" Electronics 7, no. 10: 222. https://doi.org/10.3390/electronics7100222
APA StyleFayaz, M., & Kim, D. (2018). A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings. Electronics, 7(10), 222. https://doi.org/10.3390/electronics7100222