Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances
Abstract
:1. Introduction
2. Theoretical Background
2.1. Power Quality Disturbances
2.2. Phasor Measurement Unit
2.3. Homogeneity
- Compute the vector of differences for a signal, x, as follows:
- For Dv(n), compute its histogram, hv(j). j can take values from −K + 1 to K − 1.
- By considering a total number of differences, A, compute the probability function as:
- Finally, compute the homogeneity index using PD(j) as follows:
3. Proposed Method
4. Experimentation and Results
4.1. Validation
4.2. Results for Real Signals
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bollen, M.H.J. What is power quality? Electr. Power Syst. Res. 2013, 66, 5–14. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Standard 1159; IEEE Inc.: Piscataway, NJ, USA, 2009.
- Bollen, M.H.; Das, R.; Djokic, S.; Ciufo, P.; Meyer, J.; Rönnberg, S.K.; Zavodam, F. Power quality concerns in implementing smart distribution-grid applications. IEEE Trans. Smart Grid 2017, 8, 391–399. [Google Scholar] [CrossRef]
- Granados, D.; Romero, R.; Osornio, A.; Garcia, A.; Cabal, E. Techniques and methodologies for power quality analysis and disturbances classification in power systems: A review. IET Gener. Transm. Distrib. 2011, 5, 519–529. [Google Scholar] [CrossRef]
- Leccese, F.; Cagnetti, M.; Di Pasquale, S.; Giarnetti, S.; Caciotta, M. A new power quality instrument based on Raspberry-Pi. Electronics 2016, 5, 64. [Google Scholar] [CrossRef]
- Khokhar, S.; Zin, A.; Mokhtar, A.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [Google Scholar] [CrossRef]
- Mahela, O.; Shaik, A.; Gupta, N. A critical review of detection and classification of power quality events. Renew. Sustain. Energy Rev. 2015, 41, 495–505. [Google Scholar] [CrossRef]
- Nieto, A.; Vita, V.; Ekonomou, L.; Mastorakis, N. Economic analysis of energy storage system integration with a grid connected intermittent power plant, for power quality purposes. WSEAS Trans. Power Syst. 2016, 11, 65–71. [Google Scholar]
- Nieto, A.; Vita, V.; Maris, T. Power quality improvement in power grids with the integration of energy storage systems. Int. J. Eng. Res. Technol. 2016, 5, 438–443. [Google Scholar]
- Urbina-Salas, I.; Razo-Hernandez, J.R.; Granados-Lieberman, D.; Valtierra-Rodriguez, M.; Torres-Fernandez, J.E. Instantaneous power quality indices based on single-sideband modulation and wavelet packet-Hilbert transform. IEEE Trans. Instrum. Meas. 2017, 66, 1021–1031. [Google Scholar] [CrossRef]
- Liang, X. Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl. 2017, 53, 855–866. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.L.; Chandorkar, M. Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids. IEEE Trans. Ind. Electron. 2013, 60, 1263–1270. [Google Scholar] [CrossRef]
- Bollen, M.; Gu, I. Signal Processing of Power Quality Disturbances, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 13. [Google Scholar]
- Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Torres-Fernandez, J.E.; Rodríguez-Rodríguez, J.R.; Gómez-Aguilar, J.F. A new methodology for tracking and instantaneous characterization of voltage variations. IEEE Trans. Instrum. Meas. 2016, 65, 1596–1604. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.; Amezquita-Sanchez, J.; Romero-Troncoso, R.; Garcia-Perez, A. Novel downsampling empirical mode decomposition approach for power quality analysis. IEEE Trans. Ind. Electron. 2016, 63, 2369–2378. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Gungor, V.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 2013, 9, 28–42. [Google Scholar] [CrossRef]
- Aminifar, F.; Fotuhi, M.; Safdarian, A.; Davoudi, A.; Shahidehpour, M. Synchrophasor measurement technology in power systems: Panorama and state-of-the-art. IEEE Access 2014, 2, 1607–1628. [Google Scholar] [CrossRef]
- Borges, F.; Fernandes, R.; Silva, I.; Silva, C. Feature extraction and power quality disturbances classification using smart meters signals. IEEE Trans. Ind. Inform. 2016, 12, 824–833. [Google Scholar] [CrossRef]
