The Platform Development of a Real-Time Momentum Data Collection System for Livestock in Wide Grazing Land
Abstract
:1. Introduction
2. System Design and Structure
3. System Implementation and Test
3.1. Data Transeiver Module with Sensor
3.2. DATA Transmission and Repeater
3.3. Format of Communication Protocol and Data Analysis
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nakade, K.; Ikeuchi, K. Optimal ordering and pricing on clearance goods. Int. J. Ind. Eng. 2016, 23, 155–165. [Google Scholar]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef]
- Hahm, T.S. A Legal study on trends and issues of animal law in the US—Focusing on criminal issues. Study Am. Const. 2015, 26, 337–378. [Google Scholar]
- Jung, K.S. The efficient policy programs of the livestock pollution abatement. Korean J. Agric. Manag. Policy 2001, 28, 167–185. [Google Scholar]
- Jang, W.K. Improvement of livestock environment for the livestock’s epidemic. In Proceedings of the Spring Conference of the Korean Journal of Environment Agriculture, Daejeon, Korea, 17 May 2011; pp. 3–23. [Google Scholar]
- Kim, G.N. The National Guide for Raising of Korean Cow; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2002; pp. 86–90. [Google Scholar]
- Chen, Y.; Shang, J. Disconnect analysis and influence factors of animal husbandry in China. China Popul. Resour. Environ. 2014, 24, 101–107. [Google Scholar]
- Park, M.S. Structural change in agriculture—Raw data analysis of 2005 agricultural census report 2005. Coop. Manag. Rev. 2005, 37, 1–28. [Google Scholar]
- Keshtgari, M.; Deljoo, A. A wireless sensor network solution for precision agriculture based on Zigbee technology. Wirel. Sens. Netw. 2012, 4. [Google Scholar] [CrossRef]
- Othman, M.F.; Shazali, K. Wireless sensor network applications: A study in environment monitoring system. Procedia Eng. 2012, 41, 1204–1210. [Google Scholar] [CrossRef]
- Kwong, K.H.; Wu, T.T.; Goh, H.G.; Sasloglou, K.; Stephen, B.; Glover, I.; Shen, C.; Du, W.; Michiel, C.; Andonovic, I. Implementation of herd management systems with wireless sensor networks. IET Wirel. Sens. Syst. 2011, 1, 55–65. [Google Scholar] [CrossRef]
- Yoon, M.; Chang, J.W. Design and implementation of an advanced cattle shed management system using an infrared wireless sensor nodes and surveillance camera. J. Korea Contents Assoc. 2010, 12, 22–34. [Google Scholar] [CrossRef]
- Kim, Y.B.; Choi, D.W. Design of business management system for livestock pens based of IoT. J. Korean Entertain. Ind. Assoc. 2014, 8, 207–216. [Google Scholar] [CrossRef]
- Park, M.C.; Ha, O.K. Development of effective cattle health monitoring system based on biosensors. Adv. Sci. Technol. 2015, 117, 180–185. [Google Scholar]
- Kim, H.G.; Yang, C.J.; Yoe, H. Design and implementation of livestock disease forecasting system. J. Korean Inst. Commun. Inf. Sci. 2012, 37, 1263–1270. [Google Scholar] [CrossRef]
- Muhammad, F.; Thar, B.; Masood, K.A.; Babar, S.; Saiqa, A.; Francis, C. Context mining of sedentary behaviour for promoting self-awareness using a smartphone. Sensors 2018, 18, 874. [Google Scholar] [CrossRef]
- Muhammad, F. Alert Me: Enhancing active lifestyle via observing sedentary behavior using mobile sensing systems. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017. [Google Scholar]
- Fahim, M.; Khattak, A.M.; Baker, T.; Chow, F.; Shah, B. Micro-context recognition of sedentary behaviour using smartphone. In Proceedings of the 2016 Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Konya, Turkey, 21–23 July 2016. [Google Scholar]
- Senthilnath, J.; Harikumar, K.; Suresh, S. Dynamic area coverage for multi-UAV using distributed UGVs: A two-stage density estimation approach. In Proceedings of the Conference: IEEE International Conference on Robotic Computing, Laguna Hills, CA, USA, 31 January–2 February 2018. [Google Scholar]
- Gong, D.; Yang, Y. Low-latency sinr-based data gathering in wireless sensor networks. IEEE Trans. Wirel. Commun. 2014, 13, 3207–3221. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lin, Y.S.; Wu, N.C.; Shin, C.H.; Cheng, C.H. Scenario planning and implementing of a dairy cattle UHF RFID management system. Proceedings of 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013); Springer: Berlin/Heidelberg, Germany, 2014; pp. 643–654. [Google Scholar]
- Gutiérrez, A.; Dopico, N.I.; González, C.; Zazo, S.; Jiménez-Leube, J.; Raos, I. Cattle-powered node experience in a heterogeneous network for localization of herds. IEEE Trans. Ind. Electron. 2013, 60, 3176–3184. [Google Scholar] [CrossRef]
- RFM69HCW Datasheet, HOPERF. Available online: http://www.hoperf.com/upload/rf/RFM69HCW-V1.1.pdf (accessed on 22 April 2018).
