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Abstract

:

This paper studies the problem of distributed containment control for multi-agent systems with high-order dynamics and input delays. Two event-triggered control algorithms are proposed for multi-agent systems without and with input delay, respectively. The communication instants between two linked followers are determined by the event-triggering condition, and every follower can detect the event based on its own control input. For the followers, edge-based estimators are adopted to predict state differences to neighbors. Control inputs of the followers are calculated based on the predicted values of the state differences. To deal with the input delay, a delay comprehension approach is developed. It is proved that for arbitrarily large but bounded input delays, the followers can move into the convex hull spanned by the leaders asymptotically. Simulation results show the effectiveness of the proposed algorithms.






Keywords:


containment control; input delay; event-triggered control












1. Introduction


Distributed cooperative control of multi-agent systems has been studied extensively in the past decade. Compared with its centralized counterpart, distributed control has many advantages such as low cost, easy maintenance, and high adaptivity. As a fundamental problem in distributed cooperative control, the consensus problem has attracted much attention. For a group of agents, consensus means reaching an agreement on a quantity of interest. The consensus problem can be classified into leaderless consensus and leader-following consensus, according to the absence or presence of a leader. Recently, much progress has been made on both leaderless and leader-following consensus problems (see [1,2,3,4,5] and references therein).



Although the leader-following consensus problem for multi-agent systems with single leader is interesting, it is sometimes more meaningful to study the leader-following problem for multi-agent systems with multiple leaders. This problem is called the containment problem, the objective of which is to steer all the followers into the convex hull spanned by the leaders. In recent years, researchers have paid much attention to the containment control problem owing to its wide applications in swarm robotics [6,7,8,9,10,11,12,13,14,15,16]. In [17], the containment control problem is investigated in both continuous-time and discrete-time domain. A PIn-Type containment control algorithm is proposed, which allows the followers to be of any-order integral dynamics.



In the aforementioned results, it is assumed that the agents can access their neighbors’ states continuously or with a fixed frequency. This is unnecessary or unrealistic in many applications. On one hand, it is a waste of communication resource to access the neighbors’ states frequently when the system states nearly approach their equilibriums or there are no disturbances imposed on the system [18,19,20]. On the other hand, too much communication may lead to rising power costs and network congestion, which may degrade the performance of the system [21,22,23]. The event-triggered control is a good strategy to solve this problem [24,25,26]. Compared with the traditional sampled-data-based control, where the measurement or control is triggered by time, the main feature of the event-triggered control is that the measurement or control action is triggered by an event condition. The event-triggered control strategy was applied in both leaderless and leader-following consensus problems for multi-agent systems in [27,28,29]. For more details, one can refer to [30] and references therein. More recently, the authors in [31,32,33] have proposed some event-triggered containment control algorithms for multi-agent systems with multiple leaders.



Time-delay exists in most practical systems. So, it is very meaningful to investigate the stability of time-delay systems [34,35,36,37,38,39,40]. For multi-agent systems, the effect of time-delay is also an important problem to be considered. There are two sources of time-delay in multi-agent systems. One source is the communication among agents, which is called communication delays. The other source is the processing time for the information arrived at each agent, which is called input delays. The consensus problem for multi-agent system with communication/input delays has been extensively investigated in the literature (see [41] and references therein). For second-order multi-agent systems with time-varying delays, the containment control problem is considered in [42]. Recently, Miao et al. addressed the containment problem for second-order multi-agent systems with constant input delays [43]. An event-triggered containment control algorithm was proposed, together with conditions under which the followers will converge to the convex hull spanned by the leaders.



In this paper, we consider the event-triggered containment control problem for multi-agent systems with high-order dynamics and input delay. Motivated by [29], model-based approach is developed to avoid continuous communications among followers, and edge-based estimators are designed to predict state differences to neighbors. New event-triggered containment control algorithms are proposed for multi-agent systems without and with input delay, respectively. Sufficient conditions are derived under which the followers will move into the convex hull formed by the leaders. Compared with existing literatures on the containment control problem for multi-agent systems, our contribution is summarized as follows.

	
A delay compensation-based event-triggered containment controller is developed. It is proved that for arbitrarily large but bounded constant input delays, the proposed controller can drive all the followers into the convex hull formed by the leaders. In contrast, the controller in [43] can deal with input delays below an upper bound only.



	
The proposed algorithms are distributed, while the algorithms in [31,32,33,43] are centralized. Using the algorithms proposed in this paper, every follower can decide whether the event should be triggered based on its own control input. However, using algorithms in [31,32,33,43], all agents need their neighbors’ states to trigger the next communication.



	
Compared with the containment control algorithms with continuous [6,7,8,9,10,11,12,13,14,15,16] or periodic communications [17], the proposed event-triggered containment control algorithms has the potential to reduce the communication burden of multi-agent systems.








Notations: Throughout this paper, Rl denotes the l dimensional Euclidean space, 0p×q denotes a p×q matrix with all the elements to be zero. Given a vector μ, ∥μ∥ denotes the Euclidean norm of μ. Given a matrix A, A>0 means that A is a positive definite matrix, ∥A∥ is the induced norm of A. The superscript T denotes the transpose of a vector or matrix. We use diag(μ1,⋯,μp) to denotes the diagonal matrix of all μ1, ⋯, μp.




2. Problem Formulation


2.1. Algebraic Graph Theory


Consider a group of agents consisted of M leaders and N followers. The leaders do not need to access information from the followers, while the followers are guided by the leaders. We assume that only a part of the followers can access information from some leaders. These followers are called informed followers. The rest of the followers cannot receive information from the leaders directly.



