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Abstract: A novel varactor circuit exhibiting a wider tuning range and a new technique for
quadrature coupling of LC-Voltage Controlled Oscillator (LC-VCO) is presented and validated
on a 25 GHz oscillator. The proposed varactor circuit employs distribute-biased parallel varactors
with a series inductor connected at both ends of the varactor bank to extend the tuning range of
the oscillator. Similarly, the quadrature coupling is accomplished by employing the 2nd harmonic,
explicitly generated in the stand-alone free-running differential oscillator using frequency doubler.
As an example, the Differential VCO (DVCO) is tunable between 20 GHz and 31 GHz and exhibits the
best Phase Noise (PN) of −100 dBc/Hz at 1 MHz offset frequency. Similarly, the Quadrature VCO
(QVCO) covers 42% tuning bandwidth around 25 GHz oscillation frequency, which is significantly
wider than other state-of-the-art VCOs at comparable frequencies. In addition, all the oscillators
are designed in class-C to further improve their performances both in term of low power and low
phase noise. The presented oscillators are designed using high-performance SiGe HBTs of the
GlobalFoundries (GFs) 130 nm SiGe BiCMOS 8HP process. The presented DVCO and QVCO draw
currents of approximately 10 mA and 21 mA, respectively from a 1.2 V supply.

Keywords: millimeter wave oscillator; wideband VCO; superharmonic coupling; QVCO; oscillation
bandwidth; varactor

1. Introduction

Modern wireless communication is transforming into future 5G and the demand for high data-rate
communication with increased bandwidth requirements is increasing. Voltage Controlled Oscillator
(VCO) as one of the key components is used in modern phase-locked loop (PLL) to provide local
frequency signal. It is critical for VCOs that can robustly provide wider tuning range (TR) at mm-wave
frequency region with low phase noise. To date, many oscillators featuring low-power consumption
(PDC), low phase noise (PN) and wide TR in K-band have been reported [1–8]. However, it is still
challenging and uncommon to design VCO with optimized trade-off to simultaneously achieve
a wide TR with low PN and low PDC. For example, in [1], two K-band SiGe bipolar VCOs using
transformer-coupled varactors are presented. But they can only be tuned from 18.6 to 21.2 GHz
and 20.4 GHz to 24.2 GHz, resulting only in 13% and 17% tuning ranges, respectively. Similarly,
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triple-couple inductor as part of the LC-Tank, to couple multiple varactors, is implemented to get more
linear and wider TR, but only 15.8% TR is achieved at K-band [2]. In [3], the reported differential
VCO utilizes current-reuse and transformer-feedback techniques fabricated in the standard bulk
90 nm CMOS process, can only achieve 4.8% tuning bandwidth at K-frequency band. Similarly,
various Negative Capacitance (NC) circuits were integrated with traditional LC-VCOs to cancel out
the parasitics (produced mainly by the LC-tank and cross-coupled pair) to expand the TR [9,10].
For example, in [9], the NC circuit is used to shift the oscillation frequency from 20.1 to 31.6 GHz,
which, although it improves the TR% from 5.7 to 12.4%, it makes the power consumption too high
(590 mW) and worsens the phase noise to −88 dBc/Hz. Similarly, a tunable differential NC circuit
was designed in [10] to compensate the parasitic capacitances and is realized by connecting the NC
circuit to the source of the cross-coupled transistors of the LC-VCO; however, it affected the start-up
condition. Therefore, the NC of [10] only had a small effect on the resonance frequency ( fRES) and TR.

Similarly, the Quadrature Voltage Controlled Oscillators (QVCOs) play an important role in many
fully-integrated, low cost, radio-frequency transceivers requiring I/Q modulation/demodulation.
To provide Quadrature Local Oscillator (LO) signals, various techniques are endorsed. Two approaches
are very common for quadrature LO generation: (1) divide-by-two [11] and (2) polyphase filter
techniques [12]. However, the earlier is more power hungry since the system oscillator needs to be
operated at twice the desired frequency, while the later suffers from low quadrature accuracy as well
as requiring an additional buffer to boost the output power. Later, the LC-based QVCOs are presented
for the generation of quadrature LO signals without employing divide-by-two or polyphase filters,
which resulted in huge reductions in power consumption as well as improved accuracy [13].

