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Abstract: Existing multi-screening technologies have been limited to mirroring the current screen of
the smartphone onto all the connected external display devices. In contrast, NANS (N-App N-Screen)
technology is able to display different applications (N-App) on different multiple display devices
(N-Screen) using only a smartphone. For such NANS services, this paper empirically shows that
the thermal violation constraint is more critical than the battery life constraint. For preventing the
thermal violation, the existing DTM (Dynamic Thermal Management) techniques cannot be used since
they consider thermal violations as abnormal, and hence prevent them by severely throttling CPU
frequencies resulting in serious QoS degradation. In NANS service scenarios it is normal to operate in
high temperature ranges to continue services with acceptable QoS. Targeting such scenarios, we first
propose a novel thermal prediction method specially designed for NANS services. Based on the
novel thermal prediction method, we then propose a novel DTM technique called, “thermal planning”
to provide sustainable NANS services with sufficiently high QoS without thermal violations.

Keywords: dynamic thermal management; QoS optimization; thermal prediction; thermal model;
NANS technology; NANS service; multi-screening; mobile device; smartphone

1. Introduction

Thanks to the advance of recent display interface technologies such as wireless Miracast [1]
or wired HDMI (High Definition Multimedia Interface) [2], users can connect their smartphones
to external large display devices such as TVs and PC monitors. Through these display interfaces,
Mirroring, i.e., a typical multi-screening technique, mirrors the current screen of the smartphone
onto all the connected external display devices as shown in Figure 1a. Mirroring cannot meet the
user’s needs for using the smartphone display and external displays for displaying multiple different
applications. For example, it is not possible to show a mobile messenger on the smartphone display,
a movie player on the TV display, and a web browser on the tablet display simultaneously.

To realize such multi-screening scenarios on smartphones, we developed NANS (N-App N-Screen)
technology [3], which is now available as an open source project. NANS technology is implemented by
improving Android mobile platform in such a way that multiple applications (N-App) are concurrently
executed and rendered on a smartphone and their rendered images are transmitted to multiple desired
displays (N-Screen) as shown in Figure 1b. The detailed description and video demonstrations of
NANS technology can be found on our open source project [3]. Compared to using multiple separate
devices, NANS technology has obvious advantages in terms of service continuity. With NANS
technology, a user can display all the content of a smartphone, such as applications, movies, music,
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pictures, and personal data, on surrounding display devices without re-installing applications or
copying content to those devices.

(a) Mirroring (b) NANS technology

Figure 1. Feature comparison between Mirroring and NANS (N-App N-Screen) technology.

NANS technology has to overcome a big hurdle to become a commercially deployable solution.
The rapid temperature increase caused by the enormous use of smartphone resources for executing and
rendering multiple applications and transmitting their rendered images concurrently is problematic [4].
The rapid increase in temperature of hardware components quickly results in thermal violation
that exceeds the thermal threshold limited by the chip manufacturer. The thermal violation of
microprocessors is a well-known cause of increasing leakage current and lowering chip reliability [5].

To protect microprocessors from thermal violations, there have been many studies on thermal
prediction-based DTM (Dynamic Thermal Management) [6–16] to predict the temperature and then to
lower the resource usage if the predicted temperature is at risk of exceeding the thermal threshold.
Since those studies consider rapid temperature increases as abnormal and rare cases, they use simple
solutions despite the risk of thermal violations. For example, even a thermal prediction method
with large errors above 10 °C is still acceptable since we can use it with enough thermal budget to
pessimistically predict the thermal violation. The penalty by such a pessimistic thermal prediction is
not that serious if a temperature increase close to the thermal threshold rarely happens. Also, based on
such a pessimistic thermal prediction, rather simple solutions such as lowering the microprocessor’s
frequency or shutting-down can be used in smartphones. If such cases happen rarely, it does not
seriously harm the user’s quality of experience.

However, in NANS service scenarios, it is not abnormal but rather typical for smartphones
to be operated at a high temperature range close to the thermal threshold. The above solutions,
which treat temperature increases approaching the thermal threshold as abnormal cases, cannot be
used directly [17]. For NANS services, firstly, we need a reliable thermal prediction method that works
well even at high temperature ranges close to the thermal threshold. Secondly, we need a thermal
management technique to carefully minimize the negative impact on the user experience, even at high
temperature ranges. Considering these two points, in this paper, we propose a novel DTM especially
designed for NANS services. The contributions of this paper are summarized as follows:

1. Firstly, we propose a novel thermal prediction method especially designed for NANS
services. For this, we extend the existing thermal model by identifying the major heat sources
in NANS technology and considering the thermal interaction between these heat sources.
Also, our proposed thermal prediction method additionally models our new finding—the abrupt
changes of temperature, i.e., thermal jumps or drops, when changing the operating frequency of a
multi-core CPU.

2. Secondly, we design a novel DTM technique that provides sustainable NANS services close to but
below the thermal threshold. For this, using our thermal prediction method, we jointly optimize
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App-Core mapping and the core frequency control such that the overall QoS of the given NANS
service scenario is maximized under the thermal constraints.

The rest of the paper is organized as follows. Firstly, we present the related work in Section 2.
In Section 3, we report the experimental results that show the criticality of thermal issues in NANS
services. Section 4 describes our proposed thermal prediction method. In Section 5, we describe
our proposed DTM technique. The experimental results are reported in Section 6. Finally, Section 7
concludes this paper.

2. Related Work

2.1. Thermal Prediction Methods for Mobile Devices

Due to the duality of thermal and electrical phenomena, the Compact Thermal Model (CTM) [18]
allows us to analyze the thermal behaviors of microprocessors using electric formulas. HotSpot [19]
is one of the most popular compact thermal modeling techniques for a system which consists of
various hardware components. Many researchers have adapted and applied it for simulating thermal
behaviors of their target systems, but only a few studies targeted mobile devices [6–9,11,12].

Xie et al. [6] proposed a CTM-based thermal model considering the thermal interaction between
mobile AP (Application Processor) and battery. Dousti et al. [7] proposed a CTM-based thermal
analyzer, which produces various thermal maps for major hardware components such as CPU, GPU,
LCD, WiFi, 4G LTE, and flash storage in a mobile device. Also, authors in [8,9,11] used similar
CTM-based thermal models for thermal prediction. Gong et al. [12] presented fine-grained thermal
modeling techniques based on a directly measured power trace and the actual design information
such as the floorplan and material properties.

Despite their good prediction accuracy, these CTM-based thermal prediction methods have serious
problems in terms of practicality. They require an actual power measurement, but most commercial
mobile devices do not have power sensors for individual hardware components to determine these
values. Therefore, they are required to use the power model of each hardware component to determine
the power measurements. The problem is, except for mobile AP which have time-tested power models,
other hardware components do not have reasonably accurate power models. This makes it hard for
commercial mobile devices to use the CTM-based thermal prediction methods in practice.

To cope with this problem, some studies proposed more practical and simple thermal prediction
methods for mobile devices. Egilmez et al. [13] presented a simple run-time method for estimating skin
and screen temperature only with on-device thermal sensors and performance indicators. To describe
the thermal interaction between the hardware components of the mobile devices, Ferroni et al. [14]
implemented a thermal prediction tool using a linear relationship between temperature difference
and physical distance among hardware components. Paterna et al. [15] proposed an exponential
thermal prediction method considering the ambient condition and thermal coupling between mobile
AP and the WiFi chipset. These more practical thermal prediction methods are less accurate due to
their oversimplified thermal models. An even bigger problem is that their prediction error increases as
the thermal prediction window for long-term predictions increases, which is problematic for DTM
techniques used in NANS services.

As a compromise between these two groups of studies, Mercati et al. [16] proposed a simplified
CTM-based thermal prediction method using only observable operating parameters instead of actual
power measurements or power models. It provides good prediction accuracy and is practically
applicable since it uses only observable operating parameters of hardware components that have
neither power sensors nor power models.

Our proposed thermal prediction method is based on Mercati et al.’s method [16]. Additionally,
we consider display chipsets as major heat sources used for NANS technology. We also add our
new finding, i.e, momentary thermal jumps and drops, which are observed when the operating
frequencies of the CPU cores are changed for dynamic thermal management. Kahng et al. in a series of
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studies [20,21] reported a sharp increase in power consumption, i.e., power jumps, when multicore
CPUs wake up from idle state. There have been no studies of thermal jumps or drops observed when
changing core frequencies in active state.

2.2. Dynamic Thermal Management for Mobile Devices

There have been numerous studies about Dynamic Thermal Management (DTM) to improve the
reliability and performance of microprocessors. Nevertheless, only a few studies have targeted mobile
devices. Depending on whether decision making is based on thermal prediction or not, DTM can be
classified into two groups: reactive DTM and proactive DTM. In reactive DTM, the decision making
method is based on the current or past temperatures measured by actual thermal sensors. Kim et al. [22]
monitored the current CPU temperature to stabilize the CPU frequency, voltage, and temperature.
Because these reactive methods are based on current or past temperatures, they always have the risk of
a thermal violation. Khdr et al. [23] limited the chip temperature below the conservatively-configured
thermal threshold to avoid thermal violations. CPU throttling [24] also prevents thermal violations
by stepping down the available maximum frequency whenever the CPU temperature exceeds
conservatively-preset temperature levels. Although CPU throttling is the most representative reactive
DTM technique which has been applied to commercial smartphones, Sahin et al. [4] pointed out that
CPU throttling also causes significant QoS degradation as a result of sudden temperature increases.