We use graph G=(V,E) to denote the communication topology among the leaders and the followers, where V={1,⋯,M+N} is the node set and E⊆V×V is the edge set. A directed edge (j,i)∈E denotes that node i can receive information from node j but not necessarily vice versa. An undirected edge (j,i)∈E denotes that node i and node j can access information from each other. A graph is undirected if all the edges in the graph are undirected. The neighbor set Ni={j∣(j,i)∈E} denotes the set of nodes from which node i can access information. A directed path is a sequence of directed edges of the form (i1,i2), (i2,i3),..., where ij∈V.



The adjacency matrix Ad=[aij]∈R(M+N)×(M+N) is defined as aij>0 if (j,i)∈E and aij=0 otherwise. The Laplacian matrix L=[lij]∈R(M+N)×(M+N) is defined as lii=∑j=1,j≠iM+Naij and lij=−aij, i≠j. We use L={1,2,⋯,M} and F={M+1,M+2,⋯,M+N} to denote node set of the leaders and the followers, respectively. Notice that aij=0 for all i=1,⋯,M and j=1,⋯,M+N, because the leaders have no neighbors. Therefore, the Laplacian matrix L can be rewritten as


L=0M×M0M×NL1L2.



(1)







In this paper, for the sake of convenience, we assume that aij=1, if (j,i)∈E.




2.2. System Models and Control Objectives


Consider a network of M leaders and N followers with the following linear dynamics:


x˙i(t)=Axi(t),i∈L,



(2)






x˙i(t)=Axi(t)+Bui(t),i∈F,



(3)




where xi(t)∈Rn and ui(t)∈Rm are the state and the control input of agent i, respectively; A and B are constant matrices with appropriate dimensions.



When there exists a constant input delay τ, (3) becomes


x˙i(t)=Axi(t)+Bui(t−τ),i∈F.



(4)







Definition 1.

Let C=Rp. The set C is said to be convex if for any x and y in C, the point (1−α)x+αy is in C for any α∈[0,1]. The convex hull Co(X) of a set of points X={x1,⋯,xq} is the minimal convex set containing all points in X.





Definition 2.

We say algorithm ui(t) asymptotically solves the containment problem if, under algorithm ui(t), the followers move into the convex hull formed by the leaders asymptotically.





The following assumptions and lemmas are used later.



Assumption 1.

The communication graph among the followers is undirected. For each follower, there exists at least one leader that has a path to it.





Lemma 1

([13]).Under assumption 1, the matrix L2 defined in (1) is symmetric positive definite.





From Lemma 1 we have all the eigenvalues of L2 are positive. Assume that the eigenvalues of L2 are λ1≤λ2⋯≤λN.



Lemma 2.

Each entry of −L2−1L1 is nonnegative and each row sum of −L2−1L1 is equal to one.





Lemma 3.

Assume that the matrix pair (A,B) is controllable, and all the poles of A are on the imaginary axis. For any constant scalar γ>0, the parametric Riccati equation


ATP+PA−PBBTP=−γP



(5)




has a unique positive definite matrix P(γ)=W−1(γ), where W(γ) is the unique positive definite solution to the following Lyapunov equation W(A+γ2In)T+(A+γ2In)W=BBT. Moreover, limγ→0+P(γ)=0, ddγP(γ)>0, ∀γ>0, tr(BTP(γ)B)=nγ, P(γ)BBTP(γ)≤nγP(γ), eAtP(γ)eAt≤e(n−1)γtP(γ). Moreover, if all the eigenvalues of A are zero, then ATP(γ)A≤3(nγ)2P(γ).






2.3. Event-Triggered Communication Mechanisms


As will be explained later, since control inputs of the leaders are zero, the informed followers can estimate states of the leaders based on their initial states. Therefore, the event-triggered mechanism is not needed for the communication between the leaders and the informed followers.



Assume that followers i and j are two linked agents, and they exchange information at event instants {tij0,tij1…,tijk…}. To exchange information based on the event-triggering communication mechanism, event trigging functions fij(t) and fji(t) should be designed for each edge (j,i). The event instants between followers i and j are determined according to


tijk+1=tjik+1=inf{t∣t>tijk,fij(t)≤0orfji(t)≤0},j∈Ni



(6)




where tij0=tji0=0. Once fij(t) reaches zero, an event is triggered. Follower i will send xi(t) to follower j, and then receive xj(t) from follower j. Conversely, if fji(t) reach zero first, follower j will send xj(t) to follower i, and then receive xi(t) from follower i.



The objective of this paper is to design the event-triggering functions and the control algorithms for system (2) and (3) without input delay, and the input delay system (2) and (4), respectively, such that all the followers can move to the convex hull formed by the leaders.





3. Event-Triggered Containment Control without Input Delay


In this section, we consider the containment control problem without input delay. Define xF(t)=xM+1T(t),⋯,xM+NT(t)T, and xL(t)=x1T(t),⋯,xMT(t)T. Note from Lemma 2 that if


xF(t)=−(L2−1L1⊗In)xL(t),



(7)




then all the followers are in the convex hull formed by the leaders. For follower i, define


φi(t)=∑j∈L∪Faij[xi(t)−xj(t)].



(8)







If φi(t)=0 for i=M+1,…,M+N, one has


(L2⊗In)xF(t)+(L1⊗In)xL(t)=0,



(9)




which implies that (7) holds. Therefore, all the followers lie in the convex hull formed by the leaders if φi(t)=0 holds for i=M+1,…,M+N.