LC-based QVCOs are obtained by employing antiphase coupling between two identical
differential oscillators. The antiphase connection is realized using a coupling network, either
an active or passive coupling. The circuit techniques employing active coupling are parallel coupling
(P-QVCO) [13], series coupling (S-QVCO) [3], top- and bottom-series coupling (TS-QVCO and
BS-QVCO) [14], sub- and super-harmonic coupling [15,16], body-biased coupling [17], In-phase
injection-coupling [18], complementary coupling [19] etc. Similarly, passive coupling techniques
like inductor-based superharmonic coupling [20], transformer coupling [21], and coupling using
transmission lines [22] are used for quadrature LO generation.

Firstly, we emphasized to attain wider TR at K-frequency band. To realize this, we proposed
a novel varactor circuit that consists of two similar branches of varactors, biased at different voltages.
They are also cascaded with two inductors, each connected to the common nodes of the varactor
bank at both sides. The proposed varactor scheme exhibits wider TR at mm-wave frequency. Besides,
the TR of the VCO is enhanced by properly designing the VCO-core and aligning the consecutive
frequency tuning characteristics with sufficient overlap margin to avoid blind zones between them.
In addition, a novel technique for quadrature generation is proposed in this work. Subsequently,
the two similar bandwidth-enhanced differential oscillators that we proposed in our first work are
locked in quadrature by implementing the proposed quadrature generation technique. Hence, both the
differential and quadrature VCOs cover a minimum of 42% bandwidth around 25 GHz with total
power consumptions of 12 mW and 25 mW, respectively from 1.2 V supply.

The rest of the paper is organized as follows. The technical arguments for the selection of
an appropriate fabricating technology as well as the LC-oscillator topology based on their inherent
PN and power consumption characteristics are outlined in Section 2. Section 3 describes the TR and
design implementation of the proposed varactor circuit. Section 4 reports the post-layout simulation
results of the differential and quadrature oscillators, both integrated with proposed wideband varactor
circuit. The entire work is finally concluded in Section 5.
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2. Design Consideration for Low PN and Wideband VCO

2.1. Technology Overview

Moving up with frequency, the losses increase intensively and requirements of the communication
systems become more and more rigorous. So, the devices must have higher ft and higher power
handling capabilities in order to meet the stringent requirements of the communication systems.
State-of-the-art SiGe BiCMOS technology can stand as the best candidate for its excellent performance,
featuring high ft/fmax, high reliability and extended temperature range, making this technology
a potential candidate for mm-wave circuit designs.

The VCO, as part of the frequency synthesizer, is a key building block in high performance wireless
and wireline communication systems. Previously, integrated mm-wave VCOs have been designed
using either GaAs or other III-IV technologies [23,24]. But there has always been an interest to develop
Si-based mm-wave VCOs due to its lower fabrication cost and that it can be easily scaled compared to
III–IV technologies [25,26]. In addition to the implementation cost and system integration, the SiGe
BiCMOS provides the degree of freedom by using MOSFET and HBTs in the same integrated circuits
making this technology very appropriate for designing high-performance RF circuits with digital
logics on the same substrate. Moreover, SiGe HBTs provide high gain and improved noise performance
at extremely low current densities. Also, with lower 1/ f noise, four times better transconductance
and higher breakdown voltage (for the same fmax), the BiCMOS technology stands as an appropriate
technology for the design of high performance VCOs and power amplifiers etc. The proposed wide
TR mm-wave VCO has been designed using 130 nm SiGe BiCMOS technology and is intended to be
integrated in a complete frequency synthesizer for K-band applications.