In proactive DTM, decision making is based on future temperatures predicted by a thermal
prediction method. Each study in [6,8,13,15,25,26] considered different heat sources, but all studies
use thermal prediction methods in their proactive DTM. Das et al. [27,28] reported that their
proactive run-time manager using reinforcement learning reduces thermal overheads, such as average
temperature, peak temperature, and thermal cycling. The authors of [9,11] proposed DTM techniques
using the power budget given by thermal prediction. Since the focus of these studies is on protecting
the system from thermal threats such as thermal violation or thermal variance, they do not consider
QoS at all.

To provide better QoS, several studies presented proactive DTM techniques which consider
QoS characteristics of applications. Mercati et al. [16] presented a proactive DTM technique which
minimizes QoS loss while preventing thermal violations. Also, Prakash et al. [29] proposed a
proactive DTM technique which reduces the temperature variance while achieving high QoS for
running applications. Sahin et al. in a series of studies [4,17,30–32] presented several run-time
management techniques considering QoS requirements while slowing the temperature increase of the
CPU. Since these studies consider the QoS issue targeting only a single application being displayed on
a mobile device, they are not directly applicable to NANS service scenarios where multiple applications
are displayed on multiple display devices.

In some studies employing DTM techniques, instead of adjusting the operating frequency to
handle the CPU temperature, some employed a task migration strategy to lower the hottest core’s
temperature. Sharifi et al., in a series of studies [10,33,34] assigned workloads to heterogeneous
multi-core CPUs and controlled the core frequency according to the workload’s performance
requirement in their proactive DTM. Kim et al. [35] used task migration in order to keep temperatures
of different types of processors below the thermal threshold. Alsafrjalani et al. [36] reduced the
temperature of heterogeneous multiprocessors while meeting performance and energy constraints
without a priori knowledge of applications. The ideas of these studies are not appropriate for
NANS service scenarios because all cores are likely to be fully used and hence have similarly
high temperatures.

In contrast to the above-mentioned studies, our proposed DTM technique is specially designed for
NANS service scenarios by jointly optimizing the App-Core mapping and CPU core frequency control
such that the overall sum of QoSs of multiple applications is maximized without thermal violations.
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3. Thermal Issue vs. Battery Issue in NANS Services

When a smartphone provides NANS services, we encounter two issues, i.e., rapid temperature
increase and massive battery consumption. In order to investigate how critical these issues are in
NANS services, we conducted experiments with a commercial smartphone, Google Nexus 5 [37].
The open source [38] of this smartphone enables us to apply NANS technology. Using Miracast and
HDMI supported by this smartphone, two external display devices are connected to the smartphone.
In this setting, we run 1-App, 2-App, and 3-App scenarios in NANS services. In the 1-App scenario,
the smartphone runs only one application Trepn Profiler (a hardware usage monitor) [39] that is
displayed on the local LCD of the smartphone. Trepn Profiler shows the operating frequency and use
of all cores in real time. In the 2-App scenario, the smartphone runs two applications, Trepn Profiler
and MX Player (a movie player) [40] that are displayed on the local LCD and the external Miracast
display device. MX player plays back a short music video [41] repeatedly. In the 3-App scenario,
the smartphone runs three applications, Trepn Profiler, MX Player, and Google Gallery (a photo
slideshow application) [42] that are displayed on the local LCD, the external Miracast display device,
and the external HDMI display device. Google Gallery plays a slideshow of 8 photos [43].

Figure 2 shows how the residual battery level decreases for the 1-App, 2-App, and 3-App scenarios
of NANS services. As expected, the 2-App scenario uses more battery power than the 1-App scenario
and hence the battery is exhausted much earlier at 182 min (�380 min). Although the 3-App scenario
uses more battery power than the 2-App scenario, the 3-App scenario is terminated long before the
battery runs out. For the 3-App scenario, the expected battery life is 103 min as shown in the dashed
line in Figure 2. Nevertheless, the NANS service is terminated at 61 s as shown in the magnified view
box in the figure.

The reason for this service termination is CPU throttling, i.e., CPU frequency reduction to prevent
thermal violations. Figure 3a shows the cores’ temperature increase for the 3-App scenario. Whenever
the temperature reaches the predefined level, e.g., 80 ◦C as in Figure 3a, the CPU throttling considers
the temperature increase to be abnormal and simply lowers the CPU’s frequency starting from 33 s as
shown in Figure 3b. As a consequence, the execution of the three applications slow-down—the FPS
(Frames Per Second) drops as in Figure 3c, and eventually the ANR (Application Not Responding)
timer expires at 61 s and the service of Trepn Profiler is terminated.

Figure 2. Battery lifetime in NANS (N-App N-Screen) services.
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(a) Core temperatures

(b) Core frequencies

(c) Frames Per Second (FPS) of 3-App

Figure 3. Analysis of service termination on 3-App scenario of NANS (N-App N-Screen) services.

Moreover, the result does not change significantly even if the App-Display mapping changes.
In typical NANS services, three or more active applications, i.e., applications that continuously update
the screen, are executed at the same time. Mobile platforms such as Android render and transmit
the screens of all active applications at 30 FPS. So all CPU cores and display chipsets are under a full
load from the start of service regardless of the App-Display mapping. This suggests that the service
termination in the above 3-App scenario is not an exceptional case that occurs only for an App-Display
mapping. The experimental result of the different App-Display mappings for the above 3-App scenario
can be found in [44].

Our experiments show that the thermal issue in NANS services, which is expected to operate
in high temperature ranges, is a more serious problem than battery life. To handle this thermal
issue for NANS services, we need a new dynamic thermal management technique based on a new
thermal prediction that is reliable even at high temperature ranges. In the next section, we explain our
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novel thermal prediction method specially designed for NANS service scenarios. Then, in Section 5,
we explain our dynamic thermal management that provides sustainable NANS services under thermal
constraints and minimal QoS constraints.

4. Thermal Prediction Method for NANS Services

In this section, we describe the proposed thermal prediction method especially designed for
NANS services. For the proposed thermal prediction method to be effectively used for dynamic
thermal management for NANS services in Section 5, it should meet the following three properties:

Property 1. The thermal prediction should be accurate at even high temperature ranges close to the
thermal threshold,

Property 2. The thermal prediction should be possible by a simple online computation performed only
with online observable quantities, and

Property 3. The thermal prediction should be able to predict a potential thermal violation early enough
so that DTM has enough time to reduce the temperature before the thermal violation actually occurs.

In the following Section 4.1, we describe our offline procedure for constructing a novel thermal
model. Then, in the Section 4.2, we describe our online thermal prediction based on the offline
constructed thermal model.

4.1. Offline Thermal Model Construction

4.1.1. Extension of Existing Thermal Model

To identify the major heat sources in NANS services, we use a thermal camera to capture the
thermal image of the smartphone’s mainboard. Figure 4 shows thermal pictures of the mainboard
surface. Comparing Figure 4a,b, we see that the mobile AP’s surface temperature in Figure 4b is higher
than that in Figure 4a even if the CPU frequency is the same for the two cases. This can be explained
by the thermal propagation from the Miracast chipset, whose temperature is higher in Figure 4b than
that in Figure 4a. Similar observations can be made from Figure 4c,d, which are the HDMI off and on
cases. To observe the temperature increase of the multi-core CPU inside the mobile AP, we measured
the temperature of the CPU cores operating at the maximum frequency level with and without using
display interfaces, i.e., Miracast and HDMI. Figure 5 clearly shows that the CPU core’s temperature
increases more steeply when the display chipsets are in use than when they are not in use. This steep
increase in the CPU core’s temperature is due to the thermal interactions between the display chipsets
and the CPU cores. To meet Property 1, we have to consider the display chipsets as major heat sources
and consider their thermal interactions with the CPU cores.

For these major heat sources, i.e., CPU cores and display chipsets, our proposed thermal model
to predict their temperatures is based on the Compact Thermal Model (CTM) [18]. For each single
hardware component that is a major heat source, CTM models its temperature change behavior as a
1-node thermal RC (Resistor–Capacitor) circuit as in Figure 6a where T(t) and P(t) are temperature and
power-flow at time t, respectively and CT and RT are the thermal capacitance and thermal resistance,
respectively. Thermal capacitance and thermal resistance are constants, which are determined
by the hardware component’s material properties. From the well-known electro-thermal duality,
the temperature differential equation is given by the following equation:

dT(t)
dt
· CT = −T(t)

RT
+ P(t). (1)
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This equation says that the steady state temperature T(∞) after constantly applying power-flow
P(∞) is proportional to P(∞) and the thermal resistance RT. The speed of the temperature change, i.e.,
dT(t)

dt , is reversely proportional to the thermal capacitance CT.

(a) Miracast off (b) Miracast on

(c) HDMI off (d) HDMI on

Figure 4. Comparison of surface temperatures of mobile AP (Application Processor), Miracast chipset, and HDMI
(High Definition Multimedia Interface) chipset with and without Miracast and HDMI on smartphone.

Figure 5. Comparison of CPU core’s temperature changes with and without using display interfaces.

