All-in-One Wafer-Level Solution for MMIC Automatic Testing
Abstract
:1. Introduction
2. The Main Problems of the Current MMICs Test
3. The Improvements in Measurement Accuracy
3.1. S-parameter Test
3.2. Power and Non-Linearity Test
3.3. Noise Parameter Test
- F is noise factor, as a ratio, Fmim is minimum noise factor, NF is the dB quantity;
- ENRdB is the excess noise ratio of the noise source, in dB;
- The Δ terms are the associated uncertainties, always in dB; and
- S = 1 for a single-frequency measurement.
4. The Improvements for Measurement Efficiency
5. All-in-One Solution and Measurement Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adam, S.F. 50 years or more on RF and Microwave Measurements Microwave Symposium Digest. In Proceedings of the IEEE MTT-S International Conference on Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 993–995. [Google Scholar]
- Kim, D.; Lee, D.-H.; Sim, S.; Jeon, L.; Hong, S. An X-Band Switchless Bidirectional GaN MMIC Amplifier for Phased Array Systems. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 878–880. [Google Scholar] [CrossRef]
- Masuda, S.; Yamada, M.; Kamada, Y.; Ohki, T.; Makiyama, K.; Okamoto, N.; Imanishi, K.; Kikkawa, T.; Shigematsu, H. GaN single-chip transceiver frontend MMIC for X-band applications. In Proceedings of the IEEE/MTT-S International Conference on Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012. [Google Scholar]
- Choi, P.; Goswami, S.; Radhakrishna, U.; Khanna, D.; Boon, C.-C.; Lee, H.-S.; Antoniadis, D.; Peh, L.-S. A 5.9-GHz Fully Integrated GaN Frontend Design With Physics-Based RF Compact Model. IEEE Trans. Microw. Theory Tech. 2015, 63, 1163–1173. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Li, Y.; Li, X.; Liu, H.; Xiong, Y.-Z. An 890 mW stacked power amplifier using SiGe HBTs for X-band multifunctional chips. In Proceedings of the 41st European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, 14–18 September 2015. [Google Scholar]
- Malta, D.; Vick, E.; Lueck, M.; Huffman, A.; Woodruff, S.; Ralston, P.; Hartman, J.; Bushyager, N.; Ebner, G.D.; Quade, S.; et al. TSV-Last, Heterogeneous 3D Integration of a SiGe BiCMOS Beamformer and Patch Antenna for a W-Band Phased Array Radar. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016. [Google Scholar]
- Meniconi, E.; Ziegler, V.; Sorrentino, R.; Chaloun, T. 3D integration technologies for a planar dual band active array in Ka-band. In Proceedings of the 2013 European Microwave Conference (EuMC), Nuremberg, Germany, 6–10 October 2013. [Google Scholar]
- Pavlidis, S.; Alexopoulos, G.; Ulusoy, A.Ç.; Cho, M.K.; Papapolymerou, J. Encapsulated Organic Package Technology for Wideband Integration of Heterogeneous MMICs. IEEE Trans. Microw. Theory Tech. 2017, 65, 438–448. [Google Scholar] [CrossRef]
- Boulanger, N.; Rumelhard, C.; Carnez, B.; Boulanger, L.; Sentubery, C. On Wafer Automatic Three Ports Measurement System for MMIC Circuits and Dual Gate FETs. In Proceedings of the 20th European Microwave Conference, Budapest, Hungary, 9–13 September 1990; Volume 1, pp. 220–225. [Google Scholar]
- Lin, E.W.; Huang, T.W.; Lo, D.C.W.; Wang, H.; Yang, D.C.; Dow, G.S.; Allen, B.R. Versatile W-band On-wafer MMIC Test Set. In Proceedings of the 47th ARFTG Conference Digest-Spring, San Francisco, CA, USA, 20–21 June 1996; Volume 29, pp. 220–225. [Google Scholar]
- Kamenopolsky, S.; Dankov, P. Automated measurement setup for Ku band MMIC characterization. In Proceedings of the 59th ARFTG Conference Digest, Spring 2002, Seattle, WA, USA, 7 June 2002. [Google Scholar] [CrossRef]
- Vael, P.; Rolain, Y. Calibrated linear and nonlinear pulsed RF measurements on an amplifier. Microwave Symposium Digest. In Proceedings of the 2001 IEEE MTT-S International Conference on Microwave Symposium Digest, Phoenix, AZ, USA, 20–24 May 2001; Volume 3, pp. 2187–2190. [Google Scholar]
- Yang, D.C.; Yang, J.M.; Wiang, H.; Huang, P. Characterization of W-band MMIC power amplifier using on-wafer pulsed power test. Microwave Symposium Digest. In Proceedings of the 1998 IEEE MTT-S International Conference on Microwave Symposium Digest, Baltimore, MD, USA, 7–12 June 1998; Volume 3, pp. 1483–1486. [Google Scholar]