2.2. Class-C

Among several VCO topologies, LC-VCO topology with core transistors operating in Class-B
and Class-C are implemented for low PN and wide TR. However, for the same power consumption,
3.9 dB improvement on PN is expected when compared to Class-B [27]. Depicted in Figure 1a,
is a typical arrangement of Class-C oscillator in which the base of one transistor in the cross-coupled
pair is ac-coupled from the drain of the other, using Cbias. In addition, a common dc-bias is applied
at the bases of cross-coupled transistors. With this arrangement, the average maximum voltage on
the cross-coupled pair can be observed much smaller in Class-C than in Class-B, thereby preventing
the core transistors to enter into the saturation region, hence results in better phase noise. However,
depending on whether or not the large tail capacitance Ctail is connected to the common node of
transistors Q1 and Q2, the oscillator is operated fully in Class-C or Class-B [27]. A detailed comparative
study of class-B and class-C oscillators has been carried-out in [28].
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Another oscillator topology that can be widely used for high-frequency applications and
particularly in the application of bipolar oscillators, is the Colpitts oscillator (see Figure 1b).
A comprehensive analysis of phase noise in bipolar Colpitts oscillator as well as its comparison
with Class-B oscillator is conducted in [29]. This comparative study is carried out by assuming
the oscillator to operate in current-limited regime for a given tank impedance and bias current.
However, when the analysis is extended to maximize the oscillation amplitude, a better phase noise
is achieved. Nevertheless, the Colpitts oscillator can also be allowed to decrease its phase noise by
setting the feedback factor “n” (from tank to the BJT emitter) high; but this would result in large power
consumption and less efficiency [30]. Hence, it can be concluded that among the aforementioned
topologies we discussed, Class-C LC-Oscillator is a superior topology over others in terms of low
power and low PN for a given tank impedance, supply voltage and oscillation frequency, which has
been chosen for our design.

Low PN is another significant measure of the oscillator. Single-sideband Phase noise (L) of
a generic harmonic oscillator at an offset frequency (∆ω) from the carrier can be expressed as (1) [31].

L(∆ω) =
( ω0

∆ω

)2
[

kBTRS

V2
0

(1 + F)

]
(1)

where kB and T are the Boltzmann constant and temperature, respectively. RS, V0, F and ω0 denote
the inductor’s parasitic series resistance, oscillation amplitude, noise factor and oscillation frequency,
respectively. It can be stated by looking at (1) that the phase noise decreases as the dissipated power
“PDC” is increased at an offset frequency ∆ω. Moreover, an oscillator topology, yielding low noise
factor “F” and providing a high amplitude oscillation “V0” will further help to reduce the phase noise.

3. Circuit Description

The traditional Class-C oscillator arrangement depicted in Figure 1a, consists of a dc-biased
cross-coupled transistors pair, a varactor, fix capacitor bank and an inductor. If the differential
transconductance produced by the cross-coupled transistors compensates the tank losses, then the
frequency of oscillation will be given by (2).

fRES =
1

2π

√
Ltank

(√
CVar + C f ix

) (2)

where CVar and C f ix represent the capacitances of the varactor and switched-capacitor bank,
respectively, that are responsible to coarsely control and finely tune the oscillation frequency. The coarse
control of the oscillation frequency can be accomplished using the input control voltage correspond to
VC (0, 1, . . . ), while the fine tuning of the oscillation frequency can be done using Vcntrl .

3.1. Varactor

Varactor is employed to tune the oscillation frequency of the oscillator by changing the control
voltage across it. For a varactor, the two parameters are very important: (a) the capacitance range
i.e., the ratio of the maximum and minimum capacitances that the varactor can provide as the applied
voltage is varied, and (b) the quality factor, which is limited by the series resistance within the varactor
structure [32]. These two parameters exhibit a trade-off as the frequency goes high, i.e., when the
capacitance is increased, the quality factor is decreased. To employ a high Q varactor, the channel
length must be minimized. However, for a minimum channel length, the overlap capacitance between
the gate and source/drain terminals becomes relatively large, hence limiting the TR. On the other
hand, to get the wider TR, the size of the varactor is increased. However, it is not feasible at high
frequencies e.g., at 25 GHz, since the contribution of the capacitive part of the tank is more significant
in K-band. Particularly, the varactor quality factor degrades intensively if the size of the varactor is set
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too high, which may dominate the resonator loss and hence dissatisfy the startup oscillation condition.
In order to re-start the oscillation, one may increase the core transistors size, but again, the size of the
core transistors cannot be set too large due to the parasitics they add to the tank, which would, in turn,
increase the C f ix, degrading the TR and tensing the already limited capacitance budget. In summary,
it is difficult to achieve high Q and wide TR simultaneously.

