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Abstract: The design and performance analysis of a 10 kW three-phase DC–DC LCL-type resonant
converter having a built-in boost function were carried out. This high-power converter is proposed for
its application in grid-interfacing a linear generator (LG)-based wave-energy system. Fixed-frequency
control is used, and the converter was designed to operate with a lagging power factor. It is
shown that all switches turn on with zero-voltage switching (ZVS) for wide input voltage and
load variations. This results in reduced switching losses and stresses, which is very important in
large-power applications. The performance of the converter was studied through PSIM simulation
software. Theoretical and simulation results are presented for comparison. Power-loss break-down
analysis of the designed converter was carried out and the summary of results is presented.

Keywords: LCL-resonant converter; DC–DC; integrated boost; dual three-phase bridge; fixed frequency;
ZVS; large power

1. Introduction

Large renewable power plants are supplementing conventional power generation to face the
looming energy crisis. Power from ocean waves is a huge source of renewable power that remains
mostly untapped [1–4]. Wave-energy converters (WEC) are required to convert the motion of waves
into electricity. Technology is slowly advancing to determine a robust WEC device [5–7]. The following
wave-energy conversion technologies are reported in the literature: (i) attenuator, (ii) oscillating water
column, (iii) overtopping, and (iv) point absorber. Among these technologies, one of the point-absorber
type of devices, called Archimedes wave swing (AWS), is currently the most attractive device [8–10].
AWS uses a direct-drive linear generator (LG) to convert its reciprocating motion into electricity [11–15].
The structure and typical waveform of the output voltage of an LG is shown in Figure 1. This electricity
cannot be used since it is a variable low frequency, wide-varying low voltage, and non-sinusoidal
AC power. Hence, a suitable power electronic interface is essential to make this power usable and
facilitate grid interfacing of the wave-energy source [16–18]. For grid interfacing, the variable-voltage
and variable-frequency output power from LG has to be conditioned to match the grid characteristics.
In grid interfacing, the LG output is first converted into DC using a front-end diode rectifier. A two
stage DC–DC converter is used to change the magnitude of input DC voltage and provide galvanic
isolation using a High-Frequency (HF) transformer. In the DC–DC converter, the input DC is first
converted into an HF AC using an HF-switched inverter. This AC is fed to the primary of the
HF transformer to change its voltage level, in addition to providing isolation. The secondary-side
voltage is converted back into the DC using an output rectifier. This DC is finally converted into the
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line-frequency AC of magnitude equal to the grid voltage. The block diagram of grid integration of a
wave-energy plant is shown in Figure 2. The power rating of linear generators used in wave-energy
generation is typically of the order of tens to hundreds of kWs [2–4]. To realize DC systems in such
high-power applications, DC–DC converters are very important, especially when HF transformer
isolation and different voltage levels are required [19]. Different types of direct-drive power takeoff
systems used in harnessing wave energy using linear generators are described in References [20–23].
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DC–DC converters used for this type of application (true with most alternate-energy sources) have
to operate with a very wide change (e.g., 2:1) in input voltage while requiring output-voltage step-up
(boost) characteristics. With the HF transformer isolation and soft-switching, the efficiency of the
DC–DC converters can be increased in addition to reducing the size and cost of the power-conditioning
unit with overall improved performance. Therefore, DC–DC resonant converters are proposed for
this application. Some converter topologies available in the literature for large-power generation
applications are: A 10 kW dual three-phase bridge DC–DC converter was designed, and its
simulation results are given in Reference [24]. Design, analysis, and experimental results of a 600 W
dual-bridge DC–DC converter are presented in Reference [25], and it is proposed for still higher power
ratings. In Reference [26], a comparison of 100 kW DC–DC soft-switching converter topologies is
presented. In Reference [27], the performance of a high power-density 50 kW DC–DC converter with
single-phase dual-active bridge topology is presented. The performance of an LCL-type DC–DC
series resonant-converter topology with experimental results of a 300 W prototype is presented in
Reference [28]. A 1 kW series-parallel DC–DC resonant converter with an input-boosting feature is
described and the experimental results are presented in Reference [29]. The detailed design procedure
of a dual half-bridge LCL-type series resonant converter with integrated boost function is given and
simulation results of a 2.4 kW rating converter are presented in Reference [30]. Steady-state analysis
of a ZVS PWM converter and its small-signal analysis is described, and the experimental results of
a 2 kW prototype are presented in Reference [31]. The experimental results of a 1 MW dual-active
bridge DC–DC converter are presented, and its performance and control are validated in Reference [32].
The design and PSIM simulation study of the performance of a 10 kW three-phase DC–DC LCL-type
series resonant converter with integrated boost function are presented in Reference [33] for steady-state
operating conditions. In Reference [34], it is shown that conduction loss and switching losses are
reduced for an isolated bidirectional dual-active-bridge series-resonant DC–DC converter operating at
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high frequency. The results are validated with a 1 kW prototype of the converter. An isolated high-gain
DC–DC converter for PV applications is proposed, and its performance is studied through simulations
and also by building a prototype of 3 kW power rating in Reference [35]. The steady-state analysis and
performance study of a three-phase DC–DC converter, and the simulation and experimental results
of a 900 W converter prototype, are presented in Reference [36]. The converter topology proposed in
References [24,25] has several advantages over the other topologies. Some of these advantages are
reduced stress on components and filter size with fixed-frequency operation, a wide ZVS range for
wide variations in input voltage, and at least 50% of load can be supplied in the case of a fault on one
of the modules. Hence, this topology has been chosen to design the converter for medium-to-large
power-generation applications. The work presented in this paper is an extension of the author’s
PhD thesis [24]. A performance study of the designed converter under step changes in load through
PSIM simulations is the major contribution. The outline of this paper is as follows: In Section 2,
the circuit details of the designed converter are briefly presented. In Section 3, the design summary
of the converter, including the selection of voltage and power rating, is presented. In Section 4,
the performance of the converter for variations in input voltage and load under a steady state and
for step changes in the load is studied through PSIM simulations, and the results are presented.
Conclusions are drawn in Section 5.