- Doo, S.J.; Roblin, P.; Lee, S.; Chaillot, D.; Bossche, M.V. Pulsed-IV pulsed-RF measurements using a large signal network analyzer. In Proceedings of the 65th ARFTG Conference Digest, Spring 2005, Long Beach, CA, USA, 17 June 2005. [Google Scholar]
- Roblin, P.; Ko, Y.S.; Yang, C.K.; Suh, I.; Doo, S.J. NVNA Techniques for Pulsed RF Measurements. Microw. Mag. IEEE 2011, 12, 65–76. [Google Scholar] [CrossRef]
- Zhu, N.H. Phase Uncertainty in Calibrating Microwave Test Fixtures. IEEE Trans. Microw. Theory Tech. 1999, 41, 1917–1922. [Google Scholar] [CrossRef]
- Keysight. Specifying Calibration Standards and Kits for Keysight Vector Network Analyzers; Application Note 1287-11; Keysight: Palo Alto, CA, USA, 2011. [Google Scholar]
- Crupi, G. Dominique Schreurs, Microwave De-Embedding: From Theory to Applications; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Lee, J. Modeling of SOL calibration standards for PCB channel probing. IEEE Electromagn. Compat. Mag. 2016, 5, 123–127. [Google Scholar] [CrossRef]
- Joel, D.; Wood, S. Vector Corrected Noise Figure and Noise Parameter Measurements of Differential Amplifiers. In Proceedings of the 39th European Microwave Conference, Rome, Italy, 29 September–1 October 2009. [Google Scholar]
- Nguyen, H.V.; Misljenovic, N.; Hosein, B. Efficient Noise Extraction Algorithm and Wideband Noise Measurement System from 0.3 GHz to 67 GHz. In Proceedings of the 2013 81st ARFTG Microwave Measurement Conference (ARFTG), Seattle, WA, USA, 7 June 2013. [Google Scholar] [CrossRef]
- Keysight. High-Accuracy Noise Figure Measurements Using the PNA-X Series Network Analyzer; Keysight: Palo Alto, CA, USA, 2013. [Google Scholar]
- Salnikov, A.S. Evgeny Karataev Software programs for storage and statistical analysis of MMIC measurement data. In Proceedings of the 21th International Crimean Conference on Microwave and Telecommunication Technology (CriMiCo), Sevastopol, Ukraine, 12–16 September 2011; pp. 212–213. [Google Scholar]
- Virtual Instrument Software Architecture; Radoslav, L. (Ed.) Pon Press: New York, NY, USA, 2012; pp. 10–40. [Google Scholar]
- Wartenberg, S.A. RF Measurements of Die and Packages; Artech House: Norwood, UK, 2002. [Google Scholar]
- Dunsmore, J.P. Handbook of Microwave Component Measurements: With Advanced VNA Techniques; Wiley: Palo Alto, WA, USA, 2012. [Google Scholar]
- Eppati. Modern RF and Microwave Measurement Techniques; Cambridge University Press: Cambridge, UK, 2013; pp. 30–50. [Google Scholar]
- Benet, J.A. The Design and Calibration of a Universal MMIC Test Fixture. Microw. Millim. Wave Monolithic Circuits 1982, 82, 36–41. [Google Scholar]
- Penn, J.E.; Moore, C. GaAs MMIC Probe Measurements and Calibration Techniques. In Proceedings of the 39th ARFTG Conference Digest-Spring, Albuquerque, NM, USA, 5 June 1992; Volume 21. [Google Scholar]
- Shoaib. The Calibration of 2-Port Vector Network Analyzer; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2012; pp. 60–80. [Google Scholar]
- Keysight. Measuring Power-Added Efficiency (PAE) with PNA Network Analyzers (1408-16)—Application Note; Keysight: Palo Alto, CA, USA, 2007. [Google Scholar]
- R&S. Power Added Efficiency Measurement with R&S ZNB/R&S ZVA; R&S: Muenchen, Germany, 2013. [Google Scholar]
- Keysight. Noise Figure Measurement Accuracy the Y-Factor Method; Keysight: Palo Alto, CA, USA, 2013. [Google Scholar]
- Keysight. Fundamentals of RF and Microwave Noise Figure Measurements; Keysight: Palo Alto, CA, USA, 2010. [Google Scholar]
- R&S. Noise Figure Measurement without a Noise Source on a Vector Network Analyzer; R&S: Muenchen, Germany, 2010. [Google Scholar]
- Morris, M.W.; Shaw, B.L.; Ziomek, C.D. Modular & benchtop instrument convergence decreases test costs and increases productivity. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Baltimore, MD, USA, 17–20 September 2011. [Google Scholar]
- Keysight. PNA Series Network Analyzers Help (User Guide, Programming Guide); Keysight: Palo Alto, CA, USA, 2014. [Google Scholar]
- R&S. R&S ZVA, R&S ZVB, R&S ZVT Operating Manual; R&S: Muenchen, Germany, 2014. [Google Scholar]
- High Performance, Broadband Network Analysis Solutions, ME7838A/D/E Series Vector Network Analyzers Technical Data Sheet. Available online: http://gomeasure.dk/wp-content/uploads/2017/02/ ME7838A.pdf (accessed on 1 April 2018).