Previously, the two types of varactors named as p-n junction diode and n-type accumulation
mode-MOS A-MOS varactors are employed for the implementation of wideband VCOs. The p-n diode
fundamentally works in reverse bias and it needs to be properly biased with the tank to avoid the
forward biasing. One possible formation is shown in Figure 2a, called direct-coupling. However,
the critical limitation of this structure is that Vcntrl always needs to be higher than the supply voltage
to limit the forward biasing. Otherwise, the junction will turn-on and the quality factor will drop
significantly. Another type of varactor that is mostly adopted to tune the oscillation frequency is
the nMOS varactor. The BiCMOS 8HP process provides a standard thin oxide nMOS varactor for
differential circuits. Presented in Figure 2b (left) is the cross-section view and its corresponding
differential version of the varactor that can be employed as a variable capacitor. The variable
capacitance is achieved as the device is biased from depletion to accumulation [33,34].
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corresponding schematic view for differential applications.

Regardless the type of varactor used in the oscillator, their conventional structure always suffers
from the limited TR.

3.2. Proposed Varactor Circuit Implementation

It is aimed to attain the widest possible TR around 25 GHz oscillation frequency. To realize
a wideband VCO, a wideband varactor circuit shown in Figure 3b is proposed exhibiting an extended
TR. Unlike the conventional design shown in Figure 3a, the proposed design consists of two similar
branches of varactors connected in parallel. Each varactor pair is RC-biased at a different bias voltage
generated through the resistive divider circuit. Equal step of biasing voltage is chosen from 1.2 V
supply. Hence Vb1 and Vb2 are chosen as 0.4 V and 0.8 V, respectively. Thus, the steep part of each
characteristic curve in the entire TR is centered on its corresponding biasing voltage, thereby presenting
a more stretched capacitance over the entire voltage control range. In addition, two inductors each at
both ends (in series to the varactor bank) are added to extend the TR. The series connection of inductors
improves the C_max/C_min ratio of the varactor bank and also cancels the parasitic capacitances
introduced by the parallel varactor branches leading to achieve even more wider TR. The varactor’s
series inductors (LL&LR) in Figure 3b have significant effects on the VCO’s operating frequency as
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well as the tuning range, since they are in parallel to the tank inductor (LTank). The TR can be increased
or decreased by respectively increasing or decreasing the value of series inductors. However, a very
large value inductor may dissatisfy the startup of the oscillator as well as the desired center frequency
able to go lower. Likewise, a very small value inductors exhibit small capacitance and thus presenting
narrower tuning range. Therefore, the series inductors need to be decided based on the desired center
frequency as well as the required tuning range. In our designed oscillators, 136 pH inductors are
selected to optimize the oscillator center frequency around 25 GHz with tuning range from 20 GHz to
31 GHz.
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Comparison of the same and single frequency tuning characteristic, based on proposed and
traditional varactor circuits, is presented in Figure 4. The proposed tuning circuit when incorporated
in class-C LC-VCO (see Figure 7) resulted in an overall wider TR.
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The simulation result of Figure 4 is performed by first implementing the conventional varactor
circuit with two identical branches in parallel with a common biasing voltage. Then, the same number
of varactor branches as in conventional design, are implemented in the proposed varactor circuit so that
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the overall capacitance in both cases are maintained. By implementing the proposed varactor circuit,
the covered frequency range is considerably extended more than the range covered with the traditional
varactor circuit. The range covered based on typical and proposed varactors are 1.51 GHz and 2.37 GHz
respectively, which is 56% more wider than the baseline TR. These analyses are based on when the
input control word to the capacitor bank is 101 which corresponds to VC0, VC1, VC2, respectively.
Of course, it will accordingly change as we choose the bottom and top tuning characteristics in the
whole TR.