Let eij(t)=xi(t)−xj(t) be the state difference between follower i and leader j, and zij(t)=xi(t)−xj(t) be the state difference between followers i and j. Equation (8) can be rewritten as


φi(t)=∑j∈Laijeij(t)+∑j∈Faijzij(t),i=M+1,…,M+N.



(10)







For informed followers, to drive φi(t) to zero, eij(t) and zij(t) are needed. For other followers, zij(t) is needed. However, when the event-triggering communication mechanism is adopted, such information is available only at the event instants. To solve this problem, we need the following state difference estimators to estimate eij(t) and zij(t) during the inter-event intervals.



3.1. Leader Edge State Difference Estimators


Suppose that informed follower i can access leader j’s state. In this case, edge (j,i) is called leader edge of follower i. From (2) and (3) and the definition of eij(t) we have


e˙ij(t)=Aeij(t)+Bui(t).



(11)







Follower i can construct the following estimator to estimate eij(t)


e^˙ij(t)=Ae^ij(t)+Bui(t),



(12)




where e^ij(0)=eij(0)=xi(0)−xj(0). The solution of (12) is


eij(t)=eAteij(0)+∫0teA(t−s)Bui(s)ds.



(13)







Remark 1.

It is trivial to prove that e^ij(t)=eij(t), for all t>0. So, the informed followers can estimate eij(t) based on the initial state xj(0), i.e., they only need to communicate with the leaders one time. This is because the leaders’ control inputs are assumed to be zero. If the leaders’ control inputs are nonzero, the informed followers need to communicate with their leader neighbors frequently. Tracking dynamic leaders with an event-triggered controller is a tough problem, which will be considered in our future work.






3.2. Neighbor Edge State Difference Estimators


Suppose that follower i can access follower j’s state. In this case, edge (j,i) is called neighbor edge of follower i. From (3) we have


z˙ij(t)=Azij(t)+B[ui(t)−uj(t)].



(14)







In the inter-event interval (tijk,tijk+1), uj(t) is not available for follower i. Follower i can adopt the following estimator to estimate zij(t)


z^˙ij(t)=Az^ij(t),



(15)




where z^ij(0)=zij(0) and z^ij(tijk)=zij(tijk). The solution of (15) in inter-event interval (tijk,tijk+1) is


z^ij(t)=eA(t−tijk)zij(tijk).



(16)







Define z˜ij(t)=z^ij(t)−zij(t). Notice that followers i can correcting z^ij(t) at the event instants. Therefore, z˜ij(t)=0 at the event instants. Denote tijt the last event instant of edge (i,j) before time t. If t is the event instant, then tijt=t. From (14) and (15) we have


z˜˙ij(t)=Az˜ij(t)−B[ui(t)−uj(t)].











It follows that


z˜ij(t)=−∫tijtteA(t−s)B[ui(s)−uj(s)]ds.



(17)








3.3. Event-Triggering Functions


Same to [29], we use the following event trigging function for edge (j,i)


fij(t)=b(t)−hij(t),



(18)




where hij(t)=∥∫tijkteA(t−s)Bui(s)ds∥ for t∈[tijk,tijk+1), b(t)>0 is a continuous threshold function. In the following of this paper, we set the threshold function as b(t)=αe−ct, where α and c are constant positive scalars.



Remark 2.

Notice that hij(t) and fij(t) are not related to any information about other agents. So, follower i can detect the event dependently. In contrast, triggering functions in [31,32,33] are related to neighbors’ states. When these triggering functions are used, a centralized detector is needed.






3.4. Event-Triggered Containment Control Algorithms


Based on the aforementioned state difference estimators and event-triggering function, we consider the following containment control algorithm


ui(t)=K∑j∈Laije^ij(t)+∑j∈Faijz^ij(t)=K∑j∈Laijeij(t)+∑j∈Faij[zij(t)+z˜ij(t)]=K[φi(t)+∑j∈Faijz˜ij(t)]=K[φi(t)+ei(t)],i=M+1,⋯,M+N,



(19)




where ei(t)=∑j∈Faijz˜ij(t), and K is a parametric matrix to be designed. The derivative of φi(t) along the solution of (2) and (3) is


φ˙i(t)=∑j∈L∪Faij[x˙i(t)−x˙j(t)]=∑j∈Laij[Axi(t)+Bui(t)−Axj(t)]+∑j∈Faij[Axi(t)+Bui(t)−Axj(t)−Buj(t)]=Aφi(t)+B∑j∈Laijui(t)+∑j∈Faij[ui(t)−uj(t)]=Aφi(t)+BK∑j∈Laij[φi(t)+ei(t)]+∑j∈Faij[φi(t)+ei(t)−φj(t)−ej(t)]=Aφi(t)+BK∑j∈Laijφi(t)+∑j∈Faij[φi(t)−φj(t)]+BK∑j∈L∪Faijei(t)−∑j∈Faijej(t),i=M+1,⋯,M+N.



(20)







Define φ(t)=φM+1T(t),⋯,φM+NT(t)T, e˜(t)=eM+1T(t),⋯,eM+NT(t)T. Equation (21) can be rewritten in a compact form as


φ˙(t)=A¯φ(t)+L2⊗BKe˜(t),



(21)




where A¯=In⊗A+L2⊗BK. From (6) , (17) and (18) we have


∥z˜ij(t)∥=∥∫tijtteA(t−s)B[ui(s)−uj(s)]ds∥≤∥∫tijtteA(t−s)Bui(s)ds∥+∥∫tijtteA(t−s)Bui(s)ds∥≤2b(t)=2αe−ct.



(22)







It follows that


∥ei(t)∥=∥∑j∈Faijz˜ij(t)∥≤(N−1)∥z˜ij(t)∥≤2(N−1)αe−ct.