(a) 1-node thermal RC circuit (b) Example of 4-node thermal
RC network

Figure 6. Conventional thermal RC (Resistor–Capacitor) circuit model.
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This 1-node thermal RC circuit is extended to an n-node thermal RC network by several
studies [6,7,26] to model the thermal behaviors of multiple CPU cores, LCD, WiFi chipset, and other
hardware components in a smartphone device. Figure 6b shows an example of a 4-node thermal
RC network where four 1-node thermal RC circuits are completely interconnected by inter-node
thermal resistances, which models thermal interactions among hardware components through their
interconnecting materials. For such an n-node thermal RC network, the thermal differential equation
in Equation (1) is extended in a form of a temperature vector T(t) = [T1(t), T2(t), · · · , Tn(t)] and a
power-flow vector P(t) = [P1(t), P2(t), · · · , Pn(t)] as follows:

dT(t)
dt
· CT = −T(t) · (RT)−1 + P(t). (2)

In this equation, the temperature vector T(t) = [T1(t), T2(t), · · · , Tn(t)] and the power-flow
vector P(t) = [P1(t), P2(t), · · · , Pn(t)] represent the temperature Ti(t) and the power-flow Pi(t) of
every node-i, respectively. In addition, the inverse thermal resistance matrix.

(RT)−1 =



1
RT

1,1

1
RT

1,2
· · · 1

RT
1,n

1
RT

2,1

1
RT

2,2
· · · 1

RT
2,n

...
...

. . .
...

1
RT

n,1

1
RT

n,2
· · · 1

RT
n,n

 (3)

represents the reciprocal of the intra-node thermal resistance RT
i,i of every node-i and the reciprocal of

the inter-node thermal resistance RT
i,j between node-i and node-j. The thermal capacitance matrix.

CT =


CT

1,1 0 · · · 0
0 CT

2,2 · · · 0
...

...
. . .

...
0 0 · · · CT

n,n

 , (4)

on the other hand, is a diagonal matrix where the inter-node thermal capacitances are all zero.
Equation (2) can be used for thermal prediction only when all the thermal resistances and thermal

capacitances are known. The two matrices are not easy to find in practice since they depend on the
material properties of hardware components and their interconnections. In order to use Equation (2) for
thermal prediction in practice, Sharifi et al. [10] and Bhat et al. [11] discretize the equation as follows:

T(t + ∆t)− T(t)
∆t

· CT = −T(t) · (RT)−1 + P(t), (5)

To predict the temperature vector T(t + ∆t) at time t + ∆t from the temperature vector T(t) at
time t, this equation is further transformed to the following equation:

T(t + ∆t) = T(t) ·
(
I − ∆t(RT)−1(CT)−1

)
︸ ︷︷ ︸

A

+P(t) ·
(

∆t(CT)−1
)

︸ ︷︷ ︸
B

, (6)

where I is an all-ones vector. Then we get,

T(t + ∆t) = T(t)A + P(t)B, (7)

so that the problem becomes discovering the constant matrices A and B. [10,11] use an actual
measurement-based method to collect a large number of values for T(t), P(t), and T(t + ∆t). Plugging
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the collected data into Equation (7), we have a set of A and B related equations. With these equations,
by applying a linear regression analysis, we can then find the A and B that best fit the equations.

We use the same technique for the offline constructing of our thermal model for NANS services.
In this paper, we explain our thermal prediction method with a test smartphone, Google Nexus 5
(LG-D821) [37] equipped with a symmetric quad-core CPU. The Miracast chipset and HDMI chipset
on this smartphone provide connectivity to up to two external display devices. Please note that our
methodology can be applied to other commercial smartphones with different numbers of CPU cores
and display chipsets.

As discussed in Section 3, the major heat sources in NANS services are the CPU cores and display
chipsets. Thus, our temperature vector T(t) is as follows:

T(t) =
[

Tc1(t), · · · , Tc4(t), TMiracast(t), THDMI(t)
]

, (8)

where Tci (t) is the temperature of core ci at time t, TMiracast(t) and THDMI(t) are the temperatures of the
Miracast chipset and HDMI chipset at time t, respectively. Similarly, our power-consumption vector
P(t) is as follows:

P(t) =
[

Pc1(t), · · · , Pc4(t), PMiracast(t), PHDMI(t)
]

, (9)

where Pci (t) is the power consumption of core ci at time t, PMiracast(t) and PHDMI(t) are the power
consumption of the Miracast chipset and HDMI chipset at time t, respectively.

Now, the remaining step is to find A and B of Equation (7) by applying the linear regression
analysis with the measurement-based data collection of our T(t)s, P(t)s, and T(t + ∆t). In this step,
there are two key issues as follows:

• First, the smartphone usually has thermal sensors for each CPU core for measuring Tci (t), but does
not have thermal sensors for Miracast chipset and HDMI chipset. So, TMiracast(t) and THDMI(t)
cannot be measured.

• Second, while the CPU cores’ power-consumption Pci (t) can be indirectly measured from the
core frequencies by the well-studied CPU power model, there are no such power models for the
Miracast and HDMI chipsets. Thus, PMiracast(t) and PHDMI(t) cannot be measured.

To overcome the first issue, as shown in Figure 7, we attach tiny thermal sensors on top of the
Miracast chipset and HDMI chipset, and connect them to Raspberry Pi through an analog-digital
converter (ADC). To minimize the error caused by the ADC, we decouple the power supplied to
each temperature sensor as in [45]. To reduce the effects of noise, we also use the average value of
the temperatures collected for 1 s. Using such made data acquisition system, we now can measure
TMiracast(t) and THDMI(t).
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Figure 7. The experimental configuration for offline thermal model construction.

For the second issue, we use the following claim made by Mercati et al. [16]:

Claim 1. For a hardware component, its operating parameter, i.e., the operating frequency for a CPU core and
bit-rate for a display chipset, has a linear relationship with its power consumption without significant loss in
accuracy.

Based on this claim, Equation (7) with the power-consumption vector P(t) can be transformed
into the following equation with an operating parameter vector:

T(t + ∆t) = T(t)A + O(t)B̄. (10)

The operating parameter vector O(t) is represented as follows:

O(t) = [ fc1(t), · · · , fc4(t), bMiracast(t), bHDMI(t)], (11)

where fci (t) is the operating frequency of CPU core-i at time t and bMiracast(t) and bHDMI(t) are the
operating bit-rate at time t for the Miracast chipset and HDMI chipset, respectively. Please note that B
in Equation (7) is replaced with B̄, which is a new constant matrix for considering the linear-relationship
from the power-consumption vector to the operating-parameter vector.

With this transformation, we only need to find the A and B̄ that best fits Equation (10) for a set
of observed T(t)s, O(t)s, and T(t + ∆t)s. For this, we first find A while keeping O(t) ≈ 0 by the
following equation:

T(t + ∆t) = T(t)A. (12)

Although we cannot make O(t) exactly 0 for minimal system operation on core C1, we can
minimize the operating parameters’ effect by keeping O(t) = Omin = [ f min

c1
, 0, 0, 0, 0, 0]. Based on this

approximation, in order to collect a large data set for Equation (12), we first heat all the hardware
components to 114 °C by operating them at the maximum operating parameters. Then, we cool them
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down by keeping O(t) = Omin. In this cooling-down phase, we read the temperature sensors on the
CPU cores and display chipsets at every ∆t forming the following 300 equations:

T(t + ∆t) = T(t)A,

T(t + 2∆t) = T(t + ∆t)A,
... (13)

T(t + 300∆t) = T(t + 299∆t)A.

By applying the linear regression analysis as in [10,11] to the above equations, we eventually
find A.

After finding A, we find B̄ as follows. First, we keep A in all the following experiments. Second,
we operate the smartphone with an operating parameter vector Ok(t) and measure the temperature
changes, i.e., T(t) and T(t + ∆t) resulting in one equation:

T(t + ∆t) = T(t)A + Ok(t)B̄. (14)

We repeat this experiment 300 times by applying pseudo-randomly generated operating parameter
vectors such that the entire spectrum of all the operating parameter ranges are covered. As a result,
we build the following 300 equations:

T(t1 + ∆t) = T(t1)A + O1(t1)B̄,
T(t2 + ∆t) = T(t2)A + O2(t2)B̄,

...
T(t300 + ∆t) = T(t300)A + O300(t300)B̄,

(15)

where tk is the measurement time of the k-th experiment. By similarly applying the linear regression to
these 300 equations, we eventually find B̄ that best fits them.

Now that we have found the constant matrices A and B̄, Equation (10) now becomes the formula
for the online thermal prediction with online observable quantities, i.e., T(t) and O(t), meeting
Property 2.

4.1.2. Modeling of Thermal Jumps and Drops

To maintain the CPU core temperature under the thermal threshold, adjusting the CPU core
frequency is a common practice. Regarding such core frequency adjustment we observe an interesting
phenomenon, which we call thermal jumps and drops. Figure 8 plots the actually measured core
temperatures while changing the core frequency from f min = 0.3 GHz to f max = 2.3 GHz and
vice versa. When increasing the frequency from 0.3 GHz to 2.3 GHz, the core temperature suddenly
jumps up within 300 ms. On the other hand, when decreasing the frequency from 2.3 GHz to 0.3 GHz,
the core temperature suddenly drops.

These thermal jumps and drops have been overlooked in previous researches, since the prediction
error due to the thermal jumps and drops last only one time step, ∆t, until the core temperature sensor
is read again. Figure 9a shows an example plot of the core temperature including a thermal jump
and drop. Figure 9b shows the predicted core temperature with a time step size of ∆t = 1 s. In this
figure, the core frequency increases at time t = 0 and hence the core temperature jumps within a
very short time. A prediction made at time t = 0, ignoring such a thermal jump, underestimates
the core temperature until the next step when the temperature sensor is actually read at time t = 1.
After that, the predicted temperature is relatively accurate until time t = 4. At time t = 4 when the core
frequency decreases, the core temperature suddenly drops, but the prediction at time t = 4 ignores the
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thermal drop and therefore overestimates the temperature value until the next step, t = 5, where the
temperature sensor is read again.