Plots in Figure 5 represent the F(V) curves of the same discrete tuning curve with different biasing
voltage combinations applied to the varactors. Based on the most widely covered tuning bandwidth,
we chose the varactor biasing voltage as 0.4 V and 0.8 V as Vb1 and Vb2, respectively.

Next, the performance of both the oscillators will be discussed. All simulation results presented
in the following section are done with post-layout.
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4. Post-Layout Simulation Results and Discussion

The designed prototype of differential and quadrature VCOs are presented in Figure 6, with total
covered area (including bond pads) of 0.45 mm2 and 0.7 mm2, respectively. Their corresponding
schematic circuits are provided in Figure 7 and Figure 9.

4.1. Differential VCO (DVCO)

A schematic of the proposed differential VCO with integrated wideband varactor circuit is shown
in Figure 7. The LC-tank consists of an inductor (LTank = 130 pH), 3-bit switched capacitor bank and
the proposed wideband varactor bank. The LC-tank resonator oscillates the desired frequency at
the differential output, which is controlled by the control voltage of the varactors (Vcntrl). The fine
control provides a continuous change in frequency, whereas the coarse control shifts the continuous
characteristic up or down. Fixed capacitance is added between the differential outputs (VCO_P and
VCO_N) of the oscillator by the NMOS transistor switches (Sw1, Sw2, Sw3) as shown in Figure 7 [35].
Depending on the gate voltage applied at VC(n)/VC(0, 1, 2), the switches are turned on or off to add
the capacitance in or out from the tank. The switches add parasitic resistance when turned on, thereby
degrading the PN of the oscillator. Likewise, add parasitic capacitance when turned off, reducing
the TR. The DC-biased cross-coupled transistors (T1 and T2) generate the negative transconductance
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to cancel the parallel tank-resistance to sustain the oscillation. A large biased tail transistor (Ttail) is
connected to the common-emitter node (CN) of T1 and T2 to control current in the circuit.Electronics 2018, 7, x FOR PEER REVIEW  8 of 15 
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Figure 7. Complete schematic of a Differential Voltage Controlled Oscillator (DVCO) incorporated
with proposed wideband varactor circuit.

A differential emitter follower buffer, composed of T3 and T4 with the input/output capacitances
is connected to the differential output of the oscillators in order to prevent the VCO from the loading
effect posed by the external circuitry or measuring equipment. The buffer shown in the schematic
provides low output impedance to the instrumentation while measuring the output at the emitter,
provided that the VCO output is not adversely affected under load. The buffer capacitances (capacitors
between the VCO outputs and T3 and T4) are carefully selected since these capacitances would add
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extra parasitic capacitance to the tank and would limit the maximum operating frequency of the VCO.
Shown in the proposed VCO schematic, one of the two outputs are terminated with on-chip 50 Ω
resistor while the other is left isolated to connect with GSG probe for measurement purpose.

For maximum frequency, the size of the varactor has to be carefully chosen as a trade-off between
QC and capacitance ratio, since the overall quality factor of the tank is affected both by the inductive
and capacitive elements as depicted in (3).

1
QTOT

=
1

QC
+

1
QL

(3)

At frequencies <10 GHz, usually, the inductor quality factor (QL) is the major contributor
to the overall tank quality factor (QTOT). However, at frequencies >20 GHz, Q of the varactor
( QC ∼ (ωRsC)−1) also decreases significantly, while that of the inductor ( QL ∼ (ωLs/Rs)) increases
with frequency. Also, due to the intrinsic behavior of the varactor, it is difficult to obtain high Q and
large C_max/C_min ratio simultaneously to achieve better VCO performance [36]. The proposed
varactor circuit to a large extent breaks the “Q” and “C_max/C_min” trade-off and achieves large
capacitance ratio. Keeping “Q” and “C_max/C_min” trade-off in view, we fixed the varactor size
for its optimized performance. In our work, the varactor biasing voltages (Vb1 = 0.4 V, Vb2 = 0.8 V),
the capacitance ratio (C_max/C_min = 3.88) branch capacitances (104 fF) and two series inductors,
each one of 136 pH are chosen to balance the Q for its widest possible TR at K-band; provided a wider
TR from 20 GHz to 31.1 GHz as shown in Figure 8.Electronics 2018, 7, x FOR PEER REVIEW  10 of 15 
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4.2. Quadrature VCO Using Superharmonic Coupling