(23)







From (21) and (23) we have


∥φ(t)∥≤∥eA¯t∥∥φ(0)∥+∫0t∥eA¯(t−s)∥∥L2⊗BK∥∥e˜(s)∥ds≤∥eA¯t∥∥φ(0)∥+λN∫0t∥eA¯(t−s)∥∥BK∥∥e˜(s)∥ds≤∥eA¯t∥∥φ(0)∥+2αNλN(N−1)∥BK∥∫0t∥eA¯(t−s)∥e−csds,



(24)




where λN is the largest eigenvalue of L2.



The proposed containment control algorithm is summarized in Algorithm 1, where T is the lifespan of the system.








	Algorithm 1 Event-Triggered Containment Control Algorithm for follower i: without input delay.



	Initiation:

	
k←0;



	
forj∈L∪Nido



	
    receive xj(0) from leader j; e^ij(0)←xi(0)−xj(0);



	
end for



	
forj∈F∪Nido



	
    send xi(0) to follower j and receive xj(0) from follower j ;



	
 



	
    tijk←0; e^ij(0)←xi(0)−xj(0); fij(0)←α;



	
 



	
end for



	
compute the controller ui(0) as in (20);








	Iteration:

	  1:

	
whilet<Tdo




	  2:

	
    for j∈L∪Nido




	  3:

	
        compute e^ij(t) as in (13);




	  4:

	
    end for




	  5:

	
    for j∈F∪Nido




	  6:

	
        compute fij(t) as in (18);




	  7:

	
        if fij(t)≤0then




	  8:

	
           send xi(t) to follower j and receive xj(t) from follower j; tijk←t;




	  9:

	
        end if




	 10:

	
        compute z^ij(t) as in (16);




	 11:

	
    end for




	 12:

	
    compute the controller ui(t) as in (20).




	 13:

	
end while












Theorem 1.

Consider a network with M leaders (2) and N followers (3). Suppose that (A,B) is controllable, the communication graph satisfies Assumption 1, and the event-triggered communication mechanism is adopted with triggering function (18). Let K=−BTP, where P is the solution of the following Riccati equality


ATP+PA−2λ1PBBTP+aI=0,



(25)




where λ1 is the smallest eigenvalue of L2, a>0 is a constant scalar. With control algorithm (20), all the followers will converge to the convex hull formed by the leaders.





Proof. 

Assume that the communication graph satisfied Assumption 1. From Lemma 1 we have λ1>0. Suppose that (A,B) is controllable. For any a>0, Riccati equality (27) has a solution P. Let K=−BTP, then A¯ in (25) is equal to In⊗A−L2⊗BBTP. Since L2 is a symmetric positive definite matrix, we can find an orthogonal matrix U such that U−1L2U=diag{λ1,⋯,λN}. It follows that (U−1⊗In)A¯(U⊗In)=In⊗A−diag{λ1,⋯,λN}⊗BBTP, which implies that A¯=(U−1⊗In)(In⊗A−diag{λ1,⋯,λN}⊗BBTP)(U⊗In). It then follows that


eA¯t=(U⊗In)diag{eA−λ1BBTP,⋯,eA−λNBBTP}(U−1⊗In).



(26)







Because λ1≤λ2≤⋯≤λN, we have


ATP+PA−2λ1PBBTP+aI≤0,i=1,⋯,N.











By a similar process with Section 4 in [29] we can find positive scalars β and δ such that


∥eA¯t∥≤βe−δt.



(27)







From (25) and (27) we have


∥φ(t)∥≤βe−δt∥φ(0)∥+2αNλN(N−1)∥BK∥∫0tβe−δ(t−s)e−csds≤βe−δt∥φ(0)∥+2αNλN(N−1)∥BK∥∫0te(δ−c)sds≤βe−δt∥φ(0)∥+2αNλN(N−1)∥BK∥e(δ−c)t−1δ−c.



(28)







Therefore, ∥φ(t)∥ converge to zero exponentially. Based on the analysis above we have that all the followers will converge to the convex hull formed by the leaders, which complete the proof. □





Next, we show that the Zeno behavior can be excluded by the control algorithm (20) and triggering function (8).



Theorem 2.

Suppose that 0<c<δ. The inter-event intervals are lower bounded by


tijk+1−tijk≥1∥A∥+cln(1+∥A∥+cθ∥BK∥),



(29)




where θ=β∥φ(0)∥+2αβNλN(N−1)δ−c+2(N−1)α.





Proof. 

With control algorithm (20), from (23) and (29) we have


∥Bui(t)∥=∥BK[φi(t)+ei(t)]∥≤∥BK∥(∥φi(t)∥+∥ei(t)∥)≤∥BK∥[η(t)+2(N−1)αe−ct],



(30)




where η(t)=βe−δt∥φ(0)∥+2αNλN(N−1)∥BK∥e(δ−c)t−1δ−c.



Suppose that 0<c<δ. For any linked followers i and j, assume that the communication is triggered at event instant tijk. Then, tijk+1 is the next event instant that satisfies hij(t)=αe−ct or hji(t)=αe−ct. Without loss of generality, we assume that hij(tijk+1)=αe−ctijk+1. Define pij(t)=θ∥BK∥∥A∥+ce−ct[e(∥A∥+c)(t−tijk)−1]. For any t∈[tijk,tijk+1], we can obtain that hij(t) satisfies


hij(t)=∥∫tijkteA(t−s)Bui(s)ds∥≤∥BK∥e∥A∥t∫tijkte−∥A∥s[η(s)+2(N−1)αe−cs]ds=∥BK∥e∥A∥t∫tijkte−∥A∥s[βe−δs∥φ(0)∥+2αβNλN(N−1)e−cs−e−δsδ−c+2(N−1)αe−cs]ds≤∥BK∥e∥A∥t∫tijkte−∥A∥s[βe−cs∥φ(0)∥+2αβNλN(N−1)e−csδ−c+2(N−1)αe−cs]ds=θ∥BK∥e∥A∥t∫tijkte−(∥A∥+c)sds=pij(t).