Figure 8. Thermal jumps and drops while adjusting the core frequency between f min to f max.

Since the prediction error due to thermal jumps and drops lasts only one time step, ∆t, ignoring
it was not a big issue in previous studies. In NANS services, to provide the highest possible QoS for
multiple applications, it is normal to maintain the core temperatures in high ranges close to the thermal
threshold. Even a short-term prediction error can cause a thermal violation, which can damage the
chipset. DTM techniques in NANS services need a long-term thermal prediction as stated in Property 3.
If the core frequency changes multiple times in the long-term prediction window, the errors due to the
thermal jumps and drops accumulate each time the core frequency changes, resulting in a larger error.

(a) Thermal jump and
drop

(b) Thermal prediction
ignoring thermal jumps

and drops

(c) Thermal prediction
including thermal jumps

and drops

Figure 9. Modeling of thermal jumps and drops.

For these reasons, the thermal jumps and drops need to be carefully included in the offline thermal
model. Our proposed approach for this is to add a thermal offset when a core frequency changes as in
Figure 9c. In order to construct a formula for the amount of thermal offset, we conducted extensive
experiments. First, we set all core frequencies to f min = 0.3 GHz to minimizing the impact by thermal
interaction. Then, we measured the temperature change of a core, say core-i, by its change in frequency,
∆ fci . For 14 levels of core frequencies between f min = 0.3 GHz and f max = 2.3 GHz, we recorded
the temperature change amount ∆Tci of core-i for different frequency steps, ∆ fci . The experiments
were performed when the current core temperature was 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C. The same
experiments were performed 10 times and their averages are plotted in Figure 10a. From the figure,
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we can note that the amount of temperature change ∆Tci , i.e., the thermal offset, is linearly proportional
to the frequency step change, ∆ fci . Figure 10a also shows the linear regression results for the current
temperature of 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C. We model the thermal offset ∆Tci as a linear function of
the step changes in frequency, ∆ fci :

(a) Linear regression on the amount of
temperature jumps and drops by core

frequency variation at various core
temperatures

(b) Linear regression on the slope of the
regression lines in Figure 10a

Figure 10. Result of linear regression for formula construction of thermal offset.

∆Tci (Tci , ∆ fci ) = ρ(Tci ) · ∆ fci , (16)

where Tci is the current temperature of core-i.
Also, if we plot the slopes of the lines in Figure 10a obtained by the linear regression, the slopes

can be modeled as a linear function of the current core temperature as in Figure 10b. We model the
slope ρ(Tci ) as follows:

ρ(Tci ) = αTci + β, (17)

where α = 0.00006 and β = −0.0002 for our smartphone as in Figure 10b.
Combining Equations (16) and (17), we can finally construct a formula for the thermal offset

as follows:
∆Tci (Tci , ∆ fci ) = (αTci + β) · ∆ fci . (18)

To combine the above thermal offsets with the temperatures of individual cores in our thermal
prediction formula, i.e., Equation (10), we define ∆ fci (t) = fci (t) − fci (t − ∆t). Then, we define
the core-frequency change amount vector ∆F(t) = [∆ fc1(t), · · · , ∆ fc4(t), 0, 0]. Also, we define
core-temperature vector Tcore(t) = [Tc1(t), · · · , Tc4(t), 0, 0]. Using these definitions, Equation (10)
is extended as follows:

T(t + ∆t) = T(t)A + O(t)B̄ +
(
αTcore(t) + βI

)
◦ ∆F(t), (19)

where I is an all-ones vector, and ◦ is the Hadamard product (i.e., entrywise product) operator of two
vectors. This equation is used for our online thermal prediction including thermal jumps and drops by
the core frequency changes.
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4.2. Online Thermal Prediction

Based on our proposed thermal prediction formula as in Equation (19), we describe how online
thermal prediction works in NANS services. We explain this for the following cases: (1) the desirable
case where all hardware components are equipped with their own thermal sensors like our configuration
in Figure 7 and (2) the actual case where only CPU cores are equipped with thermal sensors like current
commercial smartphones.

For the first case, we can read the actual temperature of all hardware components. Thus, at time t
when we conduct an online thermal prediction, we know both T(t) and Tcore(t). Also, all operating
parameters of hardware components are readable. Thus, at time t, we know both O(t) and ∆F(t).
If we have a plan on how to adjust CPU core frequencies at every time step ∆t = 1 s from t to t + ω,
we also know O(t + 1), · · · , O(t + ω− 1) and ∆F(t + 1), · · · , ∆F(t + ω− 1). The matrices A and B̄ are
already found in the offline thermal model construction. Therefore, we can directly use Equation (19)
to predict the temperature vector after each time step ∆t = 1 s as follows:

T(t + 1) = T(t)A + O(t)B̄ +
(
αTcore(t) + βI

)
◦ ∆F(t),

T(t + 2) = T(t + 1)A + O(t + 1)B̄ +
(
αTcore(t + 1) + βI

)
◦ ∆F(t + 1),

...
T(t + ω) = T(t + ω− 1)A + O(t + ω− 1)B̄ +

(
αTcore(t + ω− 1) + βI

)
◦ ∆F(t + ω− 1).

(20)

Using this long-term online thermal prediction, our proposed DTM technique, which will be
presented in the following section, can plan ahead for core frequency changes with enough time to
decrease the temperature before the thermal violation actually happens.

For the second case, the case in which only the smartphone’s CPU cores are equipped with
thermal sensors, we cannot directly observe the temperatures of the display chipsets. In this case,
their temperatures can be approximately observed thanks to the following claim made by Ferroni et al. [14]:

Claim 2. For two hardware components, their temperature difference has a linear relationship with the physical
distance between them.

Based on this claim, we can approximate an estimate of the current temperature of a hardware
component j not equipped with a thermal sensor, like a display chipset, from the temperature of
another hardware component i that is equipped with a thermal sensor as follows:

Tj = Ti + dij · Kij, (21)

where dij is the physical distance between the two hardware components and Kij is a coefficient that
describes the thermal interaction between them. Although Equation (21) brings inevitable loss of
accuracy, it allows us to approximately predict the temperatures of display chipsets from the CPU
cores’ temperatures. In order to use Equation (21) for indirectly observing temperatures of a display
chipset, in the offline phase, we find the product term dij · Kij instead of separately finding dij and Kij
between a CPU and a display chipset. For this, our offline collected temperature data in Equation (15)
are used to calculate the average differences of average CPU cores’ temperature ∑C

j=1 Tcj(t)/C and the
display chipsets’ temperatures, i.e, Miracast chipset’s temperature TMiracast(t) and HDMI chipset’s
temperature THDMI(t) based on Ferroni et al.’s method [14]. Such calculated temperature differences
are 22.51 ◦C and 14.95 ◦C, respectively and these values are used as the product terms dij · Kij for
online indirect observation of the temperatures of the Miracast chipset and HDMI chipset from the
CPU temperature.

Using this online indirect observation of Miracast and HDMI chipsets, we can conduct the
long-term online thermal prediction described in Equation (20) even for the case where the display
chipsets do not have their own thermal sensors like currently available commercial smartphones.
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5. Proposed Thermal Planning Mechanism

Based on our long-term online thermal prediction, in this section, we describe the mechanism
of our proposed DTM technique for NANS services, which jointly tackles App-Core mapping and
CPU core frequency control to provide the best possible QoS under thermal constraints. Following
is a description to provide intuition into how our DTM technique differs from other existing
DTM techniques.

Existing mechanisms consider thermal violation as the abnormal case and use extreme measures
to prevent it. CPU throttling, the most commonly used DTM technique, throttles (i.e., reduces) the core
frequencies long before reaching the thermal threshold. Excessive CPU throttling is still acceptable if the
smartphone normally operates in a low temperature range and CPU throttling is very rarely activated.
In NANS services where the smartphone commonly operates at high temperatures, heavy use of CPU
throttling is not appropriate since it significantly limits the QoS of multiple concurrent applications.

In contrast, the greedy DTM [16] does not excessively throttle the core frequencies. Instead,
it throttles core frequencies only when the temperature reaches the thermal threshold. This can
be understood as a greedy usage of the thermal budget for providing as large as possible QoS of
applications. The greedy DTM has the following two problems:

• The greedy usage of the thermal budget at all times does not give the best QoS in the long-run.
Sahin et al. [4,17,30] reported that lowering the thermal usage in the beginning can provide better
QoS for a long-term interval.

• The greedy DTM does not consider frequency-sensitivity of different applications running
on different cores. Intuitively, it would be better to reduce the frequency of a core with less
frequency-sensitive applications. Regardless of applications running on those cores, greedy DTM
reduces the core frequencies in the same way.

Tackling these problems, our proposed DTM technique called, “thermal planning”, leverages the
following two ideas:

• Non-greedy long-term planning: Rather than the greedy usage of the thermal budget, we make
a frequency change plan of the CPU cores for a long-term ω-window such that the current
set of applications gives the largest overall QoS for the ω-window while preventing thermal
violation during that window. Figure 11 conceptually depicts how our long-term planning can
provide better overall QoS than the greedy DTM. The greedy DTM allows the largest frequencies
for the largest QoS in the beginning (see dashed lines from time 0 to 9), and it makes the
temperature quickly reach the thermal threshold and hence core frequency control is activated
early. Thus, the overall QoS is limited as depicted by the size of the dark-grey area in Figure 11.
On the other hand, our planning starts from lower frequencies and hence the QoS can be lower in
the beginning. Instead, the temperature increase is slower and hence core frequency control is
activated later. As a result, the overall QoS is larger as depicted by the size of the light-grey area
in Figure 11.