The proposed Quadrature VCO (QVCO) is designed using the differential VCO presented
in Section 4.1. This section presents the quadrature VCO based on superharmonic coupling.
Unlike classical LC-QVCOs, this technique cross-injects the 2nd order harmonic at the oscillator
common-mode node to enforce the two free-running differential oscillators oscillate in quadrature,
i.e., the 2nd order harmonic generated through oscillator 1 using frequency-doubler is injected at the
common-mode node of the oscillator 2 and vice versa.
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Intrinsically, the cross-coupled LC-VCOs generate the fundamental and 2nd order harmonic
frequency components that appear at the differential path and common-mode nodes of the oscillator,
respectively. As stated earlier, numerous techniques are proposed to injection-lock the oscillators
using fundamental frequency components. Similarly, if an anti-phase relationship between the two
oscillators at the 2nd order harmonic is established, then the oscillators can also be locked in quadrature.
As an example of superharmonic coupling [11], the two LC-VCOs are locked to oscillate in quadrature
when an anti-phase signal with frequency 2 f0 is injected at the common-mode node of the coupling
oscillators. Hence the QVCO can be understood as an injection-locked frequency divider. However,
the technique presented in [11] requires an external signal source running at twice the desired frequency.
Unlike the injection-locked LC divider presented in [11], this work employs a SiGe HBT frequency
doubler designed by taking the fundamental signal at the base of the transistors (T5 toT9) and generate
the 2nd harmonic frequency at their common-emitter nodes. The bases of these transistors are
AC-coupled and DC-biased with sufficient voltage. In our design, we applied a common bias voltage
to all the biasing points in the circuit in order to maintain low power and allow less number of external
DC voltage sources.

The output obtained from common-emitter node of the frequency doubler (T5, T6) in oscillator 1 is
injected at the common-emitter node of the cross-coupled transistors (T3, T4) of oscillator 2. Similarly,
the same connection is made from oscillator 2 to oscillator 1. Thus, if both LC-VCOs are matched,
then owing to symmetry their differential outputs have to be in quadrature.

The presented QVCO is composed of two identical VCOs, each one integrated with the proposed
wideband varactor circuits. As discussed in Section 3, the fundamental oscillation is available over
a significantly wide frequency bandwidth i.e., 20 GHz to 31 GHz. Since the SiGe HBT frequency
doubler also senses the fundamental oscillation of the proposed wideband DVCO, the 2nd order
harmonic generated by the doubler is also available over a wide frequency range. So, unlike the LC
dividers and injection-locked techniques, the proposed oscillator does not suffer from a limited locking
range. Schematic of the proposed QVCO is presented in Figure 9.
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Using the proposed coupling technique, the post-layout simulated PN of the QVCO demonstrated
in Figure 10 is better than its half part. In fact, the PN of the QVCO is always better than DVCO in the
entire tuning bandwidth as demonstrated in Figure 11. Here, the PN values are taken from various
frequencies interpreted by various combinations of control voltages applied to the capacitor bank.
Hence, it can be established that the PN variation in the entire tuning bandwidth is around 7 dB and
3.3 dB and is always less than −93.1 dBc/Hz and −97.5 dB/Hz for DVCO and QVCO, respectively.
In addition, the PN is better in lower part of the oscillator’s covered bandwidth and it is deteriorated
as the oscillator reaches to its maximum attainable frequency.
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To evaluate the performance of the designed oscillators, a widely accepted Figure-of-Merit (FoM)

is presented in (4).