(31)







It follows that pij(tijk+1)≥αe−ctijk+1. Notice that pij(tijk)=0<e−ctijk. We can obtain that there exists a time instant tp∈(tijk,tijk+1] such that pij(tp)=e−ctp. From the definition of pij(t) we have


θ∥BK∥∥A∥+ce−ctp[e(∥A∥+c)(tp−tijk)−1]=e−ctp,



(32)




which implies that


tijk+1−tijk≥tp−tijk=1∥A∥+cln(1+∥A∥+cθ∥BK∥).



(33)




 □







4. Containment Control with Input Delay


In this section, we consider the containment control problem for system (2) and (4). Same with the delay-free case that is considered in the last section, the following state difference estimators are needed.



4.1. Leader Edge State Difference Estimators


Suppose that follower i can access leader j’s state. Follower i can adopt the following estimator to estimate eij(t)


e^˙ij(t)=Ae^ij(t)+Bui(t−τ),



(34)




where e^ij(0)=eij(0), ui(t)=0, t∈[−τ,0). The solution of (34) is


e^ij(t)=eAte^ij(0)+∫0teA(t−s)Bui(s−τ)ds.



(35)








4.2. Neighbor Edge State Difference Estimators


Suppose that follower i can access follower j’s state. Note from (4) that


z˙ij(t)=Azij(t)+B[ui(t−τ)−uj(t−τ)].



(36)







In the inter-event interval (tijk,tijk+1), uj(t) is not available for follower i. Follower i can use the following estimator to estimate zij(t)


z^˙ij(t)=Az^ij(t),



(37)




where z^ij(0)=zij(0) and z^ij(tijk)=zij(tijk). From (37) we have


z^ij(t)=eA(t−tijk)z^ij(tijk),t∈[tijk,tijk+1).



(38)







From (36) we have


zij(t)=eA(t−tijk)zij(tijk)+∫tijkteA(t−s)B[ui(s−τ)−uj(s−τ)]ds.



(39)







It follows that


z˜ij(t)=z^ij(t)−zij(t)=∫tijkteA(t−s)B[ui(s−τ)−uj(s−τ)]ds.



(40)








4.3. Event-Triggering Functions


Notice that when there exists a constant input delay τ, the estimating error z˜ij(t) depends on ui(s−τ)−uj(s−τ), which is different from the delay-free case. To achieve the control objective, the event trigging function should be adjusted accordingly. We use the following event trigging function for the edge (j,i)


fij(t)=b(t)−hij(t),



(41)




where hij(t)=∥∫tijkteA(t−s)Bui(s−τ)ds∥ for t∈[tijk,tijk+1), b(t) is given in the last section.



Remark 3.

Notice that the event trigging function fij(t) depends on the input of agent i only, which is different from the event trigging function in [43]. In [43], the event-triggered condition (19) is related to ∑j∈L∪Faij[xj(t)−xi(t)]. Since agent i cannot access xj(t) during the inter-event interval, this signal is not available for agent i. So, the event trigging function in this paper is more feasible than that in [43].






4.4. Event-Triggered Containment Control Algorithms


Based on the state difference estimators and the event-triggering function, we consider the following containment algorithm


ui(t)=KeAτ∑j∈Laije^ij(t)+∑j∈Faijz^ij(t),i=M+1,⋯,M+N.



(42)




With the input delay τ, (42) becomes


ui(t−τ)=KeAτ∑j∈Laije^ij(t−τ)+∑j∈Faijz^ij(t−τ)=KeAτ∑j∈Laijeij(t−τ)+∑j∈Faijzij(t−τ)−KeAτ∑j∈Faijz˜ij(t−τ)=KeAτφi(t−τ)−KeAτ∑j∈Faijz˜ij(t−τ)=Kφi(t)−∫t−τt{∑j∈L∪FaijeA(t−s)Bui(s−τ)−∑j∈FaijeA(t−s)Buj(s−τ)}ds−KeAτ∑j∈Faij∫tijt−τt−τeA(t−τ−s)B[ui(s−τ)−uj(s−τ)ds,i=M+1,⋯,M+N,



(43)




where tijt−τ is the last event instant on edge (i,j) before t−τ, and tijt−τ=t−τ if t−τ is an event instant.



The proposed containment control algorithm is summarized in Algorithm 2.








	Algorithm 2 Event-Triggered Containment Control Algorithm for Agent i: with input delay.



	Initiation:

	
k←0;



	
forj∈L∪Nido



	
    receive xj(0) from leader j; e^ij(0)←xi(0)−xj(0);



	
end for



	
forj∈F∪Nido



	
    send xi(0) to follower j and receive xj(0) from follower j;



	
 



	
    tijk←0; e^ij(0)←xi(0)−xj(0); fij(0)←α;



	
 



	
end for



	
compute the controller ui(0) as in (42);








	Iteration:

	  1:

	
whilet<Tdo




	  2:

	
    for j∈L∪Nido




	  3:

	
        compute e^ij(t) as in (35);




	  4:

	
    end for




	  5:

	
    for j∈F∪Nido




	  6:

	
        compute fij(t) as in (41);




	  7:

	
        if fij(t)≤0then




	  8:

	
           send xi(t) to follower j and receive xj(t) from follower j; tijk←t;




	  9:

	
        end if




	 10:

	
        compute z^ij(t) as in (38);




	 11:

	
    end for




	 12:

	
    compute the controller ui(t) as in (42).