- Lekshmana, R.; Padmanaban, S.; Mahajan, S.B.; Ramachandaramurthy, V.K.; Holm-Nielsen, J.B. Meter placement in power system network—A comprehensive review, analysis and methodology. Electronics 2018, 7, 329. [Google Scholar] [CrossRef]
- Heydt, G.; Fjeld, P.; Liu, C.; Pierce, D.; Tu, L.; Hensley, G. Applications of the windowed FFT to electric power quality assessment. IEEE Trans. Power Deliv. 1999, 14, 1411–1416. [Google Scholar] [CrossRef]
- Barros, J.; Apraiz, M.; Diego, R. A virtual measurement instrument for electrical power quality analysis using wavelets. Measurement 2009, 42, 298–307. [Google Scholar] [CrossRef]
- Thirumala, K.; Maganuru, S.; Jain, T.; Umarikar, A. Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances. IEEE Trans. Smart Grid 2016, 9, 3018–3028. [Google Scholar] [CrossRef]
- Thirumala, K.; Jain, T.; Umarikar, A. Visualizing time-varying power quality indices using generalized empirical wavelet transform. Electr. Power Syst. Res. 2017, 143, 99–109. [Google Scholar] [CrossRef]
- Bhende, C.; Mishra, S.; Panigrahi, B. Detection and classification of power quality disturbances using S-transform and modular neural network. Electr. Power Syst. Res. 2008, 78, 122–128. [Google Scholar] [CrossRef]
- Uyar, M.; Yildirim, S.; Gencoglu, M. An expert system based on S-transform and neural network for automatic classification of power quality disturbances. Expert Syst. Appl. 2009, 36, 5962–5975. [Google Scholar] [CrossRef]
- Li, J.; Teng, Z.; Tang, Q.; Song, J. Detection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs. IEEE Trans. Instrum. Meas. 2016, 65, 2302–2312. [Google Scholar] [CrossRef]
- Cho, S.; Jang, G.; Kwon, S. Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE Trans. Power Deliv. 2010, 25, 494–499. [Google Scholar] [CrossRef]
- Abdelsalam, A.; Eldesouky, A.; Sallam, A. Characterization of power quality disturbances using hybrid technique of linear Kalman filter and fuzzy-expert system. Electr. Power Syst. Res. 2012, 83, 41–50. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, Y.; Li, W. A classification method for complex power quality disturbances using EEMD and rank wavelet SVM. IEEE Trans. Smart Grid 2015, 6, 1678–1685. [Google Scholar] [CrossRef]
- Norman, C.; Chan, J.; Lau, W.; Lai, L. Hybrid wavelet and Hilbert transform with frequency-shifting decomposition for power quality analysis. IEEE Trans. Instrum. Meas. 2012, 61, 3225–3233. [Google Scholar] [CrossRef]
- Zhang, M.; Li, K.; Hu, Y. A real-time classification method of power quality disturbances. Electr. Power Syst. Res. 2011, 81, 660–666. [Google Scholar] [CrossRef]
- Ferreira, D.; Seixas, J.; Cerqueira, A.; Duque, C.; Bollen, M.; Ribeiro, P. A new power quality deviation index based on principal curves. Electr. Power Syst. Res. 2015, 125, 8–14. [Google Scholar] [CrossRef]
- Martinez, G.; Morinigo, D.; Zorita, A.; Morales, L.; Romero, R. FPGA-based smart sensor for detection and classification of power quality disturbances using higher order statistics. IEEE Access 2017, 5, 14259–14274. [Google Scholar] [CrossRef]
- Moreno, R.; Visairo, N.; Núñez, C.; Rodríguez, E. A novel algorithm for voltage transient detection and isolation for power quality monitoring. Electr. Power Syst. Res. 2014, 114, 110–117. [Google Scholar] [CrossRef]
- Ai, Q.; Zhou, Y.; Xu, W. Adaline and its application in power quality disturbances detection and frequency tracking. Electr. Power Syst. Res. 2007, 77, 462–469. [Google Scholar] [CrossRef]
- Janik, P.; Lobos, T. Automated classification of power-quality disturbances using SVM and RBF networks. IEEE Trans. Power Deliv. 2006, 21, 1663–1669. [Google Scholar] [CrossRef]
- Hooshmand, R.; Enshaee, A. Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm. Electr. Power Syst. Res. 2010, 80, 1552–1561. [Google Scholar] [CrossRef]
- Mahela, O.; Shaik, A. Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers. Appl. Soft Comput. 2017, 59, 243–257. [Google Scholar] [CrossRef]
- Reddy, M.; Sodhi, R. A rule-based S-transform and AdaBoost based approach for power quality assessment. Electr. Power Syst. Res. 2016, 134, 66–79. [Google Scholar] [CrossRef]
- IEEE Std C37.118.1-2011. In IEEE Standard for Synchrophasor Measurements for Power Systems; IEEE Inc.: New York, NY, USA, 2011.