• Apps’ frequency-QoS sensitivity consideration: Our thermal planning carefully considers the
frequency-QoS characteristics of each application to near-optimally find the App-Core mapping
and core frequencies. Figure 12 conceptually depicts how such consideration can provide better
overall QoS than the greedy DTM. In the figure, the greedy DTM maps applications to CPU
cores in the order of their launch times without considering their QoS-sensitivities. On the other
hand, our thermal planning maps one frequency sensitive application a1 to core c1 and two
frequency insensitive applications a2 and a3 to core c2 and reduces c2’s frequency more to prevent
the thermal violation. This way, when the core frequencies are stabilized such that the core
temperature is maintained right below the thermal threshold in both cases of the greedy DTM
and our thermal planning, the overall sum of QoSs is larger in our thermal planning.
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Figure 11. Transient QoS gain of our thermal planning compared with the greedy DTM.

Since this QoS gain by the first idea can be achieved whenever the set of applications changes
and when the frequencies’ behavior is stabilized, we call it a transient QoS gain. By contrast, since the
QoS gain by the second idea can be achieved even after the stabilization as long as the same set of
applications persists, we call it a steady QoS gain.

Figure 12. Steady QoS gain of our thermal planning compared with the greedy DTM.

5.1. Overall Process of Thermal Planning

In this subsection, we overview our DTM technique that leverages the above two ideas to achieve
both transient and steady QoS gains. Our DTM technique online calculates an ω-window thermal plan
either (1) when the ω-window expires or (2) when the current set of applications changes. Figure 13
shows an example process. In the figure, the first ω-window thermal plan is calculated at t0. At time
t3, the current ω-window expires and hence the thermal plan is recalculated. At t4 before the current
ω-window expires, the set of applications changes due to the launch of a new application a3. In this
case, the current thermal plan is aborted and a new thermal plan is calculated.

An ω-window thermal plan established at t guides App-Core mapping and core frequency
changes for the duration from t to t + ω. For this, it is calculated using the sensed temperatures and
the set of applications at t. In this calculation, we first find an App-Core mapping that indicates which
applications are assigned to which CPU core. Based on this mapping, we then find a sequence of core
frequency changes for a prediction window ω using our thermal prediction method in Section 4 such
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that the overall QoS for the ω-window can be maximized without thermal violations. In Figure 13,
the first thermal planning from t0 to t3 guides the mapping of two applications, a1 and a2, to the CPU
cores and guides the plan of core frequency changes. The plan consists of three frequency phases, i.e.,
core frequencies for (t0, t1), core frequencies for (t1, t2), and core frequencies for (t2, t3). The dashed
line is the predicted temperature behavior for the plan, which is calculated by our thermal prediction
method. It shows that the first phase core frequencies are applied until t1 just before the predicted
temperature hits the thermal threshold. Then, the second phase core frequencies are applied and so
on for the duration of ω. Please note that the predicted temperature behavior has inevitable errors.
For this reason, we continuously read the temperature sensor and use the actual temperature as the
phase-transit condition rather than the phase-transit time. In the figure, the solid line shows the
actual temperature. At time t

′
1, we can observe earlier transit since the temperature increases faster

than the predicted time, t1. At time t
′
2, we can observe later transit since the temperature increases

slower than the predicted time, t2. By this actual temperature based phase-transit, we can follow the
pre-established thermal plan despite prediction error.

With this overall process in mind, the following subsections explain how to calculate the thermal
plan, focusing on a single instance of a thermal planning problem for a given initial temperature vector
of hardware components and a given set of applications.

Figure 13. Overall process of thermal planning.

5.2. Problem Formulation

A single instance of a ω-window thermal planning problem triggered at t0 takes, as inputs,
the current sensed temperature vector T(t0) and the set of applications {a1, a2, · · · , aA} running at t0.
Although we assume four CPU cores and two display chipsets, i.e., Miracast and HDMI in Section 3
for the sake of explanation, from now on, we will refer to C symmetric CPU cores and D display
chipsets. Each core is denoted by cj(1 ≤ j ≤ C) and each display chipset is denoted by dk(1 ≤ k ≤ D).
The displays, e.g., local LCD, Miracast display, and HDMI display, that applications are displayed on
are designated by the user.

Furthermore, we also assume that the QoS level of an application ai is given as a function of the
frequency fai that ai is executed with. The QoS function is denoted by uai ( fai ) and it is given as an
input by the offline QoS characterization as in [30]. The value of uai ( fai ) is normalized one relative to
the maximum achievable QoS with the highest frequency level.

For such given inputs, our problem is to find (1) the App-Core mapping, represented by xai ,cj

where xai ,cj = 1 if ai is executed on cj and xai ,cj = 0 otherwise, and (2) core cj’s frequency fcj(t) at each
time t from t0 to t0 + ω. Thus, our solution space is given as follows:

xai ,cj ∈ {0, 1}, ∀ai ∈ {a1, a2, · · · , aA}, ∀cj ∈ {c2, c3, · · · , cC}, (22)

fcj(t) ∈ { f 1, · · · , f N}, ∀cj ∈ {c2, c3, · · · , cC}, ∀t ∈ [t0, t0 + ω], (23)
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where { f 1, · · · , f N} are N possible operating frequency levels.
The objective of our problem is to maximize the following weighted sum of QoS of all the

applications for the duration from t0 to t0 + ω, i.e.,

t0+ω

∑
t=t0

A

∑
i=1

C

∑
j=2

wai · uai

(
fcj(t)
Mcj

)
· xai ,cj , (24)

where wai is the weight of the application ai given by the user’s preference and Mcj is the number of
applications which are mapped to core cj. If the number of applications is larger than the number of
cores, two or more applications have to be assigned to one core. Please note that the Linux kernel
uses a Completely Fair Scheduler (CFS) and hence the core frequency fcj(t) is equally shared by

Mcj applications mapped to core cj. Thus,
fcj (t)
Mcj

is the frequency that ai is effectively executed with.

Thus, ai’s QoS level is uai

( fcj (t)
Mcj

)
. According to a study by Sahin et al. [32], the QoS of an application can

be defined differently depending on the characteristics of the application. Based on this method, in this
paper, we categorize applications into three categories: execution-oriented applications, FPS-sensitive
applications, and response-sensitive applications. The QoS of an application is defined by execution
time, FPS, or response time, respectively, depending on which category it belongs to.

Please note that our system model considers both foreground and background applications
regardless of the number of applications. The background applications can be classified as
execution-oriented applications, and their QoS is defined as the execution time. Since background
applications do not use display interfaces such as Miracast or HDMI, they simply have no effect on
the operating parameters of display chipsets. In contrast, we do not consider kernel processes that
are difficult to define QoS explicitly from the user’s point of view. So, out of C cores, c1 is dedicated
to kernel processes and hence we consider the other cores, i.e., {c2, c3, · · · , cC} for the applications’
executions.

Now, the problem of finding the optimal solution from our solution space in Equations (22)
and (23) so as to maximize the objective function in Equation (24) can be formulated as follows:

maximize
t0+ω

∑
t=t0

A
∑

i=1

C
∑

j=2
wai · uai (

fcj (t)
Mcj

) · xai ,cj (25)

subject to ∀j, Tcj(t) < Tmax
cj

, t0 ≤ t ≤ t0 + ω (26)

∀k, Tdk
(t) < Tmax

dk
, t0 ≤ t ≤ t0 + ω (27)

∀i, ∑C
j=2 uai (

fcj (t)
Mcj

) · xai ,cj ≥ umin
ai

, t0 ≤ t ≤ t0 + ω (28)

∀i, ∑C
j=2 xai ,cj = 1, (29)

∀j, Mcj = ∑A
i=1 xai ,cj , (30)

∀j, fcj(t) ∈ { f 1, · · · , f N}, t0 ≤ t ≤ t0 + ω (31)

∀i, ∀j, xai ,cj ∈ {0, 1}. (32)

While searching the solution space for our optimization, we have to meet several constraints.
The first constraint in Equation (26) says that the temperature Tcj(t) of each core cj at every time
t ∈ [t0, t0 + ω] should not exceed the thermal threshold Tmax

cj
. Similarly, the second constraint in

Equation (27) says that the temperature Tdk
(t) of each display chipset dk at every time t ∈ [t0, t0 + ω]

should not exceed the thermal threshold Tmax
dk

. At the time when we solve the problem at time t0,
the temperatures Tcj(t)s and Tdk

(t)s for each time t > t0 can be predicted by using our thermal
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prediction method in Section 4. More specifically, by Equation (20), Tcj(t)s and Tdk
(t)s in the predicted

temperature vector T(t) can be found using the initial sensed temperature vector T(t0) and the planned
operating parameter vectors O(t0), O(t0 + 1), · · · , O(t− 1). The constraint in Equation (28) says that
each application’s QoS should be guaranteed as higher than the minimum user required QoS umin

ai
at

all times. The constraint in Equation (29) constrains that each application ai should be mapped to only
one core out of {c2, c3, · · · , cC}. Furthermore, the constraint in Equation (30) relates the number of
applications mapped to core cj, i.e., Mcj , with App-Core mapping variables xai ,cj .