	 13:

	
end while












Theorem 3.

Consider a network with M leaders (2) and N followers (4), with a communication graph satisfies Assumption 1. Suppose that (A,B) is controllable, and all the poles of A are on the imaginary axis. Suppose that the event-triggered communication mechanism is adopted with triggering function (41). Let K=−μBTP(γ), where P(γ) is the solution of the Riccati inequality (5), 2μλ1>1. For any τ>0, there exists a scalar γ* such that for any γ∈[0,γ*), with control algorithm (42), all the followers will converge to the convex hull formed by the leaders.





Proof. 

Suppose that (A,B) is controllable, and all the poles of A are on the imaginary axis. For any γ>0, from Lemma 3 we have there exist a solution P(γ) satisfies the Riccati inequality (5). In the rest of this paper, we omit γ for simplicity. Let K=−μBTP. Consider the following function


V1(t)=∑i∈FφiT(t)Pφi(t).



(44)







From (4) and (8) we have


φ˙i(t)=Aφi(t)+B∑j∈Laijui(t−τ)+∑j∈Faij[ui(t−τ)−uj(t−τ)].



(45)







The derivative of V1(t) along the solution of (45) satisfies


V˙1(t)=2∑i∈FφiT(t)Pφ˙i(t)=2∑i∈FφiT(t)PAφi(t)+B{∑j∈Laijui(t−τ)+∑j∈Faij[ui(t−τ)−uj(t−τ)]}=φT(t)(IN⊗PA+ATP)φ(t)+2φT(t)(L2⊗PB)u(t−τ)



(46)




where u(t−τ)=uM+1(t−τ),⋯,uM+NT(t−τ)T. From (44) we have


u(t−τ)=(μIN⊗BTP)[−φ(t)+∫t−τt(L2⊗eA(t−s)B)u(s−τ)ds+∫tijt−τt−τ(L¯2⊗eA(t−s)B)u(s−τ)ds],



(47)




which, together with (47), yielding that


V˙1(t)=φT(t)[IN⊗(PA+ATP)−2(μL2⊗PBBTP)]φ(t)+2φT(t)(μL2⊗PBBTP)∫t−τt(L2⊗eA(t−s)B)u(s−τ)ds+2φT(t)(μL2⊗PBBTP)∫tijt−τt−τ(L¯2⊗eA(t−s)B)u(s−τ)ds=φT(t)[IN⊗(PA+ATP)−2(μL2⊗PBBTP)]φ(t)+2φT(t)(μL22⊗PBBTP)∫t−τt(IN⊗eA(t−s)B)u(s−τ)ds+2φT(t)(μL2L¯2⊗PBBTP)∫tijt−τt−τ(IN⊗eA(t−s)B)u(s−τ)ds.



(48)







Also, from (44) we have


u(t−τ)=(−μIN⊗BTPeAτ)[φ(t−τ)−e(t−τ)].



(49)







It follows that


V˙1(t)=φT(t)[IN⊗(PA+ATP)−2(μL2⊗PBBTP)]φ(t)−2φT(t)(μ2L22⊗PBBTP)∫t−τt(IN⊗eA(t−s)BBTPeAτ)[φ(s−τ)−e(s−τ)]+2φT(t)(μL2L¯2⊗PBBTP)∫tijt−τt−τ(IN⊗eA(t−s)B)u(s−τ)ds≤φT(t)[IN⊗(PA+ATP)−2(μL2⊗PBBTP)]φ(t)+φT(t)[(2kμ4L24+kμ2L2L¯22L2)⊗PBBTP]φ(t)+nγk{π1T(t)(IN⊗P)π1(t)+π2T(t)(IN⊗P)π2(t)+π3T(t)(IN⊗P)π3(t)},



(50)




where we have used the fact that PBBTP≤nγP, which is obtained from Lemma 3, L¯2 is the Laplacian matrix corresponding to the communication topology among the followers, and


π1(t)=∫t−τt(IN⊗eA(t−s)BBTPeAτ)φ(s−τ)ds,π2(t)=∫t−τt(IN⊗eA(t−s)BBTPeAτ)e(s−τ)]ds,π3(t)=∫tijt−τt−τ(IN⊗eA(t−s)B)u(s−τ)ds.











Define ξ(t)=(U−1⊗In)φ(t). It follows from (51) and (5) that


V˙1(t)≤ξT(t)[IN⊗(PA+ATP)−2(μUTL2U⊗PBBTP)]ξ(t)+ξT(t)[(2kμ4UTL24U+kμ2UTL2L¯22L2U)⊗PBBTP]ξ(t)+nγk{π˜1T(t)(IN⊗P)π˜1(t)+π2T(t)(IN⊗P)π2(t)+π3T(t)(IN⊗P)π3(t)}≤ξT(t)[IN⊗(−γP)−(2λ1μ−1)IN⊗PBBTP]ξ(t)+ξT(t)[(2kμ4UTL24U+kμ2UTL2L¯22L2U)⊗PBBTP]ξ(t)+nγk{π˜1T(t)(IN⊗P)π˜1(t)+π2T(t)(IN⊗P)π2(t)+π3T(t)(IN⊗P)π3(t)}



(51)




where


π˜1(t)=∫t−τt(U⊗eA(t−s)BBTPeAτ)ξ(s−τ)ds.