2. Circuit Details of the Designed Converter

The circuit diagram of the converter designed in this paper for large-power applications as
proposed in References [24,25] is shown in Figure 3. This converter consists of two three-phase
inverter bridges, each having six metal-oxide-semiconductor-field-effect-transistors (MOSFETs) with
antiparallel diodes and a lossless snubber capacitor across it. The output terminals of these inverters
are connected to a three-phase diode rectifier through a three-phase resonant circuit consisting of
inductance Ls and capacitance Cs in each phase and a three-phase HF transformer (T1, T2) of 1:nt turns
ratio. These modules are supplied with Vbus and are connected in parallel so that they equally share
the load power. Between the same output phases of the two inverter bridges, the primary windings
of a three-phase HF-boost transformer (T3) of nb:1 turns ratio are connected. The output of the boost
transformer is given to a three-phase diode boost-rectifier bridge. The boost-rectifier bridge output
voltage is filtered by Lf and Cf. This filtered output voltage (Vboost) is connected in series with the
input DC source to realize power supply Vbus (i.e., Vbus = Vin + Vboost), applied across three-phase
inverter bridge Modules 1 and 2. The secondary windings of the three-phase boost transformer are
shown in Wye connection (they can also be connected in ∆). The gating signals for the three-phase
inverter-bridge switches are 180◦ wide [24,25]. Six gating signals are required for each three-phase
bridge, and these gating signals are applied in order, with a delay of 60◦ to obtain balanced three-phase
inverter output voltage. Each switch conducts for 180◦, and three switches remain on at any point
of time in a given interval (e.g., S1 S2 S3, S2 S3 S4, S3 S4 S5, S4 S5 S6, S5 S6 S1, S6 S1 S2). There are
six intervals of operation in each cycle, and the duration of each interval is 60◦. Fixed-frequency
control is obtained by phase shifting the gating signals of Module 2 with respect to Module 1 by an
angle δ, which creates potential difference across the primary windings of the HF-boost transformer.
At minimum input voltage (Vin,min) and full load, the gating signals of Module 2 are shifted by 180◦

to generate a square-wave voltage waveform of pulse width, δ = π in each phase across the primary
windings of the three-phase boost transformer. The phase shift is varied to change the pulse-width d
of quasisquare wave generated across the primary windings of boost transformer T3 to regulate the
load voltage for variations in input voltage and load.
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3. Design

The analysis presented in References [25,28] was used in designing the converter. The design
procedure, as given in References [24,28], was followed in designing the fixed-frequency controlled
ZVS-integrated boost dual three-phase bridge DC–DC LCL-type series resonant converter for linear
generator-based large-wave-power generation applications. In this section, the selection of voltage
and power ratings is first discussed, and then design summary is presented.