5.3. Our Proposed Heuristic Optimization Algorithm

For the above optimization problem, the solution space is huge, i.e, Θ(NCω · CA), because the
number of possible frequency combinations for a ω duration is NCω and the number of possible
App-Core mappings is CA. In fact, the optimization problem can be considered as a variation of
the Multidimensional Multiple-choice Knapsack Problem (MMKP), which is a well-known NP-Hard
combinatorial optimization problem [46]. Thus, the exhaustive search algorithm is not suitable for our
online thermal planning.

Therefore, we propose an efficient heuristic algorithm, which has a remarkably reduced execution
time for online execution on the smartphone but still finds a solution close to the optimal one. For this,
we divide the inter-dependent problem of App-Core mapping and core-frequency control into two
disjoint problems. Then, we first find the App-Core mapping using QoS-sensitivity-based bin-packing
heuristic (Section 5.3.1). Then for a given App-Core mapping, we find the core frequencies changes
using a most-likely neighbor search heuristic (Section 5.3.2).

5.3.1. QoS-Sensitivity Based App-Core Mapping

To efficiently find the App-Core mapping that will be used for a ω-window, we consider each
application’s QoS sensitivity to the frequency with which the application is effectively executed. If an
application ai is sharing a CPU core cj with Mcj − 1 other applications, the effective frequency of ai is

1
Mcj

of cj’s frequency fcj , due to the Completely Fair Scheduler (CFS). Thus, an application whose QoS

is less sensitive to its effective frequency can share a CPU core with more other applications without
significant QoS drop.

With this intuition in mind, we define the QoS-sensitivity of an application considering the shape
of its normalized QoS function as in Figure 14. Whatever shape a normalized QoS function has, it can
be characterized by three parameters f best

ai
, umin

ai
, and f min

ai
. The first parameter f best

ai
is the minimum

frequency with which the application ai can provide the best QoS, i.e., 1.0 which can be provided by
the maximum frequency f N . The second parameter umin

ai
is the minimum QoS, which is defined as

QoS at the lowest core frequency that does not cause ANR (Application Not Responding) interruption
for ai. The final parameter f min

ai
is the frequency with which ai provides umin

ai
.
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Figure 14. Example of QoS function and its QoS-space.

If f best
ai

and f min
ai

are high and umin
ai

is low, that is, the size of the gray area called the QoS-space
is small, a small decrease of frequency can make a significant QoS drop. This means that such an
application’s QoS is sensitive to a frequency drop. On the other hand, if f best

ai
and f min

ai
are low and umin

ai

is high, that is, the size of QoS-space is large, the application’s QoS is less impacted by the frequency
drop. Thus, we define the QoS-sensitivity Sai as the inverse of the QoS-space size, which can be
approximately modeled by

Sai = 1/

(
( f max

ai
− f min

ai
)−

(
1− uai ( f min

ai
)
)
( f best

ai
− f min

ai
)

2

)
. (33)

With such a definition of QoS-sensitivity, we sort all applications in {a1, a2, · · · , aA} in the
descending order of QoS-sensitivity. Then, we apply the big-item-first bin-packing heuristic.
The rationale behind this is that big items are hard to pack later and hence we have to pack them
first. In our problem, applications who have large QoS-sensitivity are hard to map to CPU cores later
without significant QoS drop. Thus, we have to map them first.

For such sorted applications, we map them to CPU cores one by one. When we map az, if there
is an empty core say cj, we map it to that empty core and make xaz ,cj = 1. If there is no empty
core, we consider each CPU core cj as a potential target core and calculate the total QoS degradation
qosDegaz ,cj that mapping az to cj will give as follows:

qosDegaz ,cj =
( A

∑
i=1

(
uai (

f max
cj

Mcj

)− uai (
f max
cj

Mcj + 1
)
)
· xai ,cj

)
+
(

uaz( f max
cj

)− uaz(
f max
cj

Mcj + 1
)
)

. (34)

The first summation is the QoS degradation of the already mapped Mcj applications due to the
additional mapping of az to cj. The second term is the QoS degradation of az itself relative to its best
possible QoS due to its mapping to cj. Out of all the potential target cores, the core with the smallest
qosDegaz ,cj is selected as the actual mapping core of az.

By repeating this mapping procedure for all applications in {a1, a2, · · · , aA}, we finally get the
App-Core mapping that will be used for the ω-window.

5.3.2. Most-Likely Neighbor Search for Core Frequencies

For the App-Core mapping given by the above online algorithm, our next problem is to find a
plan for controlling core frequencies that will be used for the duration of the ω-window. This problem
also needs to be efficiently solved online on the smartphone.
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To get the intuition on how to make such an efficient online algorithm, we conducted an
offline exhaustive search with a high-performance desktop PC to find the optimal solutions for
our optimization problem with many different NANS service scenarios. Such an offline optimal plan
denoted by P consists of a sequence of frequency phases FP for ω-window, i.e.,

P = {FP1, FP2, · · · }. (35)

In the sequence, each frequency phase, say the `-th frequency phase FP`, designates with which
frequency each CPU core should operate, i.e., the operating frequency vector F` = [ fc1,`, fc2,`, · · · , fcC ,`]

and at which temperatures of cores and display chipsets we have to transit to the next frequency phase
FP`+1, i.e., the transit condition temperature vector T` = [Tc1,`, · · · , TcC ,`, Td1,`, · · · , TdD ,`], to avoid
thermal violation of any hardware component. That is,

FP` = {F`, T`}. (36)

Our major finding from those offline optimal plans is that the core frequencies do not sharply
increase or decrease in between two consecutive frequency phases, say FP` and FP`+1. This observation
says that by searching only one-level up and down frequencies from the previous frequency phase, it is
very likely to find a near-optimal plan. Restricting our search down to these most-likely frequencies
dramatically reduces the search space, which makes an online algorithm possible to find near
optimal plans.

Motivated by this observation, our proposed online algorithm starts with a good initial frequency
phase and searches only one-level up and down from that frequency to find the following frequency
phases until the end of the ω-window as depicted in Figure 15. More specifically, our online algorithm
determines the initial frequency phase FP1 as follows. With the initial core frequency fcj ,1 for each core
cj, we aim at providing the maximal QoS for all the applications mapped to cj. For this, each application
ai needs to be effectively executed with f best

ai
or a higher frequency. For this, the core cj’s frequency fcj ,1

should be higher than

Mcj × max
∀ai ,xai ,cj=1

{ f best
ai
}. (37)

If it is lower than or equal to the maximum frequency level f N , it is used as cj’s initial frequency.
Otherwise, f N is used. Thus,

fcj ,1 = min{ f N , Mcj × max
∀ai ,xai ,cj=1

{ f best
ai
}}. (38)

The collection of such computed initial frequencies for each core forms the first phase’s operating
frequency vector F1. Then, we use our thermal prediction method with the current temperature vector
T0 sensed at t0 and the core frequencies in F1 to predict the future temperature vector T(t0 + t) of
hardware components. From this prediction, we can find on which temperature condition T1, we have
to change to the next frequency phase before hitting the thermal threshold of any hardware component.
This initial frequency phase FP1 = {F1, T1} is depicted as the left-most circle and T1 arrow in Figure 15.

From FP1 = {F1, T1}, we make branches for the second frequency phase considering only three
options, i.e., the same, one-level up, and one-level down for each core frequency fcj ,1. Since the system
process core c1 is always executed with the maximum frequency level, applying three options for
the remaining C − 1 cores makes 3C−1 branches for the second frequency phase FP2 as shown in
Figure 15. For each branch of FP2, if it violates the minimum QoS requirement of any application,

that is,
fcj ,2

Mcj
< f min

ai
for any ai with xai ,cj = 1, the branch is pruned as marked by

⊗
in Figure 15. For each

unpruned branch, we apply the above temperature prediction assuming the current temperature vector
is T1. If the prediction says that it will violate the thermal threshold of any hardware component



Electronics 2018, 7, 311 23 of 33

before any chance of further frequency change, the branch is also pruned as marked by
⊗

in Figure 15.
Only for unpruned branches of FP2, we compute the temperature condition T2 that triggers the change
to the next frequency phase.

Figure 15. Finding a base plan in most-likely neighbor search.

We continue this until the end of the ω-window as in Figure 15. All the sequences of surviving
branches can be feasible plans for the ω-window. Figure 15 shows an example case where there
are three feasible plans branched from FP1 that survived until the end of the ω-window. For each
feasible plan, we compute the sum of QoS of all the applications along the timeline from t0 to t0 + ω by

considering the effective frequency of each application ai, i.e.,
fcj ,`

Mcj
at each frequency phase FP`. Out of

all the feasible plans, the one whose sum of QoS is largest is chosen as our base plan denoted by

Pbase = (FPbase
1 , FPbase

2 , · · · ). (39)

Our online algorithm further improves this base plan Pbase by repeating the rounds until no more
improvement is made. This multi-round improvement of the base plan Pbase is explained in Figure 16.
In the following explanation, the plan found in the n-th round is denoted by

Pn = (FPn
1 , FPn

2 , · · · ) (40)

where FPn
` = {Fn

` , Tn
` } is the `-th frequency phase of the plan.

The round-1 searches most-likely neighbors of the frequency phases of the base plan as in Figure 16.
More specifically, from the first frequency phase FPbase

1 , we make 3C−1 branches considering the same,
one-level up, and one-level down for each core frequency f base

cj ,1
in Fbase

1 . Considering each of these 3C−1

branches as the initial frequency phase, we make feasible plans until the end of the ω-window while
pruning infeasible branches in the same way we explained in Figure 15. The area surrounded by a
dotted circle in Figure 16 shows two feasible plans made in this way.