- Senthilnath, J.; Kandukuri, M.; Dokania, A.; Ramesh, K.N. Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric. 2017, 140, 8–24. [Google Scholar] [CrossRef]
- Wadhwa, L.K.; Deshpande, R.S.; Priye, V. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Netw. 2016, 37, 295–300. [Google Scholar] [CrossRef]
- Wei, K.M.; Dong, M.X.; Weng, J.; Shi, G.Z.; Ota, K.R.; Xu, K. Congestion-aware message forwarding in delay tolerant networks: A community perspective. Concurr. Comput. Pract. Exp. 2015, 27, 5722–5734. [Google Scholar] [CrossRef]
- Mavromoustakis, C.X.; Karatza, H.D. Real-time performance evaluation of asynchronous time division traffic-aware and delay-tolerant scheme in ad hoc sensor networks. Int. J. Commun. Syst. 2010, 23, 167–186. [Google Scholar] [CrossRef]
- Bali, R.S.; Kumar, N.; Rodrigues, J.J.P.C. An efficient energy-aware predictive clustering approach for vehicular ad hoc networks. Int. J. Commun. Syst. 2017, 30, e2924. [Google Scholar] [CrossRef]
- Wei, K.; Guo, S.; Zeng, D.; Xu, K. A multi-attribute decision making approach to congestion control in delay tolerant networks. In Proceedings of the IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 2748–2753. [Google Scholar]
- Kim, S.J.; Jee, S.H.; Cho, H.C.; Kim, C.S.; Kim, H.S. Implementation of unmanned cow estrus detection system for improving impregnation rate. J. Korean Acad. Ind. Coop. Soc. 2015, 16, 1–11. [Google Scholar] [CrossRef]
- Andersson, L.M.; Okada, H.; Miura, R.; Zhang, Y.; Yoshioka, K.; Aso, H.; Itoh, T. Wearable wireless estrus detection sensor for cows. Comput. Electron. Agric. 2016, 127, 101–108. [Google Scholar] [CrossRef]
- Bauckhage, C.; Kersting, K. Data mining and pattern recognition in agriculture. KI-Künstliche Intell. 2013, 27, 313–324. [Google Scholar] [CrossRef]
- Guo, Y.; Corke, P.; Poulton, G.; Wark, T.; Bishop-Hurley, G.; Swain, D. Animal behaviour understanding using wireless sensor networks. In Proceedings of the 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 607–614. [Google Scholar]
- Gutierrez-Galan, D.; Dominguez-Morales, J.P.; Cerezuela-Escudero, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Rivas-Perez, M.; Dominguez-Morales, M.; Jimenez-Fernandez, A.; Linares-Barranco, A. Embedded neural network for real-time animal behavior classification. Neurocomputing 2018, 272, 17–26. [Google Scholar] [CrossRef]
Repeater No. [01] | Receive Data |
---|---|
Origin Time | Received Data Packet |
13:02:28 | FF FB FC F3 02 01 8C 9C 1B 39 00 07 FD FE FF |
13:02:31 | FF FB FC F3 03 01 01 0B E2 E5 00 0A FD FE FF |
13:02:34 | FF FB FC F3 04 01 0D 06 E4 EF 00 0C FD FE FF |
13:02:36 | FF FB FC F3 05 01 71 33 C5 62 00 0F FD FE FF |
13:02:39 | FF FB FC F3 06 01 55 68 1D D4 00 12 FD FE FF |
13:02:42 | FF FB FC F3 07 01 16 35 D8 1E 00 15 FD FE FF |
13:02:45 | FF FB FC F3 08 01 01 06 DE E1 00 18 FD FE FF |
13:02:49 | FF FB FC F3 09 01 0D 14 D5 F3 00 1B FD FE FF |
13:02:52 | FF FB FC F3 0A 01 03 27 CB F3 00 1E FD FE FF |
13:02:55 | FF FB FC F3 0B 01 06 1B 19 39 00 21 FD FE FF |
Packet Buffer | Index No. | Meaning | Value | |
---|---|---|---|---|
Min. | Max. | |||
RF TX Buffer | 0 | 0xFF (Start-Sync.-First check bit) | 252 | 252 |
1 | 0xFB (Start-Sync.-Mid. check bit) | 1 | 250 | |
2 | 0xFC (Start-Sync.-Final check bit) | 252 | 252 | |
3 | Sensor ID | 1 | 250 | |
4 | Flag Bits (DATA) | 0 | 127 | |
5 | Number of activities (present) | 0 | 250 | |
6 | Number of activities (before 10 Min.) | 0 | 250 | |
7 | Number of activities (before 20 Min.) | 0 | 250 | |
8 | Packet Sequence Number | 0 | 250 | |
9 | Check Sum | 0 | 250 | |
10 | Time data bit—MSB (counting the time) | |||
11 | Time data bit—LSB (counting the time) | |||
12 | 0xFD (End-Sync. check bit) | It can be extension. | ||
13 | 0xFE (End-Sync. check bit) | |||
14 | 0xFE (End-Sync. check bit) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Kim, J.; LEE, Y. The Platform Development of a Real-Time Momentum Data Collection System for Livestock in Wide Grazing Land. Electronics 2018, 7, 71. https://doi.org/10.3390/electronics7050071
Zhang L, Kim J, LEE Y. The Platform Development of a Real-Time Momentum Data Collection System for Livestock in Wide Grazing Land. Electronics. 2018; 7(5):71. https://doi.org/10.3390/electronics7050071
Chicago/Turabian StyleZhang, Liang, Jongwon Kim, and Yongho LEE. 2018. "The Platform Development of a Real-Time Momentum Data Collection System for Livestock in Wide Grazing Land" Electronics 7, no. 5: 71. https://doi.org/10.3390/electronics7050071
APA StyleZhang, L., Kim, J., & LEE, Y. (2018). The Platform Development of a Real-Time Momentum Data Collection System for Livestock in Wide Grazing Land. Electronics, 7(5), 71. https://doi.org/10.3390/electronics7050071