3.1. Selection of Voltage and Power Ratings

A number of LGs used in wave power with different specifications are found in the
literature [1–11]. The power and input voltage ratings are chosen as per the LG ratings given
in References [2,33]. In Table 1, the specimen specifications of an LG, as given in Reference [2],
are presented. For illustration purposes, a grid voltage of 240 V (L–L) and 60 Hz is considered.
Based on this grid voltage, the output-voltage rating of the designed converter was obtained as 400 V.
The criterion for choosing Vbus is Vbus(min) > Vin(max), and Vbus (max) is decided based on the
available higher voltage ratings of the switching devices. This idea of a design with a higher Vbus value
reduces the switch currents and voltage ratings of the HF transformer, and the tank circuit elements.
Based on this criterion, Vbus = 600 V was chosen [25]. This DC bus voltage was applied across the
three-phase HF inverter bridges.
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Table 1. Linear-generator specifications [2,33].

Parameter Value

Rated power at 0.7 m/s 10 kW
Open circuit voltage (Line) at 0.7 m/s 200 V
Generator resistance 0.44 Ω
Generator inductance 11.7 mH
Iron losses at 0.7 m/s 0.57 kW
Length of air gap 3 mm
Size of magnet block 6.5 × 35 × 100 mm3

Pole width 50 mm
Stator sides (number) 4
Stator length (vertical) 1.264 m
Translator length (vertical) 1.867 m
Weight of translator 1000 kg

3.2. Design Summary

The converter was designed by following the procedure outlined in References [24,28], and the
key design equations, together with various parameter notations, are summarized in Appendix A.
The specifications of the designed converter are given in Table 2. Using the design curves presented
in Reference [25], the design parameters are optimized. The selected parameters are Q = 4, F = 1.1,
and Ls/Lp = 0.1. For the chosen design parameters, converter gain M (= V’o/Vbus) was calculated
by using Equation (A15) as M = 0.6286 p.u. Output voltage, when reflected on primary side of the
HF transformer, is V’o = Vo/nt = 371.2 V. Therefore, the HF main transformer (T1 and T2) turns the
ratio of nt = Vo/ V’o = 1.078. Load resistance RL = Vo

2/(Po/2) = 32 Ω (since each module equally
shares the load, power output is taken as Po/2 = 5 kW). The load resistance referred to on the
primary side, RL’ = RL/nt

2 = 27.54 Ω. The values of tank circuit elements Ls and Cs are determined
by solving Equation (A16) as, Ls = 192.97 µH and Cs = 15.88 nF. Since Ls/Lp = 0.1, Lp = 1.93 mH
on the primary side. Therefore, L’p = nt

2Lp = 2.24 mH is connected on the secondary side in each
phase. This includes the magnetizing inductance of the HF transformer. Total impedance using
Equations (A17)–(A22) is ZAN = 16.75 + j21.27 Ω, |ZAN| = 27.08 Ω, ϕ = 51.78◦. The maximum current
in the tank circuit elements Ls and Cs using Equation (A23) is ILsp = 14.11 A. The maximum value of
voltage across Cs using Equation (A25), VCsp = 1.41 kV. The maximum value of the current through
STAR-connected parallel inductors L’p on the secondary side is IL’p,p= 163 mA. If the parallel inductors
are connected in ∆, then the peak value of current through the ∆-connected inductors Lab, Lbc, Lca