In addition, we also consider other branches by assuming FP1
1 = FPbase

1 and generating 3C−1

branches for FP1
2 from FPbase

2 . For each of such branches, we make feasible plans until the end of the
ω-window in the same way. The area surrounded by a dashed circle in Figure 16 shows one such plan.

Finally, by assuming FP1
1 = FPbase

1 and FP1
2 = FPbase

2 , we also generate 3C−1 branches for FP1
3

from FPbase
3 . For each branch, we make feasible plans until the end of the ω-window in the same way.

The area surrounded by a solid circle in Figure 16 shows one of such plan.
Out of all such generated feasible plans, the one whose overall QoS is the largest is chosen as the

round-1 plan P1. If its overall QoS is better than that of Pbase, we continue the round, i.e., round-2,
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round-3, and so on. If there is no improvement in round-(n+1), our online algorithm terminates
producing the last plan, i.e, Pn, as the best one.

Figure 16. Repeating multi rounds of most-likely neighbor search.

6. Experimental Results

6.1. Experimental Environment

The proposed DTM technique with our thermal prediction method was implemented on a
commercial smartphone, the Google Nexus 5 [37] and extensive experiments are conducted as in
Figure 17. This smartphone is equipped with the Qualcomm Snapdragon 800 chipset which has a
quad-core Krait 400 CPU operating at 14 frequency levels ranging from 300 MHz up to 2.26 GHz.
It also has a Broadcom BCM4339 Miracast chipset and an ANX7808 HDMI chipset that provide the
wireless connection to a Miracast display and the wired connection to an HDMI display. We can also
use up to two virtual displays featured by the Android mobile platform 7.1.2 (Nougat) running on the
smartphone. Thus, we can use up to five displays, i.e., internal LCD, external Miracast and HDMI
displays, and two virtual displays.

On top of this smartphone, we modified the Android mobile platform to realize our NANS
technology. For the details of our modifications, interested readers are referred to our open source
NANS project [3]. With the modified Android mobile platform, we can both access and control the
CPU cores’ frequencies for implementing DTM mechanisms. Also, for removing the impact from
built-in power optimization techniques, we deactivate the mpdecision daemon that manages the number
of active cores.

To support reproducibility of the experiments, all the experiments were conducted while the
smartphone was in a thermal incubator C-IB2 [47] as shown in Figure 17. The thermal incubator can
maintain an internal temperature between −5 °C and 60 °C, allowing us to test DTM techniques with
a controlled ambient temperature. In our experiments, we set the ambient temperature to 20 °C which
is generally known as room temperature.
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Figure 17. Experimental setup.

6.2. Experiments on Thermal Prediction Methods

This subsection empirically justifies the accuracy of the proposed thermal prediction method.
For the thermal prediction to be used to prevent the thermal violation, its accuracy in high temperature
ranges is more important than in low temperature ranges. In order to emphasize the accuracy in
high temperature ranges, we use an error metric called Weighted Mean Absolute Error (WMAE) [48]
defined as follows:

WMAE =
1
N

N

∑
n=1
|Tmeasured

n − Tpredicted
n | · Tmeasured

n
Tmax , (41)

where Tmeasured
n and Tpredicted

n are the n-th measured and predicted temperatures, respectively, and N is the
number of temperature samples. WMAE calculates the average of the absolute gaps between measured

and predicted temperatures by giving larger weights Tmeasured
n
Tmax to the temperature samples closer to the

thermal threshold Tmax. Through our experiments, the thermal threshold Tmax for multi-core CPU is held
as 115 °C since the CPU driver of our test smartphone shuts down the CPU at 115 °C.

With this error metric WMAE, we compare our proposed thermal prediction method with two
existing methods, i.e., Bhat’s method [11] and Paterna’s method [15].

• Bhat’s method is based on the accurate Compact Thermal Model (CTM) [18]. Thus, it provides
quite accurate thermal prediction when only the CPU cores are heat sources. In contrast,
when display chipsets become major heat sources as the case with NANS services, their thermal
impacts cannot be considered due to the lack of their CTM thermal parameters like thermal
resistances and thermal capacitances.

• Paterna’s method is based on a rather simple self-designed thermal model that uses online
observable operating parameters such as core frequencies and the usage of display chipsets
instead of thermal resistances and thermal capacitances. Thus, it is more practical to use for
thermal prediction with NANS services which considers both CPU cores and display chipsets as
heat sources. In contrast, due to the model inaccuracy, its thermal prediction accuracy is limited.

Figure 18 shows the comparison results of the thermal prediction error in terms of WMAE.
Figure 18a is for the 1-App scenario where only one application, i.e., Trepn Profiler (a hardware usage
monitor), runs on the smartphone for 10 min while keeping CPU core frequencies at the maximum
level to avoid the effects of thermal jumps and drops. During a 10 min experimental interval, every
1 s, we predict the temperatures for 1 s, 3 s, and 5 s look-ahead times as well as measure the actual
temperatures at those times. Their absolute gaps between predicted and measured temperatures are
averaged with weights as shown in Equation (41). In this 1-App scenario, only CPU cores are the major
heat sources, not display chipsets. Thus, Bhat’s method shows the best accuracy for all of the 1 s, 3 s,
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and 5 s look-ahead predictions. It is because Bhat’s method accurately models the CPU cores’ thermal
behaviors with CTM. On the other hand, Paterna’s method shows much larger prediction errors and
the errors increase more sharply as the look-ahead interval is increased from 1 s to 5 s. This is because
of the inaccuracy of the simplified thermal model of Paterna’s method. Our proposed method is also
based on the accurate CTM model and hence its accuracy is comparable with Bhat’s method. A little
bit larger prediction errors are experienced for our method because our method uses only observable
operating parameters, not hard-to-get CTM parameters. This is necessary when considering NANS
services where display chipsets become major heat sources.

Figure 18b is for the 3-App scenario where three applications, i.e., Trepn Profiler, MX Player
(a movie player), and Chrome (a web browser) run on the smartphone while displaying on the local
LCD, a Miracast display and an HDMI display, respectively. Again, we keep the CPU core frequencies at
the maximum level to avoid the effects of thermal jumps and drops. When the core temperature reaches
114 °C, we reset the smartphone and experiment again. In this way, we collect 10 min of data including
predicted temperatures and actual temperatures. In this 3-App scenario, the accuracy of Bhat’s method
becomes poor since it cannot consider the thermal effects of display chipsets. Paterna’s method
can consider the display chipsets and hence its accuracy becomes comparable with Bhat’s method.
Nevertheless, its accuracy is still not acceptable due to its inherent model inaccuracy. Our proposed
method shows much better prediction accuracy than Bhat’s method and Paterna’s method. This is
because our method is based on the accurate CTM model and can also consider display chipsets by
only considering observable operating parameters.

The accuracy gains of our method become more significant when there are thermal jumps and
drops as shown in Figure 18c. For this graph, we use an ondemand DVFS (Dynamic Voltage and
Frequency Scaling) governor that automatically changes core frequencies depending on the CPU load
and hence accordingly causes thermal jumps and drops. In this case, the prediction errors of Bhat’s
method and Paterna’s method become significantly poor due to the failure of these models to account
for thermal jumps and drops. On the other hand, our method shows much less prediction errors since
it predicts the temperatures considering thermal jumps and drops.

(a) WMAE in 1-App
scenario (without thermal

jumps and drops)

(b) WMAE in 3-App
scenario (without thermal

jumps and drops)

(c) WMAE in 3-App
scenario (with thermal

jumps and drops)

Figure 18. Accuracy comparison of three thermal prediction methods.

To see how well each prediction method detects thermal violations, we conduct another
experiment. In the experiment, we run the above 3-App scenario until the thermal violation actually
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happens. Once the thermal violation happens, we immediately stop the service and cool down the
smartphone. During this running period, at every 1 s, each prediction method predicts a 1 s look-ahead
temperature and says whether thermal violation will happen (i.e., positive) or not (i.e., negative).
We repeat this experiment 30 times and hence the thermal violation actually happens 30 times. Table 1
shows the result. Although Bhat’s method and Paterna’s method successfully predict the thermal
violation (i.e., true positive) 23 times and 9 times, they fail to predict the thermal violation (i.e., false
negative) 7 times and 21 times. It means they often underestimate the temperature in the high
temperature range close to the thermal threshold. On the other hand, our method successfully
predicts the thermal violation 29 times and fails only one time. This implies that the temperature
underestimation by our method is much less serious in the high temperature range. For all of the
three prediction methods, there are no false positive. This means that the prediction methods do not
overestimate the temperature in the high temperature range close to the thermal threshold.

Table 1. Comparison of detection results for 30 thermal violations.

Type Bhat’s Method Paterna’s Method Our Method

True positive 23/30 (76.7%) 9/30 (30.0%) 29/30 (96.7%)
False positive 0/1509 (0.0%) 0/1509 (0.0%) 0/1509 (0.0%)
True negative 1509/1509 (100.0%) 1509/1509 (100.0%) 1509/1509 (100.0%)
False negative 7/30 (23.3%) 21/30 (70.0%) 1/30 (3.3%)

6.3. Experiments on Dynamic Thermal Management Techniques

In this subsection, we empirically show the effectiveness of our proposed DTM technique,
called thermal planning, for NANS services. For this, we classify real-world mobile applications
into three categories, (1) execution-oriented applications like a matrix multiplier; (2) FPS-sensitive
applications like a movie player; and (3) response-sensitive applications like a web browser. For each
category, we use three representative applications and as a result we use a total of 9 applications in our
experiments. The 9 applications are listed in Table 2.

