Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument Specification
2.2. Hardware Framework
2.3. Software Framework
- log enable that assumes 0 or 1 to disable or enable the log of any available quantity during the test;
- control sampling time in seconds (from 0.5 s to 2 s);
- test length in seconds, where -1 value means that the elapsed time will not be considered to stop the actual step;
- constant current amplitude in ampere, with which the cell under test is charged or discharged;
- dropout voltage value at which the CV mode of the lab instruments starts;
- stop current amplitude that defines the threshold value under which the CV mode is ended.
2.4. Graphical User Interface
3. Cell Station Tester Validation Results
3.1. Timing Reliability
3.2. Voltage and Current Measurement Accuracy
3.3. SoH Measurements of a Used Battery Pack
- a charging phase, where the cell is fully charged with a 20 A current;
- a discharging phase, where the cell is completely discharged with a 40 A current;
- a charging phase, where the cell is returned to the full-charge state with a current of 20 A.
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Rechkemmer, S.K.; Zhang, W.; Sawodny, O. Modeling of a Permanent Magnet Synchronous Motor of an E-Scooter for Simulation with Battery Aging Model. IFAC-Pap. Online 2017, 50, 4769–4774. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Mathew, M.; Kong, Q.H.; McGrory, J.; Fowler, M. Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles. J. Power Sources 2017, 349, 94–104. [Google Scholar] [CrossRef]
- Mathew, M.; Janhunen, S.; Rashid, M.; Long, F.; Fowler, M. Comparative Analysis of Lithium-Ion Battery Management Systems. Energies 2018, 11, 1490. [Google Scholar] [CrossRef]
- Podias, A.; Pfrang, A.; Di Persio, F.; Kriston, A.; Bobba, S.; Mathieux, F.; Messagie, M.; Boon-Brett, L. Sustainability assessment of second use applications of automotive batteries: Ageing of Li-ion battery cells in automotive and grid-scale applications. World Electron. Veh. J. 2018, 9, 24. [Google Scholar] [CrossRef]
- Weßkamp, P.; Haußmann, P.; Melbert, J. 600-A Test System for Aging Analysis of Automotive Li-Ion Cells with High Resolution and Wide Bandwidth. IEEE Trans. Instrum. Meas. 2016, 65, 1651–1660. [Google Scholar] [CrossRef]
- Honda, “EV-Neo.”. Available online: http://world.honda.com/EV-neo/spec/index.html (accessed on 28 October 2018).
- Dahmane, Z.E.; Malek, A.; Bouhali, M.; Bounabi, M.; Kaced, K.; Cheikh, M.S.A. A proposed pulses current method to extract the batteries parameters. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017; pp. 555–560. [Google Scholar]
- Vergori, E.; Mocera, F.; Somà, A. Battery Modelling and Simulation Using a Programmable Testing Equipment. Computers 2018, 7, 20. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.Y.; Yin, G.; Lin, F.; Wang, C. Accurate probabilistic characterization of battery estimates by using large deviation principles for real-time battery diagnosis. IEEE Trans. Energy Convers. 2013, 28, 860–870. [Google Scholar] [CrossRef]
- Jiangsu Niu Electric Technology. Niu Home Page. Available online: https://www.niu.com/en (accessed on 28 October 2018).
- Jespersen, J.L.; Tønnesen, A.E.; Nørregaard, K.; Overgaard, L.; Elefsen, F. Capacity Measurements of Li-Ion Batteries using AC impedance Spectroscopy. World Electr. Veh. J. 2009, 3, 127–133. [Google Scholar] [CrossRef]
- KIKUSUI, BPChecker2000 License. Available online: https://www.kikusui.co.jp/en/download/en/licence.html (accessed on 28 October 2018).
- NATIONAL INSTRUMENTS, LabVIEW General Purpose Software License Agreement. Available online: https://www.ni.com/legal/license/ (accessed on 28 October 2018).
- Ciolli, M.; Federici, B.; Ferrando, I.; Marzocchi, R.; Sguerso, D.; Tattoni, C.; Vitti, A.; Zatelli, P. FOSS Tools and Applications for Education in Geospatial Sciences. ISPRS Int. J. Geo-Inf. 2017, 6, 225. [Google Scholar] [CrossRef]
- GNU Operating System Home Page. Available online: https://www.gnu.org (accessed on 28 October 2018).