(secondary side) is ILab,p = 94.11 mA. The initial tank current using Equation (A24) is ILs0 = −11.09 A.
The negative sign of ILs0 indicates that the tank circuit is operating in lagging pf mode. The per-phase
inductance required in the primary windings of the three-phase boost transformer calculated using
Equation (A14) is 2.75 µH. The Lf and Cf filter components of the three-phase boost rectifier, determined
using Equations (A12)–(A13), are Lf = 5.0 µH and Cf = 20.0 µF. The device ratings, calculated using
Equations (A1)–(A10), are: MOSFET: Isw(rms) = 22.91 A, Isw(av) = 13.17 A, VDS(max) = 600 V and,
IDM(av) = 0.84 A. Boost rectifier diodes: IDb (av) = 24.69 A, VDb(max) = 465 V. Output rectifier diodes:
IDo (av) = 4.17 A, VDo(max) = 400 V. For the chosen value of Vbus = 600 V, IXYS-VMM90-09F (900 V,
85A, RDS = 76 mΩ, tf = 140 ns) MOSFET was selected so that HF operation was possible and converter
specifications were met. A snubber capacitance of Cn = 4.64 nF was found for the chosen MOSFET,
with a switch turn-off current io = 39.78 A using Equation (A11). A series/parallel combination of
selected MOSFETs or insulated-gate-bipolar-transistors (IGBTs) would further increase the power
ratings which is essential in wave energy generation applications.
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Table 2. Specifications of the designed converter [33].

Parameter Value

Input voltage (Vin) 135 V to 270 V
Output voltage (Vo) 400 V
Output Power (Po) 10 kW
DC bus voltage (Vbus) 600 V
Switching frequency (f s) 100 kHz

4. Simulation Results

4.1. Steady-State Conditions

The steady-state performance of the converter outlined in Section 3 was verified by using PSIM
simulations. The following five cases were considered to validate theoretical results [24]. Case 1:
Vin(min) = 135 V, full load; Case 2: Vin(max) = 270 V, full load; Case 3: Vin(min) = 135 V, half load; Case 4:
Vin(max) = 270 V, half load; Case 5: Vin(min) = 135 V, 20% of full load. Sample waveforms from PSIM
simulations for Cases 1, 2, and 5 are presented in Figures 4–15. In simulations, three-phase transformers
were obtained by using three single-phase transformers. Leakage and magnetizing inductances
were obtained by recalculating the per-unit values of the measured values of the three-phase boost
transformer in from Reference [25] (rated at 618 W) built in the laboratory. These values are: total
leakage inductance of 3.0 µH (referred to primary side) and magnetizing inductance of 170 µH (referred
to primary side). The estimated leakage inductance of the boost transformer Lbl @ 3.0 µH was slightly
greater than the calculated value of the per-phase inductance required in the primary windings of
the three-phase boost transformer (Lbt = 2.75 µH). Hence, no additional inductance was necessary.
Thus, leakage inductance was profitably utilized to achieve ZVS. To compensate for the voltage
drop due to leakage inductance (i.e., voltage drop due to commutation overlap), the turns ratio of
the boost transformer was made 2.428:1 instead of 2.5806:1. For the three-phase main transformers,
three ideal single-phase transformers were used as the leakage inductances were absorbed in the
resonant inductances. In the simulations, the Y-connected parallel inductor L’p, on the secondary side
of three-phase main transformers T1 and T2 of Figure 2, was connected in ∆ by taking their equivalent
values (i.e., Lab = Lbc Lca = 3L’p). For MOSFET, an RDS = 76 mΩ was used. Snubber capacitors
used include the MOSFET drain to source capacitances. All remaining components were chosen as
ideal. Since this resonant power converter operates in soft-switching, the effect of electromagnetic
interference (EMI) was minimized. Wiring inductance at the output of inverter is used profitably as
part of resonant circuit. However, to minimize the EMI and effect of other parasitic elements (due
to wiring and coupling, etc.) that might still occur, techniques used in Reference [37] could be used
while designing the printed circuit boards. The effect of any other parasitic elements can be minimized
by using a careful design of the printed circuit board. The impact of the geometrical parameters
of the PCB structure on the electromagnetic coupling is analyzed in Reference [37]. In simulations,
each three-phase inverter bridge module was given with three-phase 180◦ wide normal gating signals.
To regulate output voltage, the gating signals of Module 2 were phase-shifted from those of Module
1 to give a pulse width of δ. Since the calculated value of δ was very close to the value of δ to be set
in the simulations, very few iterations were used in the simulations to determine the required value
of δ to obtain the rated output voltage. This is an advantage as it reduces simulation time. It was
observed from the simulation results [24] that all the switches, in both Module 1 and 2 of the converter,
operate with ZVS for all input-voltage variation from Vin(min) to Vin(max), and for load variation
from full load to 20% of full load, e.g., Figures 6, 10, and 14. The maximum resonant current (phase)
declined from approximately (i) Module 1: 13.81 A at Vin(max) = 270 V, full load (Figure 8a) to 2.77 A
at Vin(min) = 135 V, 20% of full load (Figure 12a); (ii) Module 2: 13.86 A at Vin(max) = 270 V, full load
(Figure 8b) to 2.83 A at Vin(min) = 135 V, 20% of full load (Figure 12b). For Module 1: peak switch
current with Vin(min) = 135 V approximately decreased from 49.51 A at full load (Figure 6a) to 13.66 A
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at 20% of full load (Figure 14a). For Module 2: peak switch current with Vin(min) = 135 V decreased
approximately from 49.45 A at full load (Figure 6b) to 12.13 A at 20% of full load (Figure 14b). It is
worth noting that the peak values of the switch/resonant currents reduce as load current is reduced.
The summary of power-loss breakdown analysis of the converter is presented in Table 3. A bar
chart of the efficiency percentage obtained from calculations and simulations is shown in Figure 16.
Comparison of the results obtained from calculations and simulations is presented in Table 4. It is to be
noted that, comparing the results presented in Table 4 and in Figure 16, RDS = 76 mΩ was chosen in the
simulation for MOSFETs, and all other elements were ideal. Hence, efficiency values from simulations
are higher than those from calculations.
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Figure 4. PSIM simulation waveforms for Case 1: Vin(min) = 135 V, full load, RL = 16 Ω, δ = 180◦.
vAB, vBC, vCA, and iLsA, iLsB, iLsC for (a) Module 1 and (b) Module 2. vrect_in_ab or vLab, and vCsA for
(c) Module 1 and (d) Module 2.