FoM = L{∆ f } − 20 log
(

f0

∆ f

)
+ 10 log

(
PDC

1mW

)
(4)

where ∆ f , f0 and PDC are the offset frequency from the carrier, center oscillation frequency and total
power, consumed by the core oscillator, respectively.



Electronics 2018, 7, 127 12 of 14

The FoM is considered to be better with more negative values. In addition to (4), a more widely
used expression for FoM is presented to consider the TR of the VCOs as expressed in (5).

FoMT = FoM− 20 log
(

FTR(%)

10

)
(5)

where the FTR is “Frequency Tuning Range” covered by the oscillator as the tuning voltage is varied,
which is calculated using (6).

FTR(%) =

(
fmax − fmin

fCenter

)
∗ 100% (6)

f0 or fCenter is the oscillator center frequency that can be calculated as

fCenter =
fmax + fmin

2
(7)

Getting advantage of wide TR, we calculated FoM with TR (FoMT) for fair comparison. Tables 1
and 2 summarize this work and other state of the art published K/Ka band oscillators.

Table 1. Comparison of reported K/Ka band DVCOs and this work.

Ref. f0 (GHz) PN@1 MHz (dBc/Hz) PDC (mW) FTR (%) FoMT Process

[1] 22.7 −114 18 17 −193 SiGe HBT
[2] 20.85 −100.7 8.1 15.8 −181.8 90 nm CMOS
[3] 20.8 −116.4 3 4.8 −191.6 90 nm CMOS
[4] 24.27 −100.33 7.8 2.2 −179 0.18 µm CMOS
[5] 32.55 −97 19 18.1 −180 0.13 um SiGe BiCMOS
[6] 21.5 −113 130 4.6 −171.8 0.25 um SiGe
[7] 23 −100 4 2 −181 0.13 µm CMOS
[8] 24.5 −95.5 1.7 16.8 −185.4 0.18 µm CMOS

[10] 40 −95 12 27 −184.9 0.13 µm CMOS
[30] 21 −119 70 20 −194 SiGe BiCMOS

Our Work 25.5 −96 12 43 −186 0.13 um SiGe BiCMOS

Table 2. Comparison of reported K/Ka band QVCOs and this work.

Ref. Coupling
Method f0 (GHz) PN@1 MHz

(dBc/Hz) PDC (mW) FTR (%) FoMT I/Q Error Process

[3] Series 20.9 −117.2 6.3 3.1 −185.4 n/a 90 nm CMOS
[13] Parallel 24.7 −111.6 24 4.3 −186 n/a 0.13 µm CMOS

[21] Transformer
Coupled 20 −111.67 40.32 10.4 −181.5 1.5◦ 0.18 µm CMOS

[22] Transmission Line 33 −99 2.64 - −183.7 n/a 0.12 µm SiGe HBT
[25] Series 25.3 −109 14.4 2.81 −185.5 1.8◦ 65 nm CMOS
[26] Parallel 26.1 −114 24 3 −188.5 n/a 0.13 µm CMOS

Our Work Superharmonic
Coupling 25.3 −99.2 25 42 −185.8 1.2◦ 0.13 µm SiGe

BiCMOS

5. Conclusions

In this paper, we presented a wideband differential VCO and superharmonically coupled QVCO,
designed and simulated in 130 nm SiGe BiCMOS 8HP process for K-band applications. The proposed
bandwidth-enhanced varactor circuit is implemented into the LC-VCO that resulted in wider TR.
Further, the quadrature locking is accomplished at the common emitter node of the oscillator using BJT
frequency doubler. The proposed quadrature technique exhibited better PN performance than its half
circuit. Both designs are realized in class-C for improved PN performance. The designed VCOs can
cover >42% tuning bandwidth around 25 GHz oscillation frequency, which is substantially wider than
the VCOs operating at comparable frequencies. Among the reported VCOs that have been compared,
our VCOs demonstrate a competitive FoMT with the highest tuning bandwidth.
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