Test Indicators | Class | |
---|---|---|
1 | ID (Drain current) | DC characteristics |
2 | IG (Gate current) | DC characteristics |
3 | Pinch-off voltage | DC characteristics |
4 | Overshoot | DC characteristics |
5 | VSWRIn (Input standing-wave ratio) | S-parameter |
6 | VSWROut (Output standing-wave ratio) | S-parameter |
7 | Linear gain | S-parameter |
8 | Phase | S-parameter |
9 | POut (Output power) | Power and non-linearity |
10 | GC (Gain compression) | Power and non-linearity |
11 | PAE (Power added efficiency) | Power and non-linearity |
12 | Spectrum and non-linearity | Power and non-linearity |
13 | NF (Noise figure) | Noise parameters |
14 | NFMin (Minimum noise figure) | Noise parameters |
15 | RN (Noise resistance) | Noise parameters |
16 | ΓOpt (Optimum source impendence) | Noise parameters |
17 | Magnitude consistency | Statistics |
18 | Phase consistency | Statistics |
DC | S-Parameter | Power and Non-Linearity | Noise | |
---|---|---|---|---|
PA | √ | √ | √ | × |
LNA | √ | √ | × | √ |
MFC | √ | √ | √ | × |
Passive | × | √ | × | × |
Instruments | |
---|---|
DC | 1. DC power supply 2. DMM (digital multimeter) 3. Oscilloscope |
S-parameter | 4. VNA (vector network analyzer) |
Power and non-linearity | 5. SG (signal generator) 6. AWG (arbitrary waveform generator) 7. PM (power meter) and power sensor 8. SA (Spectrum analyzer) |
Noise | 9. Noise source 10. NFA (noise figure analyzer) |
Number of instruments | 10 |
System Error | Random Error | Drift Error | |
---|---|---|---|
Calibration | √ | × | × |
Verification | √ | √ | √ |
Automation | × | √ | √ |
Points | NFA | PSA | EXA | This Work |
---|---|---|---|---|
11 | 2.8 | 2.2 | 2.1 | 2 |
51 | 11 | 9 | 9 | 2.6 |
101 | 21 | 18 | 18 | 3.1 |
201 | 42 | 35 | 36 | 4.2 |
DUT | Main Indicators | |
---|---|---|
PA | Frequency range | X-band |
POut | >34dBm | |
Gain | >25dB | |
PAE | >47% | |
LNA | Frequency range | X-band |
Gain | >26dB | |
VSWRIn/VSWROut | <1.8 | |
NF | <1.2dB |
Item | Traditional Systems | This Work |
---|---|---|
Test coverage | Poor, even assisted by complex switching, partial indicators cannot be measured | Good, all test in one contact |
DC accuracy | Good | Good |
S-parameter accuracy | Good | Better, without the influence of the switches |
Power and non-linearity accuracy | Moderate, with scalar correction | Good, with full vector correction |
Noise accuracy | Poor, without vector correction | Good, with full vector correction |
Item | Traditional Systems | This Work |
---|---|---|
ID and IG | 22 | <1 |
S-parameter | 1 | <1 |
POut and PAE | 11 | <1 |
2D GC List | × | 2 |
IMD | × | 2 |
NF | >55 | 3 |
Spectrum | >60 | 4 |
Switching | 10 | <1 |
Data Process | 10 | <2 |
Total | >169 | ≈15 |
Improvement | - | >11X |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wang, Z.; Liu, J.; Zhou, M.; Chen, W.; Chen, H.; Mo, J.; Yu, F. All-in-One Wafer-Level Solution for MMIC Automatic Testing. Electronics 2018, 7, 57. https://doi.org/10.3390/electronics7050057
Ding X, Wang Z, Liu J, Zhou M, Chen W, Chen H, Mo J, Yu F. All-in-One Wafer-Level Solution for MMIC Automatic Testing. Electronics. 2018; 7(5):57. https://doi.org/10.3390/electronics7050057
Chicago/Turabian StyleDing, Xu, Zhiyu Wang, Jiarui Liu, Min Zhou, Wei Chen, Hua Chen, Jiongjiong Mo, and Faxin Yu. 2018. "All-in-One Wafer-Level Solution for MMIC Automatic Testing" Electronics 7, no. 5: 57. https://doi.org/10.3390/electronics7050057
APA StyleDing, X., Wang, Z., Liu, J., Zhou, M., Chen, W., Chen, H., Mo, J., & Yu, F. (2018). All-in-One Wafer-Level Solution for MMIC Automatic Testing. Electronics, 7(5), 57. https://doi.org/10.3390/electronics7050057