4.2. Performance Under Step Changes in Load

A converter is robust when it maintains output voltage as constant even when the load suddenly
changes. This ability of the converter is tested by simulating its performance in PSIM software for
sudden variations in load. The change in load from full load to half load, and then to 20% of full
load (also in reverse order), was created by operating a load control switch. The phase-shifted gating
signals with appropriate phase-shift angle δ, as given in Table 4, for corresponding step changes in
load were applied to the MOSFETs of Module 2. Some important sample waveforms, obtained through
simulations for step changes in load current from full load to half load at t = 0.2 seconds, and half load
to 20% of full load at t = 0.25 seconds (step change is made after steady-state operation), are presented
in Figure 17. The robustness of the converter is rigorously tested by creating two step changes i.e.,
from 20% of full load to half load at t = 0.2 seconds, and from half load to full load at t = 0.25 seconds.
as indicated in Figure 18. It is observed from Figures 17 and 18 that there is smooth transition of output
voltage during load step change while maintaining constant output voltage at the full-load value.
From Figure 19, it can be seen that the resonant tank current remains sinusoidal throughout loading
conditions. The variations of resonant tank currents while the load is changed from light load to higher
loads are shown in Figure 20. It is observed in Figure 21 that the current through the switches did not
spike up during sudden changes in loading conditions. It can also be observed from Figure 21 that all
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switches in both modules remained in ZVS, i.e., the antiparallel diodes conduct before the respective
switches conduct. This can be ensured by observing negative switch currents, as shown in Figure 21.
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Figure 5. PSIM simulation waveforms for Case 1: Vin(min) = 135 V, full load, RL = 16 Ω, δ = 180◦. iLab,
iLsA, and irect_in.a for (a) Module 1 and (b) Module 2. vLab, vLbc, vLca, and irect_in,a for (c) Module 1 and
(d) Module 2.
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Figure 6. PSIM simulation waveforms for Case 1: Vin(min) = 135 V, full load, RL = 16 Ω, δ = 180◦.
Voltage across MOSFET (vDS) and current through it (is) to show ZVS of switches S1–S3 and switches
S4–S6 for (a) Module 1 and (b) Module 2.
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Figure 7. PSIM simulation waveforms for Case 1: Vin(min) = 135 V, full load, RL = 16 Ω, δ = 180◦.
Phase voltages (a) across the primary terminals (vA12p, vB12p, vC12p), and the primary current in Phase
A of the three-phase boost transformer T3; (b) across the secondary terminals of three-phase boost
transformer T3 (vA12s, vB12s, vC12s), and output voltage of the boost rectifier before filtering (vboost).
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Figure 8. PSIM simulation waveforms for Case 2: Vin(max) = 270 V, full load, RL = 16 Ω, δ = 84◦.
(a)–(d) Figure 4 waveforms repeated.
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Figure 9. PSIM simulation waveforms for Case 2: Vin(max) = 270 V, full load, RL = 16 Ω, δ= 84◦.
(a)–(d) Figure 5 waveforms repeated.
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Figure 10. PSIM simulation waveforms for Case 2: Vin(max) = 270 V, full load, RL = 16 Ω, δ = 84◦.
(a)–(b) Figure 6 waveforms repeated.
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Figure 11. PSIM simulation waveforms for Case 2: Vin(max) = 270 V, full load, RL = 16 Ω, δ = 84◦.
(a)–(b) Figure 7 waveforms repeated.
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Figure 12. PSIM simulation waveforms for Case 5: Vin(min) = 135 V, 20% of full load, RL = 80 Ω,
δ = 98◦. (a)–(d) Figure 4 waveforms repeated.
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Figure 13. PSIM simulation waveforms for Case 5: Vin(min) = 135 V, 20% of full load, RL = 80 Ω,
δ = 98◦. (a)–(d) Figure 5 waveforms repeated.
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Figure 14. PSIM simulation waveforms for Case 5: Vin(min) = 135 V, 20% of full load, RL = 80 Ω,
δ = 98◦. (a)–(b) Figure 6 waveforms repeated.
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Figure 15. PSIM simulation waveforms for Case 5: Vin(min) = 135 V, 20% of full load, RL = 80 Ω,
δ = 98◦. (a)–(b) Figure 7 waveforms repeated.