- Khokhar, S.; Zin, A.; Memon, A.; Mokhtar, A. A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network. Measurement 2017, 95, 246–259. [Google Scholar] [CrossRef]
- Rodriguez, M.; Carranza, R.; Osornio, R.; Romero, R. A novel methodology for modeling waveforms for power quality disturbance analysis. Electr. Power Syst. Res. 2017, 143, 14–24. [Google Scholar] [CrossRef]
- Lee, Y.; Song, H. Decentralized load shedding method based on voltage stability margin index using synchrophasor measurement technology. Electronics 2018, 7, 277. [Google Scholar] [CrossRef]
- Razo-Hernandez, J.R.; Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Tapia-Tinoco, G.; Rodriguez-Rodriguez, J.R. A phasor estimation algorithm based on Hilbert transform for P-class PMUs. Adv. Electr. Comput. Eng. 2018, 18, 97–104. [Google Scholar] [CrossRef]
- Unser, M. Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 1, 118–125. [Google Scholar] [CrossRef]
- Lizarraga, R.; Rodriguez, C.; Cabal, E.; Lopez, M.; Ledesma, L.; Ferrucho-Alvarez, E. Novel FPGA-based methodology for early broken rotor bar detection and classification through homogeneity estimation. IEEE Trans. Instrum. Meas. 2017, 7, 1760–1769. [Google Scholar] [CrossRef]
- Mejia-Barron, A.; Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Olivares-Galvan, J.; Escarela-Perez, R. The application of EMD-based methods for diagnosis of winding faults in a transformer using transient and steady state currents. Measurement 2018, 117, 371–379. [Google Scholar] [CrossRef]
PQD | μ | σ |
---|---|---|
Harmonic | 0.1124 | 0.0405 |
Oscillatory transient (OT) | 0.5439 | 0.1089 |
Notching/Spike | 0.9809 | 0.0186 |
Waveform | Nominal Condition | Sag | Swell | Interruption | Oscillatory Transient | Harmonics | Notching | Spikes |
---|---|---|---|---|---|---|---|---|
Nominal condition | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sag | 0 | 99 | 0 | 1 | 0 | 0 | 0 | 0 |
Swell | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
Interruption | 0 | 1 | 0 | 99 | 0 | 0 | 0 | 0 |
Oscillatory transient | 0 | 0 | 0 | 0 | 99 | 1 | 0 | 0 |
Harmonics | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
Notching | 0 | 0 | 0 | 0 | 0 | 0 | 98 | 2 |
Spikes | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 99 |
One PQD | ||||||
Sag | Swell | Interruption | Oscillatory Transient | Harmonics | Notching | Spikes |
5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/5 | 6/5 |
Two PQDs | ||||||
Oscillatory Transient | Harmonics | Notching | Spikes | |||
Sag + | 5/5 | 5/5 | 5/5 | 5/5 | ||
Swell + | 5/5 | 5/5 | 5/5 | 5/5 | ||
Interruption + | 5/5 | 5/5 | 3/5 | 7/5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razo-Hernandez, J.R.; Valtierra-Rodriguez, M.; Amezquita-Sanchez, J.P.; Granados-Lieberman, D.; Gomez-Aguilar, J.F.; Rangel-Magdaleno, J.d.J. Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances. Electronics 2018, 7, 433. https://doi.org/10.3390/electronics7120433
Razo-Hernandez JR, Valtierra-Rodriguez M, Amezquita-Sanchez JP, Granados-Lieberman D, Gomez-Aguilar JF, Rangel-Magdaleno JdJ. Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances. Electronics. 2018; 7(12):433. https://doi.org/10.3390/electronics7120433
Chicago/Turabian StyleRazo-Hernandez, Jose R., Martin Valtierra-Rodriguez, Juan P. Amezquita-Sanchez, David Granados-Lieberman, Jose F. Gomez-Aguilar, and Jose de J. Rangel-Magdaleno. 2018. "Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances" Electronics 7, no. 12: 433. https://doi.org/10.3390/electronics7120433
APA StyleRazo-Hernandez, J. R., Valtierra-Rodriguez, M., Amezquita-Sanchez, J. P., Granados-Lieberman, D., Gomez-Aguilar, J. F., & Rangel-Magdaleno, J. d. J. (2018). Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances. Electronics, 7(12), 433. https://doi.org/10.3390/electronics7120433