By Jensen inequality and Lemma 3 we have


π˜1T(t)(IN⊗P)π˜1(t)≤τ∫t−τtξT(s−τ)(UTU⊗eAτPBBTeA(t−s)PeA(t−s)BBTPeAτ)ξ(s−τ)ds≤τ∫t−τtξT(s−τ)(IN⊗e(n−1)γ(t−s)eAτPBBTPBBTPeAτ)ξ(s−τ)ds≤τ∫t−τtξT(s−τ)(IN⊗n2γ2e(n−1)γ(t−s)eAτPeAτ)ξ(s−τ)ds≤τ∫t−τtξT(s−τ)(IN⊗n2γ2e(n−1)γ(τ+t−s)P)ξ(s−τ)ds≤τn2γ2e2(n−1)γτ∫t−τtξT(s−τ)(IN⊗P)ξ(s−τ)ds≤τn2γ2e2(n−1)γτ∫t−2τtξT(s)(IN⊗P)ξ(s)ds,



(52)




and


π2T(t)(IN⊗P)π2(t)≤τn2γ2e2(n−1)γτ∫t−2τteT(s)(IN⊗P)e(s)ds≤λmax(P)τn2γ2e2(n−1)γτ∫t−2τteT(s)e(s)ds≤λmax(P)τn2γ2e2(n−1)γτ∫t−2τtαNN1e−2csds≤2αNN1λmax(P)τ2n2γ2e2(n−1)γτ•e−2c(t−2τ).



(53)







From the definition of the event-triggering function (41) we have π3T(t)π3(t)≤α2e−2ct, from which we have


π3T(t)(IN⊗P)π3(t)≤Nλmax(P)α2e−2c(t−τ).



(54)







Define


V2(t)=nγkn2γ2e2(n−1)γτ∫02τ∫t−stξT(l)(IN⊗P)ξ(l)dlds.











We have


V˙2(t)=2τnγkn2γ2e2(n−1)γτξT(t)(IN⊗P)ξ(t)−nγk•τn2γ2e2(n−1)γτ∫t−2τtξT(s)(IN⊗P)ξ(s)ds.



(55)







Consider the following Lyapunov function


V(t)=V1(t)+V2(t).



(56)







From (52)–(55) we have


V˙(t)≤ξT(t)[IN⊗(−γP)−(2λ1μ−1)IN⊗PBBTP]ξ(t)+ξT(t)[(2kμ4UTL24U+kμ2UTL2L¯22L2U)⊗PBBTP]ξ(t)+2τnγkn2γ2e2(n−1)γτξT(t)(IN⊗P)ξ(t)+nγk2αNN1λmax(P)τ2n2γ2e2(n−1)γτ•e−2c(t−2τ)+nγkNλmax(P)α2e−2c(t−τ).



(57)







Because 2λ1μ>1, there exists a small enough k such that 2kμ4UTL24U+kμ2UTL2L¯22L2U≤(2λ1μ−1)IN. Then, we have


V˙(t)≤−(1−2τnkn2γ2e2(n−1)γτ)γξT(t)[IN⊗P)]ξ(t)+nγk2αNN1λmax(P)τ2n2γ2e2(n−1)γτ•e−2c(t−2τ)+nγkNλmax(P)α2e−2c(t−τ).



(58)







For any τ>0, there exists a γ* such that 1−2τnkn2γ2e2(n−1)γτ>12 for any γ∈[0,γ*). Therefore it follows that


V˙(t)≤−γ2ξT(t)[IN⊗P)]ξ(t)+nγk2αNN1λmax(P)τ2n2γ2e2(n−1)γτ•e−2c(t−2τ)+nγkNλmax(P)α2e−2c(t−τ).



(59)







Notice that the last two terms converge to zero exponentially, we conclude that ξ(t) converge to zero asymptotically, which implies that the followers converge to the convex hull formed by the leaders. □





Remark 4.

From Theorem 3 we can see that for arbitrarily large but bounded delays, all the followers will converge to the convex hull formed by the leaders. In contrast, the algorithms in [43] require that the input delay is smaller than an upper bound.







5. Simulation Examples


This section gives a numerical example to show the effectiveness of the proposed algorithms. Consider a network with 10 followers and 4 leaders in the two-dimensional space. The parameter matrices A and B are


A=0010000100000000,B=00001001.











Suppose that x1(t)=1+0.8t,1+0.15tT, x2(t)=5+0.75t,1+0.15tT, x3(t)=4+0.8t,6+0.1tT and x4(t)=8+0.75t,6+0.1tT. Initial positions of the followers are chosen as x5(0)=1,−1T, x6(0)=2,−1T, x7(0)=3,−1T , x8(0)=−3,3T, x9(0)=0,−3T, x10(0)=5,−3T, x11(0)=8,−3T , x12(0)=2,−7T, x13(0)=5,−7T , and x14(0)=9,−8T. Initial velocities of the followers are chosen as zero.



The network graph associated with the 14 agents is shown by Figure 1, and the corresponding Laplacian matrices are as following


L1=−1−1−100−1−1−10−1−1−10000000000000000000000000000,L2=5−100−100000−16−100−100000−1600−1−1000000−1−100000−100−14−10−1000−1−10−15−10−1000−100−1300−10000−100−10000000−100−10000000−100−1.











It is easy to obtain that the smallest eigenvalue of L2 is λ1=0.2845.



Containment control without input delay. We verify the effectiveness of containment control algorithm (20) and trigger function (18) first. Chose a=1. By solving matrix equality (25) we can obtain P=1.583900.7543001.583900.75430.754301.1947000.754301.1947. According to Theorem 1, we can set K as


K=−BTP=0.754301.1947000.754301.1947.