Table 3. Power loss.

Case

Inverter (MOSFET) Losses Rectifier Conduction
Losses (W)

Transformer +
Q Loss (W)

(Assumed 1%)

Total
Losses

(W)

Efficiency
(%)Turn-off

(W)
Conduction

(W)
Diode

(W) Output Boost

Vin = 135V,
Full load. 334.31 478.81 10.99 62.50 99.25 200.00 1185.86 89.39

Vin = 270V,
Full load. 136.64 196.47 10.99 62.50 49.62 200.00 656.22 93.84

Vin = 135V,
Half load. 70.11 124.10 0.84 31.25 49.62 100.00 375.92 93.00

Vin = 270V,
Half load. 25.77 51.74 0.84 31.25 24.81 100.00 234.41 95.52

Vin = 135V,
20% load. 9.21 19.66 1.25 12.50 19.85 40.00 102.47 95.12
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Table 4. Calculation and simulation results [24,33].

Parameter

Case-1:
V in(min) = 135V,

Full Load

Case-2:
V in(max) = 270V,

Full Load

Case-3:
V in(min) = 135V,

Half Load

Case-4:
V in(max) = 270V,

Half Load

Case-5:
V in(min) = 135V,

20% Load

Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim.

Vo (V) 400.00 392.51 400.00 394.92 400.00 390.95 400.00 390.50 400.00 390.21
Io (A) 25.00 24.53 25.00 24.68 12.50 12.21 12.50 12.20 5.00 4.88

Vbus (V) 600.00 598.95 600.00 600.61 443.79 445.11 443.79 443.59 388.97 386.96
Vboost,DC (V) 465.00 463.95 330.00 330.61 308.79 310.11 173.79 173.59 253.97 251.96

H (%) 91.72 93.05 94.87 97.56 94.04 96.63 95.92 98.68 95.48 98.77
δ (◦) 180 180 85 84 108 107 61 60 101 98

ILsp
(ILsr)
(A)

Mod 1 14.11
(9.97)

13.75
(9.82)

14.11
(9.97)

13.81
(9.86)

7.06
(4.99)

6.94
(4.87)

7.06
(4.99)

6.93
(4.86)

2.83
(2.00)

2.77
(1.92)