- GNU General Public License. Available online: https://www.gnu.org/licenses/gpl.html (accessed on 28 October 2018).
- Paulson, J.W.; Succi, G.; Eberlein, A. An empirical study of open-source. Electronics 2016, 5, 74. [Google Scholar]
- TOSHIBA, TOSHIBA SCiB Rechargeable Battery. Available online: http://www.scib.jp/en/product/cell.htm (accessed on 28 October 2018).
- Designboom, BMW C-evolution. Available online: https://www.designboom.com/technology/bmw-c-evolution-electric-motorcycle-04-30-2014/ (accessed on 28 October 2018).
- KiCad, KiCAD EDA Home Page. Available online: http://kicad-pcb.org/ (accessed on 28 October 2018).
- Kim, J.; Lee, S.; Cho, B.H. Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans. Power Electron. 2012, 27, 436–451. [Google Scholar] [CrossRef]
- Noriega-Linares, J.; Ruiz, J.N. On the Application of the Raspberry Pi as an Advanced Acoustic Sensor Network for Noise Monitoring. Electronics 2016, 5, 74. [Google Scholar] [CrossRef]
- Raspberry Pi. Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (accessed on 28 October 2018).
- Kong, Y.; Lee, S.; Lee, J.; Nam, Y. A head-mounted goggle-type video-oculography system for vestibular function testing. EURASIP J. Image Video Proc. 2018, 28. [Google Scholar] [CrossRef]
- Paul, N.; Chung, C.J. Application of HDR algorithms to solve direct sunlight problems when autonomous vehicles using machine vision systems are driving into sun. Comput. Ind. 2018, 98, 192–196. [Google Scholar] [CrossRef]
- Kölling, M. Educational Programming on the Raspberry Pi. Electronics 2016, 5, 33. [Google Scholar] [CrossRef]
- Python, “Python.”. Available online: https://www.python.org/about/ (accessed on 28 October 2018).
- Baronti, F.; Zamboni, W.; Femia, N.; Roncella, R.; Saletti, R. Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 6728–6733. [Google Scholar]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- C. USA, CALB Additional Information. Available online: http://www.calbusainc.com/additional-information/ (accessed on 28 October 2018).
- Xie, J.; Ma, J.; Chen, J. Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect. Energies 2018, 11, 1112. [Google Scholar] [CrossRef]
- Paul, S.; Diegelmann, C.; Kabza, H.; Tillmetz, W. Analysis of ageing inhomogeneities in lithium-ion battery systems. J. Power Sources 2013, 239, 642–650. [Google Scholar] [CrossRef]
Parameter | Electrochemical Workstations | High-Current Cell Tester | Battery Test Systems |
---|---|---|---|
Current range | ±2.5 A | ±250 A | ±1000 A |
Voltage range | 0 V–5 V | 0 V–5 V | 0 V–600 V |
Max. sampling frequency | 2 kHz–4 MHz | 100 Hz | 50 Hz |
High frequency analysis | Yes | No | No |
Realistic load profiles | No | Yes | Yes |
Individual aging-analysis on large number of cells | No | Without high frequency analysis | No |
CST Parameter | Target Specification |
---|---|
Instrument typology | Single Cell station tester |
Nominal cell capacity range | From 10 to 60 Ah |
Input voltage range | Up to 4.5 V |
Maximum discharge current | 100 A |
Maximum charge current | 50 A |
Quantity | Precision | Max. Absolute Trueness |
---|---|---|
Voltage | 8.94 µV | 9.37 mV |
Current | 8.64 mA | 61.59 mA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carloni, A.; Baronti, F.; Di Rienzo, R.; Roncella, R.; Saletti, R. Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi. Electronics 2018, 7, 454. https://doi.org/10.3390/electronics7120454
Carloni A, Baronti F, Di Rienzo R, Roncella R, Saletti R. Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi. Electronics. 2018; 7(12):454. https://doi.org/10.3390/electronics7120454
Chicago/Turabian StyleCarloni, Andrea, Federico Baronti, Roberto Di Rienzo, Roberto Roncella, and Roberto Saletti. 2018. "Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi" Electronics 7, no. 12: 454. https://doi.org/10.3390/electronics7120454
APA StyleCarloni, A., Baronti, F., Di Rienzo, R., Roncella, R., & Saletti, R. (2018). Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi. Electronics, 7(12), 454. https://doi.org/10.3390/electronics7120454