Let α=1, c=0.01. Figure 2 shows positions of vehicles 1 to 14 at time instants 0 s, 5 s, 10 s, and 15 s. It can be seen that agents 5 to 14 move into the convex hull spanned by agents 1 to 4. Figure 3 shows the event instants on edges 1 to 12. Table 1 and Table 2 show numbers of event instants counted by edge and agent, respectively. From Table 2 we can see that for most agents, the communication burden is light. However, for agents with many neighbor edges (agents 9–11), their communication burdens are heavy.



Containment control with input delay. Let τ=0.1 s. By solving parametric Riccati Equation (5) with γ=0.001, we can obtain P=0.008000.0316000.008000.03160.031600.2535000.031600.2535. Let μ=2. According to Theorem 3, we can set K as


K=−μBTP=0.063200.5069000.063200.5069.











Figure 4 shows positions of agents 1 to 14 using Algorithm 2. It can be seen that agents 5 to 14 move into the convex hull spanned by vehicles 1 to 4. Figure 5 shows the event instants on edges 1 to 12. Table 3 and Table 4 show numbers of event instants counted by edge and by agent, respectively.



Suppose that τ=0.5 s. By solving parametric Riccati Equation (5) with γ=0.0002, we can obtain P=0.002400.0141000.002400.01410.014100.1688000.014100.1688. Let μ=2. According to Theorem 3, we can set K as


K=−μBTP=0.028300.3375000.028300.3375.











Figure 6 shows positions of agents 1 to 14. It can be seen that agents 5 to 14 move into the convex hull spanned by vehicles 1 to 4. Figure 7 shows the event instants on edges 1 to 12. Table 5 and Table 6 show numbers of event instants counted by edge and by agent, respectively.



Remark 5.

From Figure 4 and Figure 6 we can see that the converge speed is lower when τ is larger. In fact, when the input delay τ is getting larger, according to Theorem 3, we should choose a smaller γ. From Lemma 3 we know that limγ→0+P(γ)=0. So, when γ is small, the gain matrix K is small, which leads to low converge speed.






6. Conclusions


The event-triggered containment control problem has been considered in this paper, and two control algorithms have been proposed for multi-agent systems without and with input delay, respectively. Continuous communication has been avoided in the proposed triggering conditions. With the proposed algorithms, we have proved that all the followers can be driven into the convex hull formed by the leaders. When there is not input delay, it has been proved that the Zeno behavior can be avoided. Compared with some existing algorithms for the containment control problem with input delay, the proposed algorithm can deal with arbitrarily large input delay. The proposed triggering conditions can be detected dependently by each agent, while existing triggering conditions in those literatures on event-triggered containment control need to be realized in a centralized way.
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Figure 1. The network topology associated with vehicles 1 to 14. Here i denotes vehicle i, i=1,⋯,14. 






Figure 1. The network topology associated with vehicles 1 to 14. Here i denotes vehicle i, i=1,⋯,14.
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Figure 2. Positions of agents 1 to 14 using Algorithm 1, where squares denote leaders and circles denote followers. 
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Figure 3. Event instants on edges 1–12 (τ=0, 15 s). 
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Figure 4. Positions of agents 1 to 14 using Algorithm 2 with τ=0.1, where squares denote leaders and circles denote followers. 
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Figure 5. Event instants on edges 1–12 (τ=0.1, 30 s). 
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Figure 6. Positions of agents 1 to 14 using Algorithm 2 with τ=0.5, where squares denote leaders and circles denote followers. 
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Figure 7. Event instants on edges 1–12 (τ=0.5, 50 s). 
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Table 1. Number of event instants of each edge (τ=0, 15 s).






Table 1. Number of event instants of each edge (τ=0, 15 s).





	edge
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12



	connected agents
	5–6
	5–9
	6–7
	6–10
	7–10
	7–11
	8–9
	9–10
	9–12
	10–11
	10–13
	11–14



	number of event instants
	9
	19
	8
	40
	40
	16
	26
	31
	25
	39
	38
	23
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Table 2. Number of event instants of each agent (τ=0, 15 s).






Table 2. Number of event instants of each agent (τ=0, 15 s).





	agent
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14



	number of event instants
	28
	57
	64
	26
	101
	198
	78
	25
	38
	23
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Table 3. Number of event instants of each edge (τ=0.1, 30 s).






Table 3. Number of event instants of each edge (τ=0.1, 30 s).





	edge
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12



	connected agents
	5–6
	5–9
	6–7
	6–10
	7–10
	7–11
	8–9
	9–10
	9–12
	10–11
	10–13
	11–14



	number of event instants
	8
	24
	12
	17
	23
	19
	26
	28
	26
	25
	23
	20
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Table 4. Number of event instants of each agent (τ=0.1, 30 s).






Table 4. Number of event instants of each agent (τ=0.1, 30 s).





	agent
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14



	number of event instants
	32
	37
	54
	26
	114
	116
	44
	26
	23
	20
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Table 5. Number of event instants of each edge (τ=0.1, 50 s).






Table 5. Number of event instants of each edge (τ=0.1, 50 s).





	edge
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12



	connected agents
	5–6
	5–9
	6–7
	6–10
	7–10
	7–11
	8–9
	9–10
	9–12
	10–11
	10–13
	11–14



	number of event instants
	10
	25
	10
	77
	80
	23
	24
	81
	24
	81
	80
	22
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Table 6. Number of event instants of each agent (τ=0.5, 50 s).






Table 6. Number of event instants of each agent (τ=0.5, 50 s).





	agent
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14



	number of event instants
	35
	97
	113
	24
	154
	399
	104
	24
	80
	22
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