Mod 2 14.11
(9.97)

13.75
(9.82)

14.11
(9.97)

13.86
(9.88)

7.06
(4.99)

6.99
(4.90)

7.06
(4.99)

6.97
(4.89)

2.83
(2.00)

2.83
(1.97)

VCsp
(VCsr)

(V)

Mod 1 1413.82
(999.72)

1387.17
(985.45)

1413.82
(999.72)

1393.28
(986.76)

707.41
(500.21)

688.22
(486.58)

707.41
(500.21)

687.94
(487.07)

283.57
(200.50)

273.34
(193.28)

Mod 2 1413.82
(999.72)

1387.34
(985.48)

1413.82
(999.72)

1398.43
(991.77)

707.41
(500.21)

693.83
(492.90)

707.41
(500.21)

692.48
(490.40)

283.57
(200.50)

280.32
(197.57)

iL’p (p)
(mA)

Mod 1 54.66 56.33 54.66 56.73 54.66 56.14 54.66 56.04 54.66 56.03

Mod 2 54.66 56.29 54.66 56.69 54.66 56.14 54.66 56.10 54.66 56.04
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Figure 17. Simulation waveforms with Vin(min) = 135 V for step changes in io: (a) waveforms of vo and
io, (b) expanded waveform of vo, for full load (RL = 16 Ω, δ = 180◦) to half load (RL = 32 Ω, δ = 107◦) at
t = 0.2 sec.; (c) waveforms of vo and io (d) expanded waveform of vo, for half load (RL = 32 Ω, δ = 107◦)
to 20% of full load (RL = 80 Ω, δ = 98◦) at t = 0.25 sec. Output voltage vo to be regulated is 392 V.
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Figure 18. Simulation waveforms with Vin(min) = 135 V for step changes in io from 20% of full load
(RL = 80 Ω, δ = 98◦) to half load (RL = 32 Ω, δ = 107◦) at t = 0.2 s, and then to full load (RL = 16 Ω,
δ = 180◦) at t = 0.25 s: (a) waveforms of vo and io, (b) expanded waveform of vo.
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Figure 19. Simulation waveforms with Vin(min) = 135 V for step changes in load current at t = 0.2 s:
(a) waveforms of resonant tank currents (iLsa, iLsb, iLsc) in Phases A, B, and C, (b) expanded waveforms
of iLsa, iLsb, iLsc for full load (RL = 16 Ω, δ = 180◦) to half load (RL = 32 Ω, δ = 107◦) for Module 1,
(c) iLsa, iLsb, iLsc, (d) expanded waveforms of iLsa, iLsb, iLsc for half load (RL = 32 Ω, δ = 107◦) to 20% of
full load (RL = 80 Ω, δ = 98◦) for Module 2.
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Figure 20. Simulation waveforms of resonant tank currents (iLsa, iLsb, iLsc) in Phases A, B, and C with
Vin(min) = 135 V for step changes in load current from 20% of full load (RL= 80 Ω, δ = 98◦) to half load
(RL= 32 Ω, δ = 107◦) at t = 0.2 s, and then to full load (RL= 16 Ω, δ = 180◦) at t = 0.25 s. (a) Module 1
and (b) Module 2.
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Figure 21. Simulation waveforms of switch currents (is1–is6) with Vin(min) = 135 V for step changes in
load current: (a)–(b) from full load (RL= 16 Ω, δ = 180◦) to half load (RL= 32 Ω, δ = 107◦) at t = 0.2 s.
(a) Module 1 and (b) Module 2. (c)–(d) from half load (RL= 16 Ω, δ = 180◦) to 20% of full load (RL=
80 Ω, δ = 98◦) at t = 0.25 s. (c) Module 1 and (d) Module 2.