Table 2. Categorization of the 9 applications used in our experiments.

Category (QoS Metric) Application Description on QoS Metric

Execution-oriented (Execution time)

FFT The time it takes to perform the FFT on randomly generated data 10,000 times

Matrix Multiplier The time it takes to perform matrix multiplication on
randomly generated matrices 10,000 times

SHA256 The time it takes to encrypt a randomly generated plain text with SHA256 10,000 times

FPS-sensitive (FPS)
MXPlayer FPS when the application plays a video file using hardware renderer
SlideShow FPS when the application plays a slide show of randomly selected photos
VLC Player FPS when the application plays a video file using software renderer

Response-sensitive (Response time)
SubwaySurf The time it takes to load the application

Chrome The page load time for http://m.naver.com
Facebook The time it takes to load the application

To characterize the QoS function for each application, we use different QoS metrics for each
category, i.e., the execution time for execution-oriented applications, the average FPS for FPS-sensitive
applications, and the response time from the user input time for response-sensitive applications.
For each application, we measure its QoS metric while changing the CPU core frequency from the
lowest to the highest setting. The measured QoS is normalized to the best possible QoS achievable
at the highest core frequency. According to the quantifying method in [49], we find the lowest
core frequency that does not cause ANR (Application Not Responding) interruption by the system
and mark it as the minimum frequency. All the details of such normalized QoS functions for the
9 applications can be found in [50]. We also assume weights of 3.0 for an FPS-sensitive application,
2.0 for a response-sensitive application, and 1.0 for an execution-oriented application.

http://m.naver.com
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With the above 9 applications, we compare four DTM techniques, i.e., two existing DTM
techniques, i.e., CPU throttling [24] and greedy DTM [16] and two new techniques, i.e, our proposed
thermal planning and the exhaustive-search-based planning.

• CPU throttling is the default mechanism most commonly used in current commercial smartphones.
It throttles (i.e., reduces) the CPU core frequencies step-by-step whenever the actual CPU core
temperature reaches the conservatively defined level without considering the QoS of the running
applications.

• Greedy DTM most aggressively runs applications with the highest possible CPU core frequency
aiming at providing the best possible QoS. It reduces the CPU core frequency only when the 1 s
short-term predicted temperature is about to exceed the thermal threshold. For the 1 s thermal
prediction, we use our proposed thermal prediction method in order to avoid the effect by
differences in the thermal prediction method.

• Our proposed thermal planning uses QoS-sensitivity based App-Core mapping and most-likely
neighbor search-based core frequency planning. It uses a 60 s ω-window for thermal planning.

• Exhaustive-search-based planning is an unrealistic mechanism that shows the optimally
achievable QoS if we have sufficient time to find the real optimal solution for our optimization
problem in Section 5.2. For all combinations of applications we use in our experiments, we find
offline the optimal solution by the exhaustive search on a high performance PC. In the actual
online experiments, we simply apply such solutions found offline for the experimental NANS
service scenarios.

To reflect realistic use cases of our NANS services, we generate a test execution sequence using the
above 9 applications. For the three categories, we set the running time of applications to 1 min, 5 min,
and 10 min, respectively. Alsafrjalani et al. [51] modeled the arrival time for each application using the
normal distribution. According to this model, we select the applications to be newly launched every
minute. The number of concurrent applications is limited to 3 to 5. The generated 30 min scenario as
shown in Figure 19 covers various NANS service scenarios from 3-App scenarios to 5-App scenarios
of various combinations of different category applications.

Figure 20 compares the overall QoS sum of running applications for the 30 min experiment
duration. The overall QoS sum, i.e., y-axis in the figure, is a normalized value relative to the ideal
QoS sum, which ideally assumes the best QoS for all the running applications for all the times with no
awareness of the CPU cores’ performance limitations and thermal limitations. CPU throttling shows
very poor overall QoS sum, i.e., 0.31 of the ideal QoS sum, since it starts to seriously limit the CPU core
frequencies far before the thermal threshold is approached. For the 3-App and more-App scenarios,
CPU throttling often causes a 5 s ANR timeout for an application and the devices ceases to continue
NANS services. Greedy DTM can provide better QoS, i.e., 0.53 of the ideal since it allows executing
applications with high CPU core frequencies up to the thermal threshold. Our proposed thermal
planning shows even better QoS, i.e., 0.65 of the ideal, which is pretty close to the QoS, i.e., 0.67 of
the ideal, by the offline exhaustive-search-based optimal planning. This result says that our proposed
DTM can continue sustainable NANS services for 3-App and more-App scenarios without thermal
violation while providing around 65% of the ideal QoS.
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Figure 19. Execution sequence of 9 test applications.

Figure 20. QoS comparison in a realistic NANS service scenario.

The QoS improvement of our proposed thermal planning compared with greedy DTM is two-fold;
(1) non-greedy usage of the thermal budget results in a transient QoS gain and (2) the application’s
QoS-sensitivity consideration makes steady a QoS gain.

To further investigate the contributions by the transient QoS gain and the steady QoS gain, in
Figure 21, we conduct an experiment with all possible combinations of 3-App, 4-App, and 5-App
scenarios. Since we have a total of 9 applications, we can make 84 3-App scenarios, 126 4-App scenarios,
and 126 5-App scenarios. For each scenario, we run the experiment for 30 min. Throughout the 30 min
experiment duration, we observe the overall QoS sum only until the temperature behavior is stabilized
and count it as the transient QoS. Also, we observe the overall QoS sum after the transient duration to
the end of 30 min and count it as the steady QoS.

Figure 21a shows the averages of the overall QoS sum of transient duration for 3-App, 4-App,
and 5-App scenarios. For all scenarios, the average of the overall QoS sum, i.e., y-axis in the figure,
is normalized to the average of the ideal QoS sum, which ideally assumes the best QoS for all the
running applications for all the times without being aware of the CPU cores’ performance limitation
and thermal limitation. For the 3-App scenarios, the transient QoS gain of our proposed thermal
planning over greedy DTM is 14% (0.74 vs. 0.65) on average. This transient QoS gain becomes more
significant for 4-App and 5-App scenarios and as a result the transient QoS gain for 5-App scenarios
is 19% (0.61 vs. 0.51) on average. This implies that careful use of the thermal budget becomes more
important for executing more applications at the same time.

Figure 21b shows the average of overall QoS sum of steady duration for 3-App, 4-App, and 5-App
scenarios. For all of 3-App, 4-App, and 5-App scenarios, the steady QoS gains of our proposed thermal
planning over greedy DTM are significant, i.e., 20% and more.

This experiment justifies that both of our two ideas, i.e., non-greedy usage of thermal budget and
applications’ QoS-sensitivity consideration, play non-trivial roles for improving the QoS with the same
given thermal budget.

Another interesting observation is that the QoS of our proposed thermal planning is very close
to that of the offline exhaustive-search-based optimal planning. This means that our heuristics to
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reduce the search space does result in a large loss with regards to optimality. On the other hand,
the search space reduction and hence the speed-up of finding a solution is dramatic. Table 3 shows
the times taken for finding solutions. The exhaustive-search-based algorithm is executed on a high
performance PC with Intel Core i7-8700 processor (6 × 3.2 GHz) and the time taken ranges from 46 min
to 390 min. From this, it is clear that the exhaustive-search-based algorithm cannot be used online
on the smartphone for dynamic thermal management. On the other hand, our proposed heuristic
algorithm is executed on the smartphone and the time taken ranges from 57 ms to 417 ms. This time is
short enough for its use online with thermal planning at a 60 s ω-window boundary or at changes of
running applications.

(a) Transient QoS (b) Steady QoS

Figure 21. Transient and steady QoS in 3-App, 4-App, and 5-App scenarios.

Table 3. Comparison of average execution time of exhaustive-search-based algorithm and our algorithm.

Scenario Type Exhaustive-Search Based Algorithm on PC Our Algorithm on Smartphone

3-App scenario 2,818,969 ms (46 min) 57 ms
4-App scenario 8,895,283 ms (148 min) 120 ms
5-App scenario 23,399,420 ms (390 min) 417 ms

7. Conclusions

To provide sustainable NANS (N-App N-Screen) services with a smartphone, this paper addresses
the critical thermal issues. First, it proposes a novel thermal prediction method specially designed
for NANS services. For this, we modify the existing thermal model so as to consider display chipsets
as major heat sources and their thermal interactions with CPU cores. We also include the thermal
jumps and drops in the thermal model, which is necessary when changing CPU core frequencies for
dynamic thermal management. Our experiments show that our method significantly improves the
prediction accuracy in high temperature ranges, which is important since it is normal that smartphones
are operating in high temperature ranges when providing NANS services.

Second, it proposes a novel DTM technique called thermal planning. Using this method, we jointly
tackle App-Core mapping and CPU core frequency control leveraging the ideas of QoS-sensitivity
based App-Core mapping and non-greedy planning of CPU core frequencies. Our experiments show
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that our proposed DTM technique can achieve significant improvements in overall QoS for various
NANS scenarios compared to existing DTM techniques.

In the future, we plan to perform studies to clarify the relationship between rapid changes in
power consumption, i.e., power jumps [20,21], and thermal jumps and drops. Also, our proposed
DTM-based NANS services will be applied to multi-screen in-vehicle environments.
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