5. Conclusions

A fixed-frequency-controlled integrated-boost dual three-phase bridge DC–DC LCL-type SRC,
of 135 to 270 V input, 10 kW, and 400 V output was designed. The performance of the designed
converter has been verified by using PSIM simulations for variations in input voltage and the load.
Power-loss breakdown analysis of the converter was carried out and the summary is presented.
Theoretical and simulation results were compared and they agreed very closely. The designed
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converter maintained ZVS for all switches and for wide variations in supply voltage and load.
This resulted in higher efficiency by minimizing turn-on losses. This feature is very useful in
alternate-energy applications generating large amounts of power. Due to the advent of SiC power
MOSFETS, e.g., Reference [38], the proposed converter could be designed for still-higher power
ratings, with high switching frequency, as new MOSFETs of higher voltage ratings (>1000 V) and
higher current ratings (>100 A) are now available. IGBTs are also considered for higher power, but at
the cost of reduced switching frequency. The series and parallel combinations of such three-phase
cells can also be used to realize much higher power ratings. A low-power (600 W) prototype of the
proposed converter with different input/output voltages was built in the laboratory and reported in
Reference [25]. As future work, an experimental 10 kW converter, based on the given specifications,
will be built in the power-electronics laboratory, and results will be verified with the theoretical and
simulation results obtained in this paper. The effect of various parasitic elements was also included in
the simulation.
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Appendix A. Design Equations (A24) and (A25)

The phasor circuit used in the analysis of the Figure 3 converter is shown in Figure A1. Some of
the important equations used in the converter design are given below:
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Figure A1. Phasor equivalent circuit used for analyzing Module 1 of the converter shown in
Figure 3 [24,25].

RMS current through each switch is

ISW(rms)=

√
1

2π

{
I2
b (π −

π
3 ) +

I2
Lsp
2 (π − π

3 + sin2Φ
2 +

sin (2 π
3 −2Φ)
2 ) + 2Ib ILsp(cos Φ + cos (π

3 −Φ))

}
(A1)

Average current through each switch is

ISW(av) =
1

2π

{
Ib(π −

π

3
) + ILsp(cosΦ + cos (

π

3
−Φ))

}
(A2)

Average current through body diode of each MOSFET is

IDM(av) =
ILsp

2π
(cosΦ− cos (

π

3
−Φ)) (A3)

Maximum voltage across each MOSFET is

vDS(max) = Vbus,max (A4)
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Average current through each diode of the boost rectifier is

IDb = ILf(av)/3 (A5)

Average current through inductive filter used at the output of boost rectifier is

ILf(av) = (ILfmin+ ILfmax)/2 (A6)

Maximum voltage across each of the boost rectifier diodes is

VDb(max) = 2Vbus/nb (A7)

Average current through each diode of the output rectifier is

IDo(ave) = IRL(av)/(3 × 2) (A8)

Average current through the load resistance is

IRL(av) = Po/Vo (A9)

Maximum voltage across each diode of the output rectifier is

VDo(max) = Vo (A10)

Snubber capacitance used across each switch is

Cn = iotf/(2Vbus,max) (A11)

Filter inductance used at the output of the boost rectifier is

Lf = VLf(6fs)/(12f sπILf(6fs)) (A12)

Filter capacitance used at the output of the boost rectifier is

Cf = ICf(6fs)/(12f sπVCf(6fs)) (A13)

Energy stored in inductance connected in series with each phase of the primary windings of the
ideal three-phase boost transformer is

ELbt =
1
2

LbtI2
b>

1
2

(2CnV2
bus) (A14)

Converter gain is

M =
1[

{1 + (Ls/LP)(1− (1/F2))}2 + {(π2/6)Q(F− (1/F))}2
] 1

2
(A15)

where
Q = ωrLs/R′L; F = ωs/ωr = fs/ fr; ωs = 2π fs; ωr = 2π fr =

1√
LsCs

(A16)

The parameters of the phasor equivalent circuit shown in Figure A1 are

ZAN = RAN + jXAN (A17)
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|ZAN| =
[

R2
AN + X2

AN

]1/2
(A18)

Φ = tan−1(
XAN

RAN
) (A19)

where,

RAN = (
RacX2

Lp

R2ac + X2
Lp

) (A20)

XAN =

[
(XLs + XCs) + (

R2
acXLp

R2ac + X2
Lp

)

]
(A21)

XLs = ωsLs; XLp = ωsLp; XCs = −1/ωsCs (A22)

ILsp = VAN1(peak)/|ZAN| (A23)

Initial switch current is
iLs0 = ILsp sin (−Φ) (A24)

Peak resonant capacitor voltage is

VCsp = ILsp|XCs